Version 40.38 by Xiaoling on 2022/06/06 10:04

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="385" width="385"]]
3
4
5
6
7 **RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19 = 1.Introduction =
20
21 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
22
23 (((
24
25 )))
26
27 (((
28 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
29 )))
30
31 (((
32 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
33 )))
34
35 (((
36 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
37 )))
38
39 (((
40 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
41 )))
42
43 (((
44 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
45 )))
46
47 (((
48 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
49 )))
50
51 (((
52 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
53 )))
54
55 [[image:1652953304999-717.png||height="424" width="733"]]
56
57
58
59 == 1.2 Specifications ==
60
61
62 **Hardware System:**
63
64 * STM32L072CZT6 MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption (exclude RS485 device):
67 ** Idle: 6uA@3.3v
68 ** 20dB Transmit: 130mA@3.3v
69
70 **Interface for Model:**
71
72 * 1 x RS485 Interface
73 * 1 x TTL Serial , 3.3v or 5v.
74 * 1 x I2C Interface, 3.3v or 5v.
75 * 1 x one wire interface
76 * 1 x Interrupt Interface
77 * 1 x Controllable 5V output, max
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * Programmable bit rate up to 300 kbps.
87 * High sensitivity: down to -148 dBm.
88 * Bullet-proof front end: IIP3 = -12.5 dBm.
89 * Excellent blocking immunity.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * LoRa modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
96
97 == 1.3 Features ==
98
99 * LoRaWAN Class A & Class C protocol (default Class A)
100 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
101 * AT Commands to change parameters
102 * Remote configure parameters via LoRaWAN Downlink
103 * Firmware upgradable via program port
104 * Support multiply RS485 devices by flexible rules
105 * Support Modbus protocol
106 * Support Interrupt uplink
107
108 == 1.4 Applications ==
109
110 * Smart Buildings & Home Automation
111 * Logistics and Supply Chain Management
112 * Smart Metering
113 * Smart Agriculture
114 * Smart Cities
115 * Smart Factory
116
117 == 1.5 Firmware Change log ==
118
119 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
120
121
122 == 1.6 Hardware Change log ==
123
124 (((
125
126
127 (((
128 v1.4
129 )))
130 )))
131
132 (((
133 (((
134 ~1. Change Power IC to TPS22916
135 )))
136 )))
137
138 (((
139
140 )))
141
142 (((
143 (((
144 v1.3
145 )))
146 )))
147
148 (((
149 (((
150 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
151 )))
152 )))
153
154 (((
155
156 )))
157
158 (((
159 (((
160 v1.2
161 )))
162 )))
163
164 (((
165 (((
166 Release version ​​​​​
167 )))
168
169
170 )))
171
172 = 2. Pin mapping and Power ON Device =
173
174 (((
175 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
176 )))
177
178 [[image:1652953055962-143.png||height="387" width="728"]]
179
180
181 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
182
183
184 = 3. Operation Mode =
185
186 == 3.1 How it works? ==
187
188 (((
189 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
190
191
192 )))
193
194 == 3.2 Example to join LoRaWAN network ==
195
196 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
197
198 [[image:1652953414711-647.png||height="337" width="723"]]
199
200 (((
201 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
202 )))
203
204 (((
205 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
206 )))
207
208 (((
209 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
210 )))
211
212 (((
213 Each RS485-BL is shipped with a sticker with unique device EUI:
214 )))
215
216 [[image:1652953462722-299.png]]
217
218 (((
219 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
220 )))
221
222 (((
223 Add APP EUI in the application.
224 )))
225
226
227 [[image:image-20220519174512-1.png]]
228
229 [[image:image-20220519174512-2.png||height="328" width="731"]]
230
231 [[image:image-20220519174512-3.png||height="556" width="724"]]
232
233 [[image:image-20220519174512-4.png]]
234
235 You can also choose to create the device manually.
236
237 [[image:1652953542269-423.png||height="710" width="723"]]
238
239 Add APP KEY and DEV EUI
240
241 [[image:1652953553383-907.png||height="514" width="724"]]
242
243
244 (((
245 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
246 )))
247
248 [[image:1652953568895-172.png||height="232" width="724"]]
249
250
251 == 3.3 Configure Commands to read data ==
252
253 (((
254 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
255
256
257 )))
258
259 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
260
261 (((
262 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
263 )))
264
265 (((
266 **~1. RS485-MODBUS mode:**
267 )))
268
269 (((
270 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
271 )))
272
273 (((
274 **2. TTL mode:**
275 )))
276
277 (((
278 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
279 )))
280
281 (((
282 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
283 )))
284
285 (% border="1" style="background-color:#ffffcc; color:green; width:767px" %)
286 |=(% style="width: 121px;" %)(((
287 (((
288 **AT Commands**
289 )))
290 )))|=(% style="width: 110px;" %)(((
291 (((
292 **Description**
293 )))
294 )))|=(% style="width: 200px;" %)(((
295 (((
296 **Example**
297 )))
298 )))
299 |(% style="width:20px" %)(((
300 (((
301 AT+BAUDR
302 )))
303 )))|(% style="width:303px" %)(((
304 (((
305 Set the baud rate (for RS485 connection). Default Value is: 9600.
306 )))
307 )))|(% style="width:340px" %)(((
308 (((
309 (((
310 AT+BAUDR=9600
311 )))
312 )))
313
314 (((
315 (((
316 Options: (1200,2400,4800,14400,19200,115200)
317 )))
318 )))
319 )))
320 |(% style="width:121px" %)(((
321 (((
322 AT+PARITY
323 )))
324 )))|(% style="width:303px" %)(((
325 (((
326 (((
327 Set UART parity (for RS485 connection)
328 )))
329 )))
330
331 (((
332 (((
333 Default Value is: no parity.
334 )))
335 )))
336 )))|(% style="width:340px" %)(((
337 (((
338 (((
339 AT+PARITY=0
340 )))
341 )))
342
343 (((
344 (((
345 Option: 0: no parity, 1: odd parity, 2: even parity
346 )))
347 )))
348 )))
349 |(% style="width:121px" %)(((
350 (((
351 AT+STOPBIT
352 )))
353 )))|(% style="width:303px" %)(((
354 (((
355 (((
356 Set serial stopbit (for RS485 connection)
357 )))
358 )))
359
360 (((
361 (((
362 Default Value is: 1bit.
363 )))
364 )))
365 )))|(% style="width:340px" %)(((
366 (((
367 (((
368 AT+STOPBIT=0 for 1bit
369 )))
370 )))
371
372 (((
373 (((
374 AT+STOPBIT=1 for 1.5 bit
375 )))
376 )))
377
378 (((
379 (((
380 AT+STOPBIT=2 for 2 bits
381 )))
382 )))
383 )))
384
385
386 === 3.3.2 Configure sensors ===
387
388 (((
389 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
390 )))
391
392 (((
393 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
394 )))
395
396 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
397 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
398 |AT+CFGDEV|(% style="width:418px" %)(((
399 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
400
401 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
402
403 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
404 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
405
406 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
407
408
409 === 3.3.3 Configure read commands for each sampling ===
410
411 (((
412 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
413 )))
414
415 (((
416 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
417 )))
418
419 (((
420 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
421 )))
422
423 (((
424 This section describes how to achieve above goals.
425 )))
426
427 (((
428 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
429 )))
430
431 (((
432 **Command from RS485-BL to Sensor:**
433 )))
434
435 (((
436 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
437 )))
438
439 (((
440 **Handle return from sensors to RS485-BL**:
441 )))
442
443 (((
444 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
445 )))
446
447 * (((
448 **AT+DATACUT**
449 )))
450
451 (((
452 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
453 )))
454
455 * (((
456 **AT+SEARCH**
457 )))
458
459 (((
460 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
461 )))
462
463 (((
464 **Define wait timeout:**
465 )))
466
467 (((
468 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
469 )))
470
471 (((
472 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
473 )))
474
475 **Examples:**
476
477 Below are examples for the how above AT Commands works.
478
479 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
480
481 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:501px" %)
482 |(% style="width:498px" %)(((
483 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
484
485 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
486
487 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
488 )))
489
490 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
491
492 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
493
494 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
495
496 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:580px" %)
497 |(% style="width:577px" %)(((
498 **AT+SEARCHx=aa,xx xx xx xx xx**
499
500 * **aa: 1: prefix match mode; 2: prefix and suffix match mode**
501 * **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
502 )))
503
504 **Examples:**
505
506 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
507
508 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
509
510 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
511
512 [[image:1653271044481-711.png]]
513
514 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
515
516 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
517
518 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
519
520 [[image:1653271276735-972.png]]
521
522 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
523
524 (% style="background-color:#4f81bd; color:white; width:729px" %)
525 |(% style="width:726px" %)(((
526 **AT+DATACUTx=a,b,c**
527
528 * **a: length for the return of AT+COMMAND**
529 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
530 * **c: define the position for valid value.  **
531 )))
532
533 **Examples:**
534
535 * Grab bytes:
536
537 [[image:1653271581490-837.png||height="313" width="722"]]
538
539
540 * Grab a section.
541
542 [[image:1653271648378-342.png||height="326" width="720"]]
543
544
545 * Grab different sections.
546
547 [[image:1653271657255-576.png||height="305" width="730"]]
548
549 (((
550 (% style="color:red" %)**Note:**
551 )))
552
553 (((
554 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
555 )))
556
557 (((
558 **Example:**
559 )))
560
561 (((
562 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
563 )))
564
565 (((
566 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
567 )))
568
569 (((
570 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
571 )))
572
573 (((
574 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
575 )))
576
577 (((
578 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
579 )))
580
581 (((
582 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
583 )))
584
585 [[image:1653271763403-806.png]]
586
587
588 === 3.3.4 Compose the uplink payload ===
589
590 (((
591 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
592 )))
593
594 (((
595 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
596 )))
597
598 (((
599 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
600 )))
601
602 (((
603 Final Payload is
604 )))
605
606 (((
607 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
608 )))
609
610 (((
611 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
612 )))
613
614 [[image:1653272787040-634.png||height="515" width="719"]]
615
616
617
618 (((
619 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
620
621
622 )))
623
624 (((
625 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
626 )))
627
628 (((
629 Final Payload is
630 )))
631
632 (((
633 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
634 )))
635
636 1. (((
637 Battery Info (2 bytes): Battery voltage
638 )))
639 1. (((
640 PAYVER (1 byte): Defined by AT+PAYVER
641 )))
642 1. (((
643 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
644 )))
645 1. (((
646 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
647 )))
648 1. (((
649 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
650 )))
651
652 [[image:1653272817147-600.png||height="437" width="717"]]
653
654 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
655
656
657 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
658
659 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
660
661 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
662
663
664 Below are the uplink payloads:
665
666 [[image:1653272901032-107.png]]
667
668
669 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
670
671 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
672
673 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
674
675 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
676
677 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
678
679
680
681 === 3.3.5 Uplink on demand ===
682
683 (((
684 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
685 )))
686
687 (((
688 Downlink control command:
689 )))
690
691 (((
692 **0x08 command**: Poll an uplink with current command set in RS485-BL.
693 )))
694
695 (((
696 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
697
698
699 )))
700
701 === 3.3.6 Uplink on Interrupt ===
702
703 Put the interrupt sensor between 3.3v_out and GPIO ext.
704
705 [[image:1653273818896-432.png]]
706
707
708 (((
709 AT+INTMOD=0  Disable Interrupt
710 )))
711
712 (((
713 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
714 )))
715
716 (((
717 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
718 )))
719
720 (((
721 AT+INTMOD=3  Interrupt trigger by rising edge.
722
723
724 )))
725
726 == 3.4 Uplink Payload ==
727
728 (% border="1" style="background-color:#4f81bd; color:white; width:850px" %)
729 |**Size(bytes)**|(% style="width:130px" %)**2**|(% style="width:93px" %)**1**|(% style="width:509px" %)**Length depends on the return from the commands**
730 |Value|(% style="width:130px" %)(((
731 (((
732 Battery(mV)
733 )))
734
735 (((
736 &
737 )))
738
739 (((
740 Interrupt _Flag
741 )))
742 )))|(% style="width:93px" %)(((
743 PAYLOAD_VER
744
745
746 )))|(% style="width:509px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
747
748 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
749
750 (((
751 {{{function Decoder(bytes, port) {}}}
752 )))
753
754 (((
755 {{{//Payload Formats of RS485-BL Deceive}}}
756 )))
757
758 (((
759 {{{return {}}}
760 )))
761
762 (((
763 {{{ //Battery,units:V}}}
764 )))
765
766 (((
767 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
768 )))
769
770 (((
771 {{{ //GPIO_EXTI }}}
772 )))
773
774 (((
775 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
776 )))
777
778 (((
779 {{{ //payload of version}}}
780 )))
781
782 (((
783 {{{ Pay_ver:bytes[2],}}}
784 )))
785
786 (((
787 {{{ }; }}}
788 )))
789
790 (((
791 **}**
792
793
794 )))
795
796 (((
797 TTN V3 uplink screen shot.
798 )))
799
800 [[image:1653274001211-372.png||height="192" width="732"]]
801
802
803 == 3.5 Configure RS485-BL via AT or Downlink ==
804
805 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
806
807 There are two kinds of Commands:
808
809 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
810
811 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
812
813 === 3.5.1 Common Commands: ===
814
815 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
816
817
818 === 3.5.2 Sensor related commands: ===
819
820
821 ==== **Choose Device Type (RS485 or TTL)** ====
822
823 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
824
825 * **AT Command**
826
827 (% class="box infomessage" %)
828 (((
829 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
830 )))
831
832 (% class="box infomessage" %)
833 (((
834 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
835 )))
836
837
838 * **Downlink Payload**
839
840 **0A aa**  ~-~->  same as AT+MOD=aa
841
842
843
844 ==== **RS485 Debug Command (AT+CFGDEV)** ====
845
846 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
847
848 * **AT Command**
849
850 (% class="box infomessage" %)
851 (((
852 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
853 )))
854
855 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
856
857
858 * **Downlink Payload**
859
860 Format: A8 MM NN XX XX XX XX YY
861
862 Where:
863
864 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
865 * NN: The length of RS485 command
866 * XX XX XX XX: RS485 command total NN bytes
867 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
868
869 **Example 1:**
870
871 To connect a Modbus Alarm with below commands.
872
873 * The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
874
875 * The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
876
877 So if user want to use downlink command to control to RS485 Alarm, he can use:
878
879 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
880
881 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
882
883 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
884
885
886 **Example 2:**
887
888 Check TTL Sensor return:
889
890 [[image:1654132684752-193.png]]
891
892
893
894
895 ==== **Set Payload version** ====
896
897 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
898
899 * **AT Command:**
900
901 (% class="box infomessage" %)
902 (((
903 **AT+PAYVER: Set PAYVER field = 1**
904 )))
905
906
907 * **Downlink Payload:**
908
909 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
910
911 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
912
913
914
915 ==== **Set RS485 Sampling Commands** ====
916
917 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
918
919 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
920
921
922 * **AT Command:**
923
924 (% class="box infomessage" %)
925 (((
926 **AT+COMMANDx: Configure RS485 read command to sensor.**
927 )))
928
929 (% class="box infomessage" %)
930 (((
931 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
932 )))
933
934 (% class="box infomessage" %)
935 (((
936 **AT+SEARCHx: Configure search command**
937 )))
938
939
940 * **Downlink Payload:**
941
942 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
943
944 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
945
946 Format: AF MM NN LL XX XX XX XX YY
947
948 Where:
949
950 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
951 * NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
952 * LL:  The length of AT+COMMAND or AT+DATACUT command
953 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
954 * YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
955
956 **Example:**
957
958 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
959
960 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
961
962 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
963
964
965 **0xAB** downlink command can be used for set AT+SEARCHx
966
967 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
968
969 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
970 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
971
972 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
973
974
975
976 ==== **Fast command to handle MODBUS device** ====
977
978 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
979
980 This command is valid since v1.3 firmware version
981
982
983 **AT+MBFUN has only two value:**
984
985 * **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
986
987 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
988
989 * **AT+MBFUN=0**: Disable Modbus fast reading.
990
991 **Example:**
992
993 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
994 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
995 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
996
997 [[image:1654133913295-597.png]]
998
999
1000 [[image:1654133954153-643.png]]
1001
1002
1003 * **Downlink Commands:**
1004
1005 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1006
1007
1008
1009 ==== **RS485 command timeout** ====
1010
1011 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1012
1013 Default value: 0, range:  0 ~~ 5 seconds
1014
1015
1016 * **AT Command:**
1017
1018 (% class="box infomessage" %)
1019 (((
1020 **AT+CMDDLaa=hex(bb cc)**
1021 )))
1022
1023 **Example:**
1024
1025 **AT+CMDDL1=1000** to send the open time to 1000ms
1026
1027
1028 * **Downlink Payload:**
1029
1030 0x AA aa bb cc
1031
1032 Same as: AT+CMDDLaa=hex(bb cc)
1033
1034 **Example:**
1035
1036 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1037
1038
1039
1040 ==== **Uplink payload mode** ====
1041
1042 Define to use one uplink or multiple uplinks for the sampling.
1043
1044 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1045
1046 * **AT Command:**
1047
1048 (% class="box infomessage" %)
1049 (((
1050 **AT+DATAUP=0**
1051 )))
1052
1053 (% class="box infomessage" %)
1054 (((
1055 **AT+DATAUP=1**
1056 )))
1057
1058
1059 * **Downlink Payload:**
1060
1061 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1062
1063 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1064
1065
1066
1067
1068 ==== **Manually trigger an Uplink** ====
1069
1070 Ask device to send an uplink immediately.
1071
1072 * **Downlink Payload:**
1073
1074 **0x08 FF**, RS485-BL will immediately send an uplink.
1075
1076
1077
1078
1079 ==== **Clear RS485 Command** ====
1080
1081 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1082
1083
1084 * **AT Command:**
1085
1086 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1087
1088 Example screen shot after clear all RS485 commands. 
1089
1090
1091 The uplink screen shot is:
1092
1093 [[image:1654134704555-320.png]]
1094
1095
1096 * **Downlink Payload:**
1097
1098 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1099
1100
1101
1102 ==== **Set Serial Communication Parameters** ====
1103
1104 Set the Rs485 serial communication parameters:
1105
1106 * **AT Command:**
1107
1108 Set Baud Rate:
1109
1110 (% class="box infomessage" %)
1111 (((
1112 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1113 )))
1114
1115 Set UART Parity
1116
1117 (% class="box infomessage" %)
1118 (((
1119 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1120 )))
1121
1122 Set STOPBIT
1123
1124 (% class="box infomessage" %)
1125 (((
1126 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1127 )))
1128
1129
1130 * **Downlink Payload:**
1131
1132 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1133
1134 **Example:**
1135
1136 * A7 01 00 60   same as AT+BAUDR=9600
1137 * A7 01 04 80  same as AT+BAUDR=115200
1138
1139 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1140
1141 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1142
1143
1144
1145 ==== **Control output power duration** ====
1146
1147 User can set the output power duration before each sampling.
1148
1149 * **AT Command:**
1150
1151 **Example:**
1152
1153 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1154
1155 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1156
1157
1158 * **LoRaWAN Downlink Command:**
1159
1160 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1161
1162 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1163
1164
1165
1166 == 3.6 Buttons ==
1167
1168 (% border="1" style="background-color:#ffffcc; color:green; width:233px" %)
1169 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1170 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1171
1172 == 3.7 +3V3 Output ==
1173
1174 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1175
1176 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1177
1178 The +3V3 output time can be controlled by AT Command.
1179
1180
1181 (% style="color:#037691" %)**AT+3V3T=1000**
1182
1183
1184 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1185
1186 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1187
1188
1189 == 3.8 +5V Output ==
1190
1191 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1192
1193 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1194
1195 The 5V output time can be controlled by AT Command.
1196
1197
1198 (% style="color:#037691" %)**AT+5VT=1000**
1199
1200
1201 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1202
1203 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1204
1205
1206 == 3.9 LEDs ==
1207
1208 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1209 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1210 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1211
1212 == 3.10 Switch Jumper ==
1213
1214 (% border="1" style="background-color:#ffffcc; color:green; width:515px" %)
1215 |=(% style="width: 124px;" %)**Switch Jumper**|=(% style="width: 388px;" %)**Feature**
1216 |(% style="width:124px" %)**SW1**|(% style="width:388px" %)(((
1217 ISP position: Upgrade firmware via UART
1218
1219 Flash position: Configure device, check running status.
1220 )))
1221 |(% style="width:124px" %)**SW2**|(% style="width:388px" %)(((
1222 5V position: set to compatible with 5v I/O.
1223
1224 3.3v position: set to compatible with 3.3v I/O.,
1225 )))
1226
1227 **+3.3V**: is always ON
1228
1229 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1230
1231
1232 = 4. Case Study =
1233
1234 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1235
1236
1237 = 5. Use AT Command =
1238
1239 == 5.1 Access AT Command ==
1240
1241 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1242
1243 [[image:1654135840598-282.png]]
1244
1245
1246 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1247
1248 [[image:1654136105500-922.png]]
1249
1250
1251 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1252
1253
1254 == 5.2 Common AT Command Sequence ==
1255
1256 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1257
1258 If device has not joined network yet:
1259
1260 (% class="box infomessage" %)
1261 (((
1262 **AT+FDR**
1263 )))
1264
1265 (% class="box infomessage" %)
1266 (((
1267 **AT+NJM=0**
1268 )))
1269
1270 (% class="box infomessage" %)
1271 (((
1272 **ATZ**
1273 )))
1274
1275
1276 If device already joined network:
1277
1278 (% class="box infomessage" %)
1279 (((
1280 **AT+NJM=0**
1281 )))
1282
1283 (% class="box infomessage" %)
1284 (((
1285 **ATZ**
1286 )))
1287
1288
1289 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1290
1291
1292 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1293
1294 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1295
1296 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1297
1298 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1299
1300 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1301
1302 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1303
1304 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1305
1306 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1307
1308 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1309
1310 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1311
1312
1313 (% style="color:red" %)**Note:**
1314
1315 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1316 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1317 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1318 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1319
1320 [[image:1654136435598-589.png]]
1321
1322
1323 = 6. FAQ =
1324
1325 == 6.1 How to upgrade the image? ==
1326
1327 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1328
1329 * Support new features
1330 * For bug fix
1331 * Change LoRaWAN bands.
1332
1333 Below shows the hardware connection for how to upload an image to RS485-BL:
1334
1335 [[image:1654136646995-976.png]]
1336
1337 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1338
1339 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1340
1341 **Step3: **Open flashloader; choose the correct COM port to update.
1342
1343 [[image:image-20220602102605-1.png]]
1344
1345
1346 [[image:image-20220602102637-2.png]]
1347
1348
1349 [[image:image-20220602102715-3.png]]
1350
1351
1352
1353 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1354
1355 (((
1356 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1357 )))
1358
1359
1360
1361 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1362
1363 (((
1364 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1365 )))
1366
1367
1368
1369 = 7. Trouble Shooting =
1370
1371
1372 == 7.1 Downlink doesn’t work, how to solve it? ==
1373
1374 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1375
1376
1377 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1378
1379 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1380
1381
1382 = 8. Order Info =
1383
1384 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1385
1386 (% style="color:blue" %)**XXX:**
1387
1388 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1389 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1390 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1391 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1392 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1393 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1394 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1395 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1396 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1397 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1398
1399
1400 = 9. Packing Info =
1401
1402 (((
1403 **Package Includes**:
1404 )))
1405
1406 * (((
1407 RS485-BL x 1
1408 )))
1409 * (((
1410 Stick Antenna for LoRa RF part x 1
1411 )))
1412 * (((
1413 Program cable x 1
1414 )))
1415
1416 (((
1417 **Dimension and weight**:
1418 )))
1419
1420 * (((
1421 Device Size: 13.5 x 7 x 3 cm
1422 )))
1423 * (((
1424 Device Weight: 105g
1425 )))
1426 * (((
1427 Package Size / pcs : 14.5 x 8 x 5 cm
1428 )))
1429 * (((
1430 Weight / pcs : 170g
1431
1432
1433 )))
1434
1435 = 10. Support =
1436
1437 * (((
1438 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1439 )))
1440 * (((
1441 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1442 )))