Version 40.35 by Xiaoling on 2022/06/06 09:56

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="385" width="385"]]
3
4
5
6
7 **RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19 = 1.Introduction =
20
21 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
22
23 (((
24
25 )))
26
27 (((
28 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
29 )))
30
31 (((
32 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
33 )))
34
35 (((
36 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
37 )))
38
39 (((
40 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
41 )))
42
43 (((
44 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
45 )))
46
47 (((
48 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
49 )))
50
51 (((
52 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
53 )))
54
55 [[image:1652953304999-717.png||height="424" width="733"]]
56
57
58
59 == 1.2 Specifications ==
60
61
62 **Hardware System:**
63
64 * STM32L072CZT6 MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption (exclude RS485 device):
67 ** Idle: 6uA@3.3v
68 ** 20dB Transmit: 130mA@3.3v
69
70 **Interface for Model:**
71
72 * 1 x RS485 Interface
73 * 1 x TTL Serial , 3.3v or 5v.
74 * 1 x I2C Interface, 3.3v or 5v.
75 * 1 x one wire interface
76 * 1 x Interrupt Interface
77 * 1 x Controllable 5V output, max
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * Programmable bit rate up to 300 kbps.
87 * High sensitivity: down to -148 dBm.
88 * Bullet-proof front end: IIP3 = -12.5 dBm.
89 * Excellent blocking immunity.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * LoRa modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
96
97
98 == 1.3 Features ==
99
100 * LoRaWAN Class A & Class C protocol (default Class A)
101 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
102 * AT Commands to change parameters
103 * Remote configure parameters via LoRaWAN Downlink
104 * Firmware upgradable via program port
105 * Support multiply RS485 devices by flexible rules
106 * Support Modbus protocol
107 * Support Interrupt uplink
108
109
110 == 1.4 Applications ==
111
112 * Smart Buildings & Home Automation
113 * Logistics and Supply Chain Management
114 * Smart Metering
115 * Smart Agriculture
116 * Smart Cities
117 * Smart Factory
118
119
120 == 1.5 Firmware Change log ==
121
122 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
123
124
125 == 1.6 Hardware Change log ==
126
127 (((
128
129
130 (((
131 v1.4
132 )))
133 )))
134
135 (((
136 (((
137 ~1. Change Power IC to TPS22916
138 )))
139 )))
140
141 (((
142
143 )))
144
145 (((
146 (((
147 v1.3
148 )))
149 )))
150
151 (((
152 (((
153 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
154 )))
155 )))
156
157 (((
158
159 )))
160
161 (((
162 (((
163 v1.2
164 )))
165 )))
166
167 (((
168 (((
169 Release version ​​​​​
170 )))
171
172
173 )))
174
175 = 2. Pin mapping and Power ON Device =
176
177 (((
178 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
179 )))
180
181 [[image:1652953055962-143.png||height="387" width="728"]]
182
183
184 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
185
186
187 = 3. Operation Mode =
188
189 == 3.1 How it works? ==
190
191 (((
192 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
193
194
195 )))
196
197 == 3.2 Example to join LoRaWAN network ==
198
199 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
200
201 [[image:1652953414711-647.png||height="337" width="723"]]
202
203 (((
204 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
205 )))
206
207 (((
208 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
209 )))
210
211 (((
212 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
213 )))
214
215 (((
216 Each RS485-BL is shipped with a sticker with unique device EUI:
217 )))
218
219 [[image:1652953462722-299.png]]
220
221 (((
222 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
223 )))
224
225 (((
226 Add APP EUI in the application.
227 )))
228
229
230 [[image:image-20220519174512-1.png]]
231
232 [[image:image-20220519174512-2.png||height="328" width="731"]]
233
234 [[image:image-20220519174512-3.png||height="556" width="724"]]
235
236 [[image:image-20220519174512-4.png]]
237
238 You can also choose to create the device manually.
239
240 [[image:1652953542269-423.png||height="710" width="723"]]
241
242 Add APP KEY and DEV EUI
243
244 [[image:1652953553383-907.png||height="514" width="724"]]
245
246
247 (((
248 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
249 )))
250
251 [[image:1652953568895-172.png||height="232" width="724"]]
252
253
254 == 3.3 Configure Commands to read data ==
255
256 (((
257 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
258
259
260 )))
261
262 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
263
264 (((
265 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
266 )))
267
268 (((
269 **~1. RS485-MODBUS mode:**
270 )))
271
272 (((
273 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
274 )))
275
276 (((
277 **2. TTL mode:**
278 )))
279
280 (((
281 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
282 )))
283
284 (((
285 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
286 )))
287
288 (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
289 |(((
290 (((
291 **AT Commands**
292 )))
293 )))|(% style="width:285px" %)(((
294 (((
295 **Description**
296 )))
297 )))|(% style="width:347px" %)(((
298 (((
299 **Example**
300 )))
301 )))
302 |(((
303 (((
304 AT+BAUDR
305 )))
306 )))|(% style="width:285px" %)(((
307 (((
308 Set the baud rate (for RS485 connection). Default Value is: 9600.
309 )))
310 )))|(% style="width:347px" %)(((
311 (((
312 (((
313 AT+BAUDR=9600
314 )))
315 )))
316
317 (((
318 (((
319 Options: (1200,2400,4800,14400,19200,115200)
320 )))
321 )))
322 )))
323 |(((
324 (((
325 AT+PARITY
326 )))
327 )))|(% style="width:285px" %)(((
328 (((
329 (((
330 Set UART parity (for RS485 connection)
331 )))
332 )))
333
334 (((
335 (((
336 Default Value is: no parity.
337 )))
338 )))
339 )))|(% style="width:347px" %)(((
340 (((
341 (((
342 AT+PARITY=0
343 )))
344 )))
345
346 (((
347 (((
348 Option: 0: no parity, 1: odd parity, 2: even parity
349 )))
350 )))
351 )))
352 |(((
353 (((
354 AT+STOPBIT
355 )))
356 )))|(% style="width:285px" %)(((
357 (((
358 (((
359 Set serial stopbit (for RS485 connection)
360 )))
361 )))
362
363 (((
364 (((
365 Default Value is: 1bit.
366 )))
367 )))
368 )))|(% style="width:347px" %)(((
369 (((
370 (((
371 AT+STOPBIT=0 for 1bit
372 )))
373 )))
374
375 (((
376 (((
377 AT+STOPBIT=1 for 1.5 bit
378 )))
379 )))
380
381 (((
382 (((
383 AT+STOPBIT=2 for 2 bits
384 )))
385 )))
386 )))
387
388
389 === 3.3.2 Configure sensors ===
390
391 (((
392 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
393 )))
394
395 (((
396 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
397 )))
398
399 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
400 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
401 |AT+CFGDEV|(% style="width:418px" %)(((
402 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
403
404 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
405
406 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
407 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
408
409 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
410
411
412 === 3.3.3 Configure read commands for each sampling ===
413
414 (((
415 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
416 )))
417
418 (((
419 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
420 )))
421
422 (((
423 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
424 )))
425
426 (((
427 This section describes how to achieve above goals.
428 )))
429
430 (((
431 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
432 )))
433
434 (((
435 **Command from RS485-BL to Sensor:**
436 )))
437
438 (((
439 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
440 )))
441
442 (((
443 **Handle return from sensors to RS485-BL**:
444 )))
445
446 (((
447 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
448 )))
449
450 * (((
451 **AT+DATACUT**
452 )))
453
454 (((
455 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
456 )))
457
458 * (((
459 **AT+SEARCH**
460 )))
461
462 (((
463 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
464 )))
465
466 (((
467 **Define wait timeout:**
468 )))
469
470 (((
471 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
472 )))
473
474 (((
475 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
476 )))
477
478 **Examples:**
479
480 Below are examples for the how above AT Commands works.
481
482 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
483
484 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:501px" %)
485 |(% style="width:498px" %)(((
486 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
487
488 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
489
490 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
491 )))
492
493 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
494
495 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
496
497 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
498
499 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:580px" %)
500 |(% style="width:577px" %)(((
501 **AT+SEARCHx=aa,xx xx xx xx xx**
502
503 * **aa: 1: prefix match mode; 2: prefix and suffix match mode**
504 * **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
505 )))
506
507 **Examples:**
508
509 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
510
511 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
512
513 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
514
515 [[image:1653271044481-711.png]]
516
517 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
518
519 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
520
521 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
522
523 [[image:1653271276735-972.png]]
524
525 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
526
527 (% style="background-color:#4f81bd; color:white; width:729px" %)
528 |(% style="width:726px" %)(((
529 **AT+DATACUTx=a,b,c**
530
531 * **a: length for the return of AT+COMMAND**
532 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
533 * **c: define the position for valid value.  **
534 )))
535
536 **Examples:**
537
538 * Grab bytes:
539
540 [[image:1653271581490-837.png||height="313" width="722"]]
541
542
543 * Grab a section.
544
545 [[image:1653271648378-342.png||height="326" width="720"]]
546
547
548 * Grab different sections.
549
550 [[image:1653271657255-576.png||height="305" width="730"]]
551
552 (((
553 (% style="color:red" %)**Note:**
554 )))
555
556 (((
557 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
558 )))
559
560 (((
561 **Example:**
562 )))
563
564 (((
565 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
566 )))
567
568 (((
569 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
570 )))
571
572 (((
573 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
574 )))
575
576 (((
577 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
578 )))
579
580 (((
581 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
582 )))
583
584 (((
585 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
586 )))
587
588 [[image:1653271763403-806.png]]
589
590
591 === 3.3.4 Compose the uplink payload ===
592
593 (((
594 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
595 )))
596
597 (((
598 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
599 )))
600
601 (((
602 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
603 )))
604
605 (((
606 Final Payload is
607 )))
608
609 (((
610 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
611 )))
612
613 (((
614 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
615 )))
616
617 [[image:1653272787040-634.png||height="515" width="719"]]
618
619
620
621 (((
622 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
623
624
625 )))
626
627 (((
628 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
629 )))
630
631 (((
632 Final Payload is
633 )))
634
635 (((
636 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
637 )))
638
639 1. (((
640 Battery Info (2 bytes): Battery voltage
641 )))
642 1. (((
643 PAYVER (1 byte): Defined by AT+PAYVER
644 )))
645 1. (((
646 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
647 )))
648 1. (((
649 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
650 )))
651 1. (((
652 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
653 )))
654
655 [[image:1653272817147-600.png||height="437" width="717"]]
656
657 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
658
659
660 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
661
662 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
663
664 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
665
666
667 Below are the uplink payloads:
668
669 [[image:1653272901032-107.png]]
670
671
672 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
673
674 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
675
676 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
677
678 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
679
680 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
681
682
683
684 === 3.3.5 Uplink on demand ===
685
686 (((
687 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
688 )))
689
690 (((
691 Downlink control command:
692 )))
693
694 (((
695 **0x08 command**: Poll an uplink with current command set in RS485-BL.
696 )))
697
698 (((
699 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
700
701
702 )))
703
704 === 3.3.6 Uplink on Interrupt ===
705
706 Put the interrupt sensor between 3.3v_out and GPIO ext.
707
708 [[image:1653273818896-432.png]]
709
710
711 (((
712 AT+INTMOD=0  Disable Interrupt
713 )))
714
715 (((
716 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
717 )))
718
719 (((
720 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
721 )))
722
723 (((
724 AT+INTMOD=3  Interrupt trigger by rising edge.
725
726
727 )))
728
729 == 3.4 Uplink Payload ==
730
731 (% border="1" style="background-color:#4f81bd; color:white; width:850px" %)
732 |**Size(bytes)**|(% style="width:130px" %)**2**|(% style="width:93px" %)**1**|(% style="width:509px" %)**Length depends on the return from the commands**
733 |Value|(% style="width:130px" %)(((
734 (((
735 Battery(mV)
736 )))
737
738 (((
739 &
740 )))
741
742 (((
743 Interrupt _Flag
744 )))
745 )))|(% style="width:93px" %)(((
746 PAYLOAD_VER
747
748
749 )))|(% style="width:509px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
750
751 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
752
753 (((
754 {{{function Decoder(bytes, port) {}}}
755 )))
756
757 (((
758 {{{//Payload Formats of RS485-BL Deceive}}}
759 )))
760
761 (((
762 {{{return {}}}
763 )))
764
765 (((
766 {{{ //Battery,units:V}}}
767 )))
768
769 (((
770 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
771 )))
772
773 (((
774 {{{ //GPIO_EXTI }}}
775 )))
776
777 (((
778 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
779 )))
780
781 (((
782 {{{ //payload of version}}}
783 )))
784
785 (((
786 {{{ Pay_ver:bytes[2],}}}
787 )))
788
789 (((
790 {{{ }; }}}
791 )))
792
793 (((
794 **}**
795
796
797 )))
798
799 (((
800 TTN V3 uplink screen shot.
801 )))
802
803 [[image:1653274001211-372.png||height="192" width="732"]]
804
805
806 == 3.5 Configure RS485-BL via AT or Downlink ==
807
808 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
809
810 There are two kinds of Commands:
811
812 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
813
814 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
815
816
817 === 3.5.1 Common Commands: ===
818
819 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
820
821
822 === 3.5.2 Sensor related commands: ===
823
824
825 ==== **Choose Device Type (RS485 or TTL)** ====
826
827 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
828
829 * **AT Command**
830
831 (% class="box infomessage" %)
832 (((
833 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
834 )))
835
836 (% class="box infomessage" %)
837 (((
838 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
839 )))
840
841
842 * **Downlink Payload**
843
844 **0A aa**  ~-~->  same as AT+MOD=aa
845
846
847
848 ==== **RS485 Debug Command (AT+CFGDEV)** ====
849
850 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
851
852 * **AT Command**
853
854 (% class="box infomessage" %)
855 (((
856 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
857 )))
858
859 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
860
861
862 * **Downlink Payload**
863
864 Format: A8 MM NN XX XX XX XX YY
865
866 Where:
867
868 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
869 * NN: The length of RS485 command
870 * XX XX XX XX: RS485 command total NN bytes
871 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
872
873 **Example 1:**
874
875 To connect a Modbus Alarm with below commands.
876
877 * The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
878
879 * The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
880
881 So if user want to use downlink command to control to RS485 Alarm, he can use:
882
883 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
884
885 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
886
887 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
888
889
890 **Example 2:**
891
892 Check TTL Sensor return:
893
894 [[image:1654132684752-193.png]]
895
896
897
898
899 ==== **Set Payload version** ====
900
901 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
902
903 * **AT Command:**
904
905 (% class="box infomessage" %)
906 (((
907 **AT+PAYVER: Set PAYVER field = 1**
908 )))
909
910
911 * **Downlink Payload:**
912
913 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
914
915 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
916
917
918
919 ==== **Set RS485 Sampling Commands** ====
920
921 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
922
923 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
924
925
926 * **AT Command:**
927
928 (% class="box infomessage" %)
929 (((
930 **AT+COMMANDx: Configure RS485 read command to sensor.**
931 )))
932
933 (% class="box infomessage" %)
934 (((
935 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
936 )))
937
938 (% class="box infomessage" %)
939 (((
940 **AT+SEARCHx: Configure search command**
941 )))
942
943
944 * **Downlink Payload:**
945
946 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
947
948 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
949
950 Format: AF MM NN LL XX XX XX XX YY
951
952 Where:
953
954 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
955 * NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
956 * LL:  The length of AT+COMMAND or AT+DATACUT command
957 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
958 * YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
959
960 **Example:**
961
962 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
963
964 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
965
966 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
967
968
969 **0xAB** downlink command can be used for set AT+SEARCHx
970
971 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
972
973 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
974 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
975
976 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
977
978
979
980 ==== **Fast command to handle MODBUS device** ====
981
982 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
983
984 This command is valid since v1.3 firmware version
985
986
987 **AT+MBFUN has only two value:**
988
989 * **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
990
991 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
992
993 * **AT+MBFUN=0**: Disable Modbus fast reading.
994
995 **Example:**
996
997 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
998 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
999 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1000
1001 [[image:1654133913295-597.png]]
1002
1003
1004 [[image:1654133954153-643.png]]
1005
1006
1007 * **Downlink Commands:**
1008
1009 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1010
1011
1012
1013 ==== **RS485 command timeout** ====
1014
1015 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1016
1017 Default value: 0, range:  0 ~~ 5 seconds
1018
1019
1020 * **AT Command:**
1021
1022 (% class="box infomessage" %)
1023 (((
1024 **AT+CMDDLaa=hex(bb cc)**
1025 )))
1026
1027 **Example:**
1028
1029 **AT+CMDDL1=1000** to send the open time to 1000ms
1030
1031
1032 * **Downlink Payload:**
1033
1034 0x AA aa bb cc
1035
1036 Same as: AT+CMDDLaa=hex(bb cc)
1037
1038 **Example:**
1039
1040 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1041
1042
1043
1044 ==== **Uplink payload mode** ====
1045
1046 Define to use one uplink or multiple uplinks for the sampling.
1047
1048 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1049
1050 * **AT Command:**
1051
1052 (% class="box infomessage" %)
1053 (((
1054 **AT+DATAUP=0**
1055 )))
1056
1057 (% class="box infomessage" %)
1058 (((
1059 **AT+DATAUP=1**
1060 )))
1061
1062
1063 * **Downlink Payload:**
1064
1065 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1066
1067 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1068
1069
1070
1071
1072 ==== **Manually trigger an Uplink** ====
1073
1074 Ask device to send an uplink immediately.
1075
1076 * **Downlink Payload:**
1077
1078 **0x08 FF**, RS485-BL will immediately send an uplink.
1079
1080
1081
1082
1083 ==== **Clear RS485 Command** ====
1084
1085 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1086
1087
1088 * **AT Command:**
1089
1090 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1091
1092 Example screen shot after clear all RS485 commands. 
1093
1094
1095 The uplink screen shot is:
1096
1097 [[image:1654134704555-320.png]]
1098
1099
1100 * **Downlink Payload:**
1101
1102 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1103
1104
1105
1106 ==== **Set Serial Communication Parameters** ====
1107
1108 Set the Rs485 serial communication parameters:
1109
1110 * **AT Command:**
1111
1112 Set Baud Rate:
1113
1114 (% class="box infomessage" %)
1115 (((
1116 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1117 )))
1118
1119 Set UART Parity
1120
1121 (% class="box infomessage" %)
1122 (((
1123 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1124 )))
1125
1126 Set STOPBIT
1127
1128 (% class="box infomessage" %)
1129 (((
1130 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1131 )))
1132
1133
1134 * **Downlink Payload:**
1135
1136 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1137
1138 **Example:**
1139
1140 * A7 01 00 60   same as AT+BAUDR=9600
1141 * A7 01 04 80  same as AT+BAUDR=115200
1142
1143 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1144
1145 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1146
1147
1148
1149 ==== **Control output power duration** ====
1150
1151 User can set the output power duration before each sampling.
1152
1153 * **AT Command:**
1154
1155 **Example:**
1156
1157 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1158
1159 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1160
1161
1162 * **LoRaWAN Downlink Command:**
1163
1164 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1165
1166 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1167
1168
1169
1170 == 3.6 Buttons ==
1171
1172 (% border="1" style="background-color:#ffffcc; color:green; width:233px" %)
1173 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1174 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1175
1176
1177 == 3.7 +3V3 Output ==
1178
1179 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1180
1181 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1182
1183 The +3V3 output time can be controlled by AT Command.
1184
1185
1186 (% style="color:#037691" %)**AT+3V3T=1000**
1187
1188
1189 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1190
1191 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1192
1193
1194 == 3.8 +5V Output ==
1195
1196 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1197
1198 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1199
1200 The 5V output time can be controlled by AT Command.
1201
1202
1203 (% style="color:#037691" %)**AT+5VT=1000**
1204
1205
1206 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1207
1208 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1209
1210
1211 == 3.9 LEDs ==
1212
1213 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1214 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1215 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1216
1217
1218 == 3.10 Switch Jumper ==
1219
1220 (% border="1" style="background-color:#ffffcc; color:green; width:515px" %)
1221 |=(% style="width: 124px;" %)**Switch Jumper**|=(% style="width: 388px;" %)**Feature**
1222 |(% style="width:124px" %)**SW1**|(% style="width:388px" %)(((
1223 ISP position: Upgrade firmware via UART
1224
1225 Flash position: Configure device, check running status.
1226 )))
1227 |(% style="width:124px" %)**SW2**|(% style="width:388px" %)(((
1228 5V position: set to compatible with 5v I/O.
1229
1230 3.3v position: set to compatible with 3.3v I/O.,
1231 )))
1232
1233 **+3.3V**: is always ON
1234
1235 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1236
1237
1238 = 4. Case Study =
1239
1240 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1241
1242
1243 = 5. Use AT Command =
1244
1245 == 5.1 Access AT Command ==
1246
1247 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1248
1249 [[image:1654135840598-282.png]]
1250
1251
1252 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1253
1254 [[image:1654136105500-922.png]]
1255
1256
1257 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1258
1259
1260 == 5.2 Common AT Command Sequence ==
1261
1262 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1263
1264 If device has not joined network yet:
1265
1266 (% class="box infomessage" %)
1267 (((
1268 **AT+FDR**
1269 )))
1270
1271 (% class="box infomessage" %)
1272 (((
1273 **AT+NJM=0**
1274 )))
1275
1276 (% class="box infomessage" %)
1277 (((
1278 **ATZ**
1279 )))
1280
1281
1282 If device already joined network:
1283
1284 (% class="box infomessage" %)
1285 (((
1286 **AT+NJM=0**
1287 )))
1288
1289 (% class="box infomessage" %)
1290 (((
1291 **ATZ**
1292 )))
1293
1294
1295 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1296
1297
1298 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1299
1300 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1301
1302 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1303
1304 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1305
1306 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1307
1308 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1309
1310 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1311
1312 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1313
1314 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1315
1316 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1317
1318
1319 (% style="color:red" %)**Note:**
1320
1321 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1322 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1323 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1324 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1325
1326 [[image:1654136435598-589.png]]
1327
1328
1329 = 6. FAQ =
1330
1331 == 6.1 How to upgrade the image? ==
1332
1333 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1334
1335 * Support new features
1336 * For bug fix
1337 * Change LoRaWAN bands.
1338
1339 Below shows the hardware connection for how to upload an image to RS485-BL:
1340
1341 [[image:1654136646995-976.png]]
1342
1343 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1344
1345 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1346
1347 **Step3: **Open flashloader; choose the correct COM port to update.
1348
1349 [[image:image-20220602102605-1.png]]
1350
1351
1352 [[image:image-20220602102637-2.png]]
1353
1354
1355 [[image:image-20220602102715-3.png]]
1356
1357
1358
1359 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1360
1361 (((
1362 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1363 )))
1364
1365
1366
1367 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1368
1369 (((
1370 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1371 )))
1372
1373
1374
1375 = 7. Trouble Shooting =
1376
1377
1378 == 7.1 Downlink doesn’t work, how to solve it? ==
1379
1380 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1381
1382
1383 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1384
1385 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1386
1387
1388 = 8. Order Info =
1389
1390 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1391
1392 (% style="color:blue" %)**XXX:**
1393
1394 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1395 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1396 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1397 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1398 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1399 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1400 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1401 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1402 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1403 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1404
1405
1406
1407 = 9. Packing Info =
1408
1409 (((
1410 **Package Includes**:
1411 )))
1412
1413 * (((
1414 RS485-BL x 1
1415 )))
1416 * (((
1417 Stick Antenna for LoRa RF part x 1
1418 )))
1419 * (((
1420 Program cable x 1
1421 )))
1422
1423 (((
1424 **Dimension and weight**:
1425 )))
1426
1427 * (((
1428 Device Size: 13.5 x 7 x 3 cm
1429 )))
1430 * (((
1431 Device Weight: 105g
1432 )))
1433 * (((
1434 Package Size / pcs : 14.5 x 8 x 5 cm
1435 )))
1436 * (((
1437 Weight / pcs : 170g
1438
1439
1440 )))
1441
1442 = 10. Support =
1443
1444 * (((
1445 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1446 )))
1447 * (((
1448 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1449 )))