Version 40.34 by Xiaoling on 2022/06/06 09:53

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="385" width="385"]]
3
4
5
6
7 **RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19 = 1.Introduction =
20
21 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
22
23 (((
24
25 )))
26
27 (((
28 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
29 )))
30
31 (((
32 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
33 )))
34
35 (((
36 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
37 )))
38
39 (((
40 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
41 )))
42
43 (((
44 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
45 )))
46
47 (((
48 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
49 )))
50
51 (((
52 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
53 )))
54
55 [[image:1652953304999-717.png||height="424" width="733"]]
56
57
58
59 == 1.2 Specifications ==
60
61
62 **Hardware System:**
63
64 * STM32L072CZT6 MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption (exclude RS485 device):
67 ** Idle: 6uA@3.3v
68 ** 20dB Transmit: 130mA@3.3v
69
70 **Interface for Model:**
71
72 * 1 x RS485 Interface
73 * 1 x TTL Serial , 3.3v or 5v.
74 * 1 x I2C Interface, 3.3v or 5v.
75 * 1 x one wire interface
76 * 1 x Interrupt Interface
77 * 1 x Controllable 5V output, max
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * Programmable bit rate up to 300 kbps.
87 * High sensitivity: down to -148 dBm.
88 * Bullet-proof front end: IIP3 = -12.5 dBm.
89 * Excellent blocking immunity.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * LoRa modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
96
97
98 == 1.3 Features ==
99
100 * LoRaWAN Class A & Class C protocol (default Class A)
101 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
102 * AT Commands to change parameters
103 * Remote configure parameters via LoRaWAN Downlink
104 * Firmware upgradable via program port
105 * Support multiply RS485 devices by flexible rules
106 * Support Modbus protocol
107 * Support Interrupt uplink
108
109
110 == 1.4 Applications ==
111
112 * Smart Buildings & Home Automation
113 * Logistics and Supply Chain Management
114 * Smart Metering
115 * Smart Agriculture
116 * Smart Cities
117 * Smart Factory
118
119
120 == 1.5 Firmware Change log ==
121
122 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
123
124
125 == 1.6 Hardware Change log ==
126
127 (((
128
129
130 (((
131 v1.4
132 )))
133 )))
134
135 (((
136 (((
137 ~1. Change Power IC to TPS22916
138 )))
139 )))
140
141 (((
142
143 )))
144
145 (((
146 (((
147 v1.3
148 )))
149 )))
150
151 (((
152 (((
153 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
154 )))
155 )))
156
157 (((
158
159 )))
160
161 (((
162 (((
163 v1.2
164 )))
165 )))
166
167 (((
168 (((
169 Release version ​​​​​
170 )))
171
172
173 )))
174
175 = 2. Pin mapping and Power ON Device =
176
177 (((
178 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
179 )))
180
181 [[image:1652953055962-143.png||height="387" width="728"]]
182
183
184 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
185
186
187 = 3. Operation Mode =
188
189 == 3.1 How it works? ==
190
191 (((
192 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
193
194
195 )))
196
197 == 3.2 Example to join LoRaWAN network ==
198
199 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
200
201 [[image:1652953414711-647.png||height="337" width="723"]]
202
203 (((
204 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
205 )))
206
207 (((
208 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
209 )))
210
211 (((
212 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
213 )))
214
215 (((
216 Each RS485-BL is shipped with a sticker with unique device EUI:
217 )))
218
219 [[image:1652953462722-299.png]]
220
221 (((
222 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
223 )))
224
225 (((
226 Add APP EUI in the application.
227 )))
228
229
230 [[image:image-20220519174512-1.png]]
231
232 [[image:image-20220519174512-2.png||height="328" width="731"]]
233
234 [[image:image-20220519174512-3.png||height="556" width="724"]]
235
236 [[image:image-20220519174512-4.png]]
237
238 You can also choose to create the device manually.
239
240 [[image:1652953542269-423.png||height="710" width="723"]]
241
242 Add APP KEY and DEV EUI
243
244 [[image:1652953553383-907.png||height="514" width="724"]]
245
246
247 (((
248 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
249 )))
250
251 [[image:1652953568895-172.png||height="232" width="724"]]
252
253
254 == 3.3 Configure Commands to read data ==
255
256 (((
257 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
258
259
260 )))
261
262 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
263
264 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
265
266 **~1. RS485-MODBUS mode:**
267
268 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
269
270 **2. TTL mode:**
271
272 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
273
274 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
275
276 (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
277 |(((
278 **AT Commands**
279 )))|(% style="width:285px" %)(((
280 **Description**
281 )))|(% style="width:347px" %)(((
282 **Example**
283 )))
284 |(((
285 AT+BAUDR
286 )))|(% style="width:285px" %)(((
287 Set the baud rate (for RS485 connection). Default Value is: 9600.
288 )))|(% style="width:347px" %)(((
289 (((
290 AT+BAUDR=9600
291 )))
292
293 (((
294 Options: (1200,2400,4800,14400,19200,115200)
295 )))
296 )))
297 |(((
298 AT+PARITY
299 )))|(% style="width:285px" %)(((
300 (((
301 Set UART parity (for RS485 connection)
302 )))
303
304 (((
305 Default Value is: no parity.
306 )))
307 )))|(% style="width:347px" %)(((
308 (((
309 AT+PARITY=0
310 )))
311
312 (((
313 Option: 0: no parity, 1: odd parity, 2: even parity
314 )))
315 )))
316 |(((
317 AT+STOPBIT
318 )))|(% style="width:285px" %)(((
319 (((
320 Set serial stopbit (for RS485 connection)
321 )))
322
323 (((
324 Default Value is: 1bit.
325 )))
326 )))|(% style="width:347px" %)(((
327 (((
328 AT+STOPBIT=0 for 1bit
329 )))
330
331 (((
332 AT+STOPBIT=1 for 1.5 bit
333 )))
334
335 (((
336 AT+STOPBIT=2 for 2 bits
337 )))
338 )))
339
340
341 === 3.3.2 Configure sensors ===
342
343 (((
344 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
345 )))
346
347 (((
348 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
349 )))
350
351 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
352 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
353 |AT+CFGDEV|(% style="width:418px" %)(((
354 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
355
356 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
357
358 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
359 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
360
361 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
362
363
364 === 3.3.3 Configure read commands for each sampling ===
365
366 (((
367 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
368 )))
369
370 (((
371 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
372 )))
373
374 (((
375 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
376 )))
377
378 (((
379 This section describes how to achieve above goals.
380 )))
381
382 (((
383 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
384 )))
385
386 (((
387 **Command from RS485-BL to Sensor:**
388 )))
389
390 (((
391 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
392 )))
393
394 (((
395 **Handle return from sensors to RS485-BL**:
396 )))
397
398 (((
399 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
400 )))
401
402 * (((
403 **AT+DATACUT**
404 )))
405
406 (((
407 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
408 )))
409
410 * (((
411 **AT+SEARCH**
412 )))
413
414 (((
415 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
416 )))
417
418 (((
419 **Define wait timeout:**
420 )))
421
422 (((
423 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
424 )))
425
426 (((
427 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
428 )))
429
430 **Examples:**
431
432 Below are examples for the how above AT Commands works.
433
434 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
435
436 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:501px" %)
437 |(% style="width:498px" %)(((
438 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
439
440 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
441
442 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
443 )))
444
445 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
446
447 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
448
449 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
450
451 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:580px" %)
452 |(% style="width:577px" %)(((
453 **AT+SEARCHx=aa,xx xx xx xx xx**
454
455 * **aa: 1: prefix match mode; 2: prefix and suffix match mode**
456 * **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
457 )))
458
459 **Examples:**
460
461 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
462
463 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
464
465 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
466
467 [[image:1653271044481-711.png]]
468
469 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
470
471 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
472
473 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
474
475 [[image:1653271276735-972.png]]
476
477 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
478
479 (% style="background-color:#4f81bd; color:white; width:729px" %)
480 |(% style="width:726px" %)(((
481 **AT+DATACUTx=a,b,c**
482
483 * **a: length for the return of AT+COMMAND**
484 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
485 * **c: define the position for valid value.  **
486 )))
487
488 **Examples:**
489
490 * Grab bytes:
491
492 [[image:1653271581490-837.png||height="313" width="722"]]
493
494
495 * Grab a section.
496
497 [[image:1653271648378-342.png||height="326" width="720"]]
498
499
500 * Grab different sections.
501
502 [[image:1653271657255-576.png||height="305" width="730"]]
503
504 (((
505 (% style="color:red" %)**Note:**
506 )))
507
508 (((
509 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
510 )))
511
512 (((
513 **Example:**
514 )))
515
516 (((
517 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
518 )))
519
520 (((
521 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
522 )))
523
524 (((
525 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
526 )))
527
528 (((
529 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
530 )))
531
532 (((
533 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
534 )))
535
536 (((
537 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
538 )))
539
540 [[image:1653271763403-806.png]]
541
542
543 === 3.3.4 Compose the uplink payload ===
544
545 (((
546 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
547 )))
548
549 (((
550 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
551 )))
552
553 (((
554 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
555 )))
556
557 (((
558 Final Payload is
559 )))
560
561 (((
562 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
563 )))
564
565 (((
566 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
567 )))
568
569 [[image:1653272787040-634.png||height="515" width="719"]]
570
571
572
573 (((
574 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
575
576
577 )))
578
579 (((
580 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
581 )))
582
583 (((
584 Final Payload is
585 )))
586
587 (((
588 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
589 )))
590
591 1. (((
592 Battery Info (2 bytes): Battery voltage
593 )))
594 1. (((
595 PAYVER (1 byte): Defined by AT+PAYVER
596 )))
597 1. (((
598 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
599 )))
600 1. (((
601 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
602 )))
603 1. (((
604 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
605 )))
606
607 [[image:1653272817147-600.png||height="437" width="717"]]
608
609 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
610
611
612 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
613
614 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
615
616 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
617
618
619 Below are the uplink payloads:
620
621 [[image:1653272901032-107.png]]
622
623
624 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
625
626 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
627
628 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
629
630 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
631
632 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
633
634
635
636 === 3.3.5 Uplink on demand ===
637
638 (((
639 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
640 )))
641
642 (((
643 Downlink control command:
644 )))
645
646 (((
647 **0x08 command**: Poll an uplink with current command set in RS485-BL.
648 )))
649
650 (((
651 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
652
653
654 )))
655
656 === 3.3.6 Uplink on Interrupt ===
657
658 Put the interrupt sensor between 3.3v_out and GPIO ext.
659
660 [[image:1653273818896-432.png]]
661
662
663 (((
664 AT+INTMOD=0  Disable Interrupt
665 )))
666
667 (((
668 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
669 )))
670
671 (((
672 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
673 )))
674
675 (((
676 AT+INTMOD=3  Interrupt trigger by rising edge.
677
678
679 )))
680
681 == 3.4 Uplink Payload ==
682
683 (% border="1" style="background-color:#4f81bd; color:white; width:850px" %)
684 |**Size(bytes)**|(% style="width:130px" %)**2**|(% style="width:93px" %)**1**|(% style="width:509px" %)**Length depends on the return from the commands**
685 |Value|(% style="width:130px" %)(((
686 (((
687 Battery(mV)
688 )))
689
690 (((
691 &
692 )))
693
694 (((
695 Interrupt _Flag
696 )))
697 )))|(% style="width:93px" %)(((
698 PAYLOAD_VER
699
700
701 )))|(% style="width:509px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
702
703 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
704
705 (((
706 {{{function Decoder(bytes, port) {}}}
707 )))
708
709 (((
710 {{{//Payload Formats of RS485-BL Deceive}}}
711 )))
712
713 (((
714 {{{return {}}}
715 )))
716
717 (((
718 {{{ //Battery,units:V}}}
719 )))
720
721 (((
722 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
723 )))
724
725 (((
726 {{{ //GPIO_EXTI }}}
727 )))
728
729 (((
730 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
731 )))
732
733 (((
734 {{{ //payload of version}}}
735 )))
736
737 (((
738 {{{ Pay_ver:bytes[2],}}}
739 )))
740
741 (((
742 {{{ }; }}}
743 )))
744
745 (((
746 **}**
747
748
749 )))
750
751 (((
752 TTN V3 uplink screen shot.
753 )))
754
755 [[image:1653274001211-372.png||height="192" width="732"]]
756
757
758 == 3.5 Configure RS485-BL via AT or Downlink ==
759
760 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
761
762 There are two kinds of Commands:
763
764 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
765
766 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
767
768
769 === 3.5.1 Common Commands: ===
770
771 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
772
773
774 === 3.5.2 Sensor related commands: ===
775
776
777 ==== **Choose Device Type (RS485 or TTL)** ====
778
779 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
780
781 * **AT Command**
782
783 (% class="box infomessage" %)
784 (((
785 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
786 )))
787
788 (% class="box infomessage" %)
789 (((
790 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
791 )))
792
793
794 * **Downlink Payload**
795
796 **0A aa**  ~-~->  same as AT+MOD=aa
797
798
799
800 ==== **RS485 Debug Command (AT+CFGDEV)** ====
801
802 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
803
804 * **AT Command**
805
806 (% class="box infomessage" %)
807 (((
808 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
809 )))
810
811 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
812
813
814 * **Downlink Payload**
815
816 Format: A8 MM NN XX XX XX XX YY
817
818 Where:
819
820 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
821 * NN: The length of RS485 command
822 * XX XX XX XX: RS485 command total NN bytes
823 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
824
825 **Example 1:**
826
827 To connect a Modbus Alarm with below commands.
828
829 * The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
830
831 * The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
832
833 So if user want to use downlink command to control to RS485 Alarm, he can use:
834
835 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
836
837 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
838
839 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
840
841
842 **Example 2:**
843
844 Check TTL Sensor return:
845
846 [[image:1654132684752-193.png]]
847
848
849
850
851 ==== **Set Payload version** ====
852
853 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
854
855 * **AT Command:**
856
857 (% class="box infomessage" %)
858 (((
859 **AT+PAYVER: Set PAYVER field = 1**
860 )))
861
862
863 * **Downlink Payload:**
864
865 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
866
867 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
868
869
870
871 ==== **Set RS485 Sampling Commands** ====
872
873 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
874
875 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
876
877
878 * **AT Command:**
879
880 (% class="box infomessage" %)
881 (((
882 **AT+COMMANDx: Configure RS485 read command to sensor.**
883 )))
884
885 (% class="box infomessage" %)
886 (((
887 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
888 )))
889
890 (% class="box infomessage" %)
891 (((
892 **AT+SEARCHx: Configure search command**
893 )))
894
895
896 * **Downlink Payload:**
897
898 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
899
900 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
901
902 Format: AF MM NN LL XX XX XX XX YY
903
904 Where:
905
906 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
907 * NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
908 * LL:  The length of AT+COMMAND or AT+DATACUT command
909 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
910 * YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
911
912 **Example:**
913
914 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
915
916 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
917
918 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
919
920
921 **0xAB** downlink command can be used for set AT+SEARCHx
922
923 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
924
925 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
926 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
927
928 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
929
930
931
932 ==== **Fast command to handle MODBUS device** ====
933
934 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
935
936 This command is valid since v1.3 firmware version
937
938
939 **AT+MBFUN has only two value:**
940
941 * **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
942
943 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
944
945 * **AT+MBFUN=0**: Disable Modbus fast reading.
946
947 **Example:**
948
949 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
950 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
951 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
952
953 [[image:1654133913295-597.png]]
954
955
956 [[image:1654133954153-643.png]]
957
958
959 * **Downlink Commands:**
960
961 **A9 aa** ~-~-> Same as AT+MBFUN=aa
962
963
964
965 ==== **RS485 command timeout** ====
966
967 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
968
969 Default value: 0, range:  0 ~~ 5 seconds
970
971
972 * **AT Command:**
973
974 (% class="box infomessage" %)
975 (((
976 **AT+CMDDLaa=hex(bb cc)**
977 )))
978
979 **Example:**
980
981 **AT+CMDDL1=1000** to send the open time to 1000ms
982
983
984 * **Downlink Payload:**
985
986 0x AA aa bb cc
987
988 Same as: AT+CMDDLaa=hex(bb cc)
989
990 **Example:**
991
992 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
993
994
995
996 ==== **Uplink payload mode** ====
997
998 Define to use one uplink or multiple uplinks for the sampling.
999
1000 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1001
1002 * **AT Command:**
1003
1004 (% class="box infomessage" %)
1005 (((
1006 **AT+DATAUP=0**
1007 )))
1008
1009 (% class="box infomessage" %)
1010 (((
1011 **AT+DATAUP=1**
1012 )))
1013
1014
1015 * **Downlink Payload:**
1016
1017 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1018
1019 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1020
1021
1022
1023
1024 ==== **Manually trigger an Uplink** ====
1025
1026 Ask device to send an uplink immediately.
1027
1028 * **Downlink Payload:**
1029
1030 **0x08 FF**, RS485-BL will immediately send an uplink.
1031
1032
1033
1034
1035 ==== **Clear RS485 Command** ====
1036
1037 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1038
1039
1040 * **AT Command:**
1041
1042 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1043
1044 Example screen shot after clear all RS485 commands. 
1045
1046
1047 The uplink screen shot is:
1048
1049 [[image:1654134704555-320.png]]
1050
1051
1052 * **Downlink Payload:**
1053
1054 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1055
1056
1057
1058 ==== **Set Serial Communication Parameters** ====
1059
1060 Set the Rs485 serial communication parameters:
1061
1062 * **AT Command:**
1063
1064 Set Baud Rate:
1065
1066 (% class="box infomessage" %)
1067 (((
1068 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1069 )))
1070
1071 Set UART Parity
1072
1073 (% class="box infomessage" %)
1074 (((
1075 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1076 )))
1077
1078 Set STOPBIT
1079
1080 (% class="box infomessage" %)
1081 (((
1082 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1083 )))
1084
1085
1086 * **Downlink Payload:**
1087
1088 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1089
1090 **Example:**
1091
1092 * A7 01 00 60   same as AT+BAUDR=9600
1093 * A7 01 04 80  same as AT+BAUDR=115200
1094
1095 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1096
1097 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1098
1099
1100
1101 ==== **Control output power duration** ====
1102
1103 User can set the output power duration before each sampling.
1104
1105 * **AT Command:**
1106
1107 **Example:**
1108
1109 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1110
1111 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1112
1113
1114 * **LoRaWAN Downlink Command:**
1115
1116 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1117
1118 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1119
1120
1121
1122 == 3.6 Buttons ==
1123
1124 (% border="1" style="background-color:#ffffcc; color:green; width:233px" %)
1125 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1126 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1127
1128
1129 == 3.7 +3V3 Output ==
1130
1131 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1132
1133 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1134
1135 The +3V3 output time can be controlled by AT Command.
1136
1137
1138 (% style="color:#037691" %)**AT+3V3T=1000**
1139
1140
1141 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1142
1143 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1144
1145
1146 == 3.8 +5V Output ==
1147
1148 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1149
1150 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1151
1152 The 5V output time can be controlled by AT Command.
1153
1154
1155 (% style="color:#037691" %)**AT+5VT=1000**
1156
1157
1158 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1159
1160 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1161
1162
1163 == 3.9 LEDs ==
1164
1165 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1166 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1167 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1168
1169
1170 == 3.10 Switch Jumper ==
1171
1172 (% border="1" style="background-color:#ffffcc; color:green; width:515px" %)
1173 |=(% style="width: 124px;" %)**Switch Jumper**|=(% style="width: 388px;" %)**Feature**
1174 |(% style="width:124px" %)**SW1**|(% style="width:388px" %)(((
1175 ISP position: Upgrade firmware via UART
1176
1177 Flash position: Configure device, check running status.
1178 )))
1179 |(% style="width:124px" %)**SW2**|(% style="width:388px" %)(((
1180 5V position: set to compatible with 5v I/O.
1181
1182 3.3v position: set to compatible with 3.3v I/O.,
1183 )))
1184
1185 **+3.3V**: is always ON
1186
1187 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1188
1189
1190 = 4. Case Study =
1191
1192 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1193
1194
1195 = 5. Use AT Command =
1196
1197 == 5.1 Access AT Command ==
1198
1199 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1200
1201 [[image:1654135840598-282.png]]
1202
1203
1204 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1205
1206 [[image:1654136105500-922.png]]
1207
1208
1209 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1210
1211
1212 == 5.2 Common AT Command Sequence ==
1213
1214 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1215
1216 If device has not joined network yet:
1217
1218 (% class="box infomessage" %)
1219 (((
1220 **AT+FDR**
1221 )))
1222
1223 (% class="box infomessage" %)
1224 (((
1225 **AT+NJM=0**
1226 )))
1227
1228 (% class="box infomessage" %)
1229 (((
1230 **ATZ**
1231 )))
1232
1233
1234 If device already joined network:
1235
1236 (% class="box infomessage" %)
1237 (((
1238 **AT+NJM=0**
1239 )))
1240
1241 (% class="box infomessage" %)
1242 (((
1243 **ATZ**
1244 )))
1245
1246
1247 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1248
1249
1250 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1251
1252 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1253
1254 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1255
1256 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1257
1258 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1259
1260 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1261
1262 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1263
1264 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1265
1266 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1267
1268 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1269
1270
1271 (% style="color:red" %)**Note:**
1272
1273 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1274 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1275 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1276 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1277
1278 [[image:1654136435598-589.png]]
1279
1280
1281 = 6. FAQ =
1282
1283 == 6.1 How to upgrade the image? ==
1284
1285 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1286
1287 * Support new features
1288 * For bug fix
1289 * Change LoRaWAN bands.
1290
1291 Below shows the hardware connection for how to upload an image to RS485-BL:
1292
1293 [[image:1654136646995-976.png]]
1294
1295 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1296
1297 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1298
1299 **Step3: **Open flashloader; choose the correct COM port to update.
1300
1301 [[image:image-20220602102605-1.png]]
1302
1303
1304 [[image:image-20220602102637-2.png]]
1305
1306
1307 [[image:image-20220602102715-3.png]]
1308
1309
1310
1311 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1312
1313 (((
1314 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1315 )))
1316
1317
1318
1319 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1320
1321 (((
1322 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1323 )))
1324
1325
1326
1327 = 7. Trouble Shooting =
1328
1329
1330 == 7.1 Downlink doesn’t work, how to solve it? ==
1331
1332 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1333
1334
1335 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1336
1337 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1338
1339
1340 = 8. Order Info =
1341
1342 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1343
1344 (% style="color:blue" %)**XXX:**
1345
1346 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1347 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1348 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1349 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1350 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1351 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1352 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1353 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1354 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1355 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1356
1357
1358
1359 = 9. Packing Info =
1360
1361 (((
1362 **Package Includes**:
1363 )))
1364
1365 * (((
1366 RS485-BL x 1
1367 )))
1368 * (((
1369 Stick Antenna for LoRa RF part x 1
1370 )))
1371 * (((
1372 Program cable x 1
1373 )))
1374
1375 (((
1376 **Dimension and weight**:
1377 )))
1378
1379 * (((
1380 Device Size: 13.5 x 7 x 3 cm
1381 )))
1382 * (((
1383 Device Weight: 105g
1384 )))
1385 * (((
1386 Package Size / pcs : 14.5 x 8 x 5 cm
1387 )))
1388 * (((
1389 Weight / pcs : 170g
1390
1391
1392 )))
1393
1394 = 10. Support =
1395
1396 * (((
1397 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1398 )))
1399 * (((
1400 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1401 )))