Version 23.1 by Xiaoling on 2022/05/23 10:07

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="385" width="385"]]
3
4
5
6
7 **RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8
9
10 **Table of Contents:**
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
19
20 (((
21
22 )))
23
24 (((
25 The Dragino RS485-BL is a **RS485 / UART to LoRaWAN Converter** for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
26 )))
27
28 (((
29 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides **a 3.3v output** and** a 5v output** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
30 )))
31
32 (((
33 RS485-BL is IP67 **waterproof** and powered by **8500mAh Li-SOCI2 battery**, it is designed for long term use for several years.
34 )))
35
36 (((
37 RS485-BL runs standard **LoRaWAN 1.0.3 in Class A**. It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
38 )))
39
40 (((
41 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
42 )))
43
44 (((
45 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
46 )))
47
48 (((
49 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
50 )))
51
52 [[image:1652953304999-717.png||height="424" width="733"]]
53
54 == 1.2 Specifications ==
55
56 **Hardware System:**
57
58 * STM32L072CZT6 MCU
59 * SX1276/78 Wireless Chip 
60 * Power Consumption (exclude RS485 device):
61 ** Idle: 6uA@3.3v
62
63 *
64 ** 20dB Transmit: 130mA@3.3v
65
66 **Interface for Model:**
67
68 * 1 x RS485 Interface
69 * 1 x TTL Serial , 3.3v or 5v.
70 * 1 x I2C Interface, 3.3v or 5v.
71 * 1 x one wire interface
72 * 1 x Interrupt Interface
73 * 1 x Controllable 5V output, max
74
75 **LoRa Spec:**
76
77 * Frequency Range:
78 ** Band 1 (HF): 862 ~~ 1020 Mhz
79 ** Band 2 (LF): 410 ~~ 528 Mhz
80 * 168 dB maximum link budget.
81 * +20 dBm - 100 mW constant RF output vs.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Fully integrated synthesizer with a resolution of 61 Hz.
87 * LoRa modulation.
88 * Built-in bit synchronizer for clock recovery.
89 * Preamble detection.
90 * 127 dB Dynamic Range RSSI.
91 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
92
93 == 1.3 Features ==
94
95 * LoRaWAN Class A & Class C protocol (default Class A)
96 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
97 * AT Commands to change parameters
98 * Remote configure parameters via LoRaWAN Downlink
99 * Firmware upgradable via program port
100 * Support multiply RS485 devices by flexible rules
101 * Support Modbus protocol
102 * Support Interrupt uplink
103
104 == 1.4 Applications ==
105
106 * Smart Buildings & Home Automation
107 * Logistics and Supply Chain Management
108 * Smart Metering
109 * Smart Agriculture
110 * Smart Cities
111 * Smart Factory
112
113 == 1.5 Firmware Change log ==
114
115 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
116
117 == 1.6 Hardware Change log ==
118
119 (((
120 v1.4
121 )))
122
123 (((
124 ~1. Change Power IC to TPS22916
125 )))
126
127
128 (((
129 v1.3
130 )))
131
132 (((
133 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
134 )))
135
136
137 (((
138 v1.2
139 )))
140
141 (((
142 Release version ​​​​​
143 )))
144
145 = 2. Pin mapping and Power ON Device =
146
147 (((
148 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
149 )))
150
151 [[image:1652953055962-143.png||height="387" width="728"]]
152
153
154 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
155
156 = 3. Operation Mode =
157
158 == 3.1 How it works? ==
159
160 (((
161 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
162 )))
163
164 == 3.2 Example to join LoRaWAN network ==
165
166 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
167
168 [[image:1652953414711-647.png||height="337" width="723"]]
169
170 (((
171 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
172 )))
173
174 (((
175 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
176 )))
177
178 (((
179 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
180 )))
181
182 (((
183 Each RS485-BL is shipped with a sticker with unique device EUI:
184 )))
185
186 [[image:1652953462722-299.png]]
187
188 (((
189 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
190 )))
191
192 (((
193 Add APP EUI in the application.
194 )))
195
196
197
198
199 [[image:image-20220519174512-1.png]]
200
201 [[image:image-20220519174512-2.png||height="328" width="731"]]
202
203 [[image:image-20220519174512-3.png||height="556" width="724"]]
204
205 [[image:image-20220519174512-4.png]]
206
207 You can also choose to create the device manually.
208
209 [[image:1652953542269-423.png||height="710" width="723"]]
210
211 Add APP KEY and DEV EUI
212
213 [[image:1652953553383-907.png||height="514" width="724"]]
214
215
216 (((
217 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
218 )))
219
220 [[image:1652953568895-172.png||height="232" width="724"]]
221
222 == 3.3 Configure Commands to read data ==
223
224 (((
225 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
226 )))
227
228 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
229
230 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
231
232 **~1. RS485-MODBUS mode:**
233
234 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
235
236 **2. TTL mode:**
237
238 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
239
240 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
241
242 (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
243 |(((
244 **AT Commands**
245 )))|(% style="width:285px" %)(((
246 **Description**
247 )))|(% style="width:347px" %)(((
248 **Example**
249 )))
250 |(((
251 AT+BAUDR
252 )))|(% style="width:285px" %)(((
253 Set the baud rate (for RS485 connection). Default Value is: 9600.
254 )))|(% style="width:347px" %)(((
255 (((
256 AT+BAUDR=9600
257 )))
258
259 (((
260 Options: (1200,2400,4800,14400,19200,115200)
261 )))
262 )))
263 |(((
264 AT+PARITY
265 )))|(% style="width:285px" %)(((
266 (((
267 Set UART parity (for RS485 connection)
268 )))
269
270 (((
271 Default Value is: no parity.
272 )))
273 )))|(% style="width:347px" %)(((
274 (((
275 AT+PARITY=0
276 )))
277
278 (((
279 Option: 0: no parity, 1: odd parity, 2: even parity
280 )))
281 )))
282 |(((
283 AT+STOPBIT
284 )))|(% style="width:285px" %)(((
285 (((
286 Set serial stopbit (for RS485 connection)
287 )))
288
289 (((
290 Default Value is: 1bit.
291 )))
292 )))|(% style="width:347px" %)(((
293 (((
294 AT+STOPBIT=0 for 1bit
295 )))
296
297 (((
298 AT+STOPBIT=1 for 1.5 bit
299 )))
300
301 (((
302 AT+STOPBIT=2 for 2 bits
303 )))
304 )))
305
306 === 3.3.2 Configure sensors ===
307
308 (((
309 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
310 )))
311
312 (((
313 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
314 )))
315
316 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
317 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
318 |AT+CFGDEV|(% style="width:418px" %)(((
319 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
320
321 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
322
323 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
324 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
325
326 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
327
328 === 3.3.3 Configure read commands for each sampling ===
329
330 (((
331 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
332 )))
333
334 (((
335 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
336 )))
337
338 (((
339 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
340 )))
341
342 (((
343 This section describes how to achieve above goals.
344 )))
345
346 (((
347 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
348 )))
349
350 (((
351 **Command from RS485-BL to Sensor:**
352 )))
353
354 (((
355 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
356 )))
357
358 (((
359 **Handle return from sensors to RS485-BL**:
360 )))
361
362 (((
363 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
364 )))
365
366 * (((
367 **AT+DATACUT**
368 )))
369
370 (((
371 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
372 )))
373
374 * (((
375 **AT+SEARCH**
376 )))
377
378 (((
379 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
380 )))
381
382 (((
383 **Define wait timeout:**
384 )))
385
386 (((
387 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
388 )))
389
390 (((
391 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
392 )))
393
394 **Examples:**
395
396 Below are examples for the how above AT Commands works.
397
398 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
399
400 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:501px" %)
401 |(% style="width:498px" %)(((
402 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
403
404 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
405
406 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
407 )))
408
409 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
410
411 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
412
413 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
414
415 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:580px" %)
416 |(% style="width:577px" %)(((
417 **AT+SEARCHx=aa,xx xx xx xx xx**
418
419 * **aa: 1: prefix match mode; 2: prefix and suffix match mode**
420 * **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
421 )))
422
423 **Examples:**
424
425 1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
426
427 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
428
429 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
430
431 [[image:1653271044481-711.png]]
432
433 1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
434
435 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
436
437 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
438
439 [[image:1653271276735-972.png]]
440
441
442 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
443
444 |(((
445 **AT+DATACUTx=a,b,c**
446
447 * **a: length for the return of AT+COMMAND**
448 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
449 * **c: define the position for valid value.  **
450 )))
451
452 Examples:
453
454 * Grab bytes:
455
456 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
457
458 * Grab a section.
459
460 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
461
462 * Grab different sections.
463
464 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
465
466
467 Note:
468
469 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
470
471 Example:
472
473 AT+COMMAND1=11 01 1E D0,0
474
475 AT+SEARCH1=1,1E 56 34
476
477 AT+DATACUT1=0,2,1~~5
478
479 Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
480
481 String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
482
483 Valid payload after DataCUT command: 2e 30 58 5f 36
484
485 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
486
487
488
489
490 1.
491 11.
492 111. Compose the uplink payload
493
494 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
495
496
497 **Examples: AT+DATAUP=0**
498
499 Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
500
501 Final Payload is
502
503 Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
504
505 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
506
507 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
508
509
510
511 **Examples: AT+DATAUP=1**
512
513 Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
514
515 Final Payload is
516
517 Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
518
519 1. Battery Info (2 bytes): Battery voltage
520 1. PAYVER (1 byte): Defined by AT+PAYVER
521 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
522 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
523 1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
524
525 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
526
527
528 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
529
530 DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
531
532 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
533
534 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
535
536
537
538 Below are the uplink payloads:
539
540 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
541
542
543 Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
544
545 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
546
547 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
548
549 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
550
551 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
552
553
554
555 1.
556 11.
557 111. Uplink on demand
558
559 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
560
561 Downlink control command:
562
563 [[0x08 command>>path:#downlink_08]]: Poll an uplink with current command set in RS485-BL.
564
565 [[0xA8 command>>path:#downlink_A8]]: Send a command to RS485-BL and uplink the output from sensors.
566
567
568
569 1.
570 11.
571 111. Uplink on Interrupt
572
573 Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
574
575 AT+INTMOD=0  Disable Interrupt
576
577 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
578
579 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
580
581 AT+INTMOD=3  Interrupt trigger by rising edge.
582
583
584 1.
585 11. Uplink Payload
586
587 |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
588 |Value|(((
589 Battery(mV)
590
591 &
592
593 Interrupt _Flag
594 )))|(((
595 PAYLOAD_VER
596
597
598 )))|If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
599
600 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
601
602
603 function Decoder(bytes, port) {
604
605 ~/~/Payload Formats of RS485-BL Deceive
606
607 return {
608
609 ~/~/Battery,units:V
610
611 BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,
612
613 ~/~/GPIO_EXTI 
614
615 EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",
616
617 ~/~/payload of version
618
619 Pay_ver:bytes[2],
620
621 };
622
623 }
624
625
626
627
628
629
630
631 TTN V3 uplink screen shot.
632
633 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
634
635 1.
636 11. Configure RS485-BL via AT or Downlink
637
638 User can configure RS485-BL via [[AT Commands >>path:#_​Using_the_AT]]or LoRaWAN Downlink Commands
639
640 There are two kinds of Commands:
641
642 * **Common Commands**: They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: http:~/~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands
643
644 * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
645
646 1.
647 11.
648 111. Common Commands:
649
650 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
651
652
653 1.
654 11.
655 111. Sensor related commands:
656
657 ==== Choose Device Type (RS485 or TTL) ====
658
659 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
660
661 * AT Command
662
663 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
664
665 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
666
667
668 * Downlink Payload
669
670 **0A aa**     à same as AT+MOD=aa
671
672
673
674 ==== [[RS485 Debug Command>>path:#downlink_A8]] (AT+CFGDEV) ====
675
676 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
677
678 * AT Command
679
680 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
681
682 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
683
684
685
686 * Downlink Payload
687
688 Format: A8 MM NN XX XX XX XX YY
689
690 Where:
691
692 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
693 * NN: The length of RS485 command
694 * XX XX XX XX: RS485 command total NN bytes
695 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
696
697 **Example 1:**
698
699 To connect a Modbus Alarm with below commands.
700
701 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
702
703 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
704
705 So if user want to use downlink command to control to RS485 Alarm, he can use:
706
707 **A8 01 06 0A 05 00 04 00 01 00**: to activate the RS485 Alarm
708
709 **A8 01 06 0A 05 00 04 00 00 00**: to deactivate the RS485 Alarm
710
711 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
712
713
714 **Example 2:**
715
716 Check TTL Sensor return:
717
718 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.png]]
719
720
721
722
723 ==== Set Payload version ====
724
725 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
726
727 * AT Command:
728
729 AT+PAYVER: Set PAYVER field = 1
730
731
732 * Downlink Payload:
733
734 0xAE 01   à Set PAYVER field =  0x01
735
736 0xAE 0F   à Set PAYVER field =  0x0F
737
738
739 ==== Set RS485 Sampling Commands ====
740
741 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
742
743 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>path:#polling_485]].
744
745
746 * AT Command:
747
748 AT+COMMANDx: Configure RS485 read command to sensor.
749
750 AT+DATACUTx: Configure how to handle return from RS485 devices.
751
752 AT+SEARCHx: Configure search command
753
754
755 * Downlink Payload:
756
757 0xAF downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
758
759 Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
760
761 Format: AF MM NN LL XX XX XX XX YY
762
763 Where:
764
765 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
766 * NN: 0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
767 * LL: The length of AT+COMMAND or AT+DATACUT command
768 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
769 * YY: If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
770
771 Example:
772
773 **AF 03 01 06 0A 05 00 04 00 01 00**: Same as AT+COMMAND3=0A 05 00 04 00 01,1
774
775 **AF 03 02 06 10 01 05 06 09 0A 00**: Same as AT+DATACUT3=**16**,**1**,**5+6+9+10**
776
777 **AF 03 02 06 0B 02 05 07 08 0A 00**: Same as AT+DATACUT3=**11**,**2**,**5~~7+8~~10**
778
779
780 0xAB downlink command can be used for set AT+SEARCHx
781
782 Example: **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
783
784 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
785 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
786
787 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
788
789
790 ==== Fast command to handle MODBUS device ====
791
792 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
793
794 This command is valid since v1.3 firmware version
795
796
797 AT+MBFUN has only two value:
798
799 * AT+MBFUN=1: Enable Modbus reading. And get response base on the MODBUS return
800
801 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
802
803 * AT+MBFUN=0: Disable Modbus fast reading.
804
805 Example:
806
807 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
808 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
809 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
810
811 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png]]
812
813
814 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
815
816
817 * Downlink Commands:
818
819 A9 aa -à Same as AT+MBFUN=aa
820
821
822 ==== RS485 command timeout ====
823
824 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
825
826 Default value: 0, range:  0 ~~ 5 seconds
827
828
829 * AT Command:
830
831 AT+CMDDLaa=hex(bb cc)
832
833 Example:
834
835 **AT+CMDDL1=1000** to send the open time to 1000ms
836
837
838 * Downlink Payload:
839
840 0x AA aa bb cc
841
842 Same as: AT+CMDDLaa=hex(bb cc)
843
844 Example:
845
846 0xAA 01 03 E8  à Same as **AT+CMDDL1=1000 ms**
847
848
849 ==== [[Uplink>>path:#downlink_A8]] payload mode ====
850
851 Define to use one uplink or multiple uplinks for the sampling.
852
853 The use of this command please see: [[Compose Uplink payload>>path:#DataUP]]
854
855 * AT Command:
856
857 AT+DATAUP=0
858
859 AT+DATAUP=1
860
861
862 * Downlink Payload:
863
864 0xAD 00   à Same as AT+DATAUP=0
865
866 0xAD 01   à Same as AT+DATAUP=1
867
868
869 ==== Manually trigger an Uplink ====
870
871 Ask device to send an uplink immediately.
872
873 * Downlink Payload:
874
875 0x08 FF, RS485-BL will immediately send an uplink.
876
877
878 ==== Clear RS485 Command ====
879
880 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
881
882
883 * AT Command:
884
885 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
886
887 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
888
889 Example screen shot after clear all RS485 commands. 
890
891
892
893 The uplink screen shot is:
894
895 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
896
897
898 * Downlink Payload:
899
900 0x09 aa bb same as AT+CMDEAR=aa,bb
901
902
903 ==== Set Serial Communication Parameters ====
904
905 Set the Rs485 serial communication parameters:
906
907 * AT Command:
908
909 Set Baud Rate:
910
911 AT+BAUDR=9600    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
912
913
914 Set UART parity
915
916 AT+PARITY=0    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
917
918
919 Set STOPBIT
920
921 AT+STOPBIT=0    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
922
923
924 * Downlink Payload:
925
926 A7 01 aa bb: Same  AT+BAUDR=hex(aa bb)*100
927
928 Example:
929
930 * A7 01 00 60   same as AT+BAUDR=9600
931 * A7 01 04 80  same as AT+BAUDR=115200
932
933 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
934
935 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
936
937
938 ==== Control output power duration ====
939
940 User can set the output power duration before each sampling.
941
942 * AT Command:
943
944 Example:
945
946 AT+3V3T=1000 ~/~/ 3V3 output power will open 1s before each sampling.
947
948 AT+5VT=1000 ~/~/ +5V output power will open 1s before each sampling.
949
950
951 * LoRaWAN Downlink Command:
952
953 07 01 aa bb  Same as AT+5VT=(aa bb)
954
955 07 02 aa bb  Same as AT+3V3T=(aa bb)
956
957
958
959
960 1.
961 11. Buttons
962
963 |**Button**|**Feature**
964 |**RST**|Reboot RS485-BL
965
966 1.
967 11. +3V3 Output
968
969 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
970
971 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
972
973
974 The +3V3 output time can be controlled by AT Command.
975
976 **AT+3V3T=1000**
977
978 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
979
980
981 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
982
983
984 1.
985 11. +5V Output
986
987 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
988
989 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
990
991
992 The 5V output time can be controlled by AT Command.
993
994 **AT+5VT=1000**
995
996 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
997
998
999 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1000
1001
1002
1003
1004 1.
1005 11. LEDs
1006
1007 |**LEDs**|**Feature**
1008 |**LED1**|Blink when device transmit a packet.
1009
1010 1.
1011 11. Switch Jumper
1012
1013 |**Switch Jumper**|**Feature**
1014 |**SW1**|(((
1015 ISP position: Upgrade firmware via UART
1016
1017 Flash position: Configure device, check running status.
1018 )))
1019 |**SW2**|(((
1020 5V position: set to compatible with 5v I/O.
1021
1022 3.3v position: set to compatible with 3.3v I/O.,
1023 )))
1024
1025 +3.3V: is always ON
1026
1027 +5V: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1028
1029 1. Case Study
1030
1031 User can check this URL for some case studies.
1032
1033 [[http:~~/~~/wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS>>url:http://wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS]]
1034
1035
1036
1037
1038 1. Use AT Command
1039 11. Access AT Command
1040
1041 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1042
1043 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
1044
1045
1046 In PC, User needs to set **serial tool**(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to **9600** to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1047
1048 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
1049
1050
1051
1052 More detail AT Command manual can be found at [[AT Command Manual>>path:#AT_COMMAND]]
1053
1054
1055
1056 1.
1057 11. Common AT Command Sequence
1058 111. Multi-channel ABP mode (Use with SX1301/LG308)
1059
1060 If device has not joined network yet:
1061
1062 AT+FDR
1063
1064 AT+NJM=0
1065
1066 ATZ
1067
1068
1069 If device already joined network:
1070
1071 AT+NJM=0
1072
1073 ATZ
1074
1075 1.
1076 11.
1077 111. Single-channel ABP mode (Use with LG01/LG02)
1078
1079 AT+FDR   Reset Parameters to Factory Default, Keys Reserve
1080
1081 AT+NJM=0 Set to ABP mode
1082
1083 AT+ADR=0 Set the Adaptive Data Rate Off
1084
1085 AT+DR=5  Set Data Rate
1086
1087 AT+TDC=60000  Set transmit interval to 60 seconds
1088
1089 AT+CHS=868400000 Set transmit frequency to 868.4Mhz
1090
1091 AT+RX2FQ=868400000 Set RX2Frequency to 868.4Mhz (according to the result from server)
1092
1093 AT+RX2DR=5  Set RX2DR to match the downlink DR from server. see below
1094
1095 AT+DADDR=26 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1096
1097 ATZ          Reset MCU
1098
1099 **Note:**
1100
1101 1. Make sure the device is set to ABP mode in the IoT Server.
1102 1. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1103 1. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1104 1. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1105
1106 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
1107
1108
1109 1. FAQ
1110 11. How to upgrade the image?
1111
1112 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1113
1114 * Support new features
1115 * For bug fix
1116 * Change LoRaWAN bands.
1117
1118 Below shows the hardware connection for how to upload an image to RS485-BL:
1119
1120 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1121
1122 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1123
1124 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1125
1126 **Step3: **Open flashloader; choose the correct COM port to update.
1127
1128
1129 |(((
1130 HOLD PRO then press the RST button, SYS will be ON, then click next
1131 )))
1132
1133 |(((
1134 Board detected
1135 )))
1136
1137 |(((
1138
1139 )))
1140
1141 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1142
1143
1144
1145 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.png]]
1146
1147
1148 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1149
1150
1151 1.
1152 11. How to change the LoRa Frequency Bands/Region?
1153
1154 User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
1155
1156
1157
1158 1.
1159 11. How many RS485-Slave can RS485-BL connects?
1160
1161 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
1162
1163
1164
1165
1166 1. Trouble Shooting     
1167 11. Downlink doesn’t work, how to solve it?
1168
1169 Please see this link for debug:
1170
1171 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug>>url:http://wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug]] 
1172
1173
1174
1175 1.
1176 11. Why I can’t join TTN V3 in US915 /AU915 bands?
1177
1178 It might about the channels mapping. Please see for detail.
1179
1180 [[http:~~/~~/wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band>>url:http://wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band]]
1181
1182
1183
1184 1. Order Info
1185
1186 **Part Number: RS485-BL-XXX**
1187
1188 **XXX:**
1189
1190 * **EU433**: frequency bands EU433
1191 * **EU868**: frequency bands EU868
1192 * **KR920**: frequency bands KR920
1193 * **CN470**: frequency bands CN470
1194 * **AS923**: frequency bands AS923
1195 * **AU915**: frequency bands AU915
1196 * **US915**: frequency bands US915
1197 * **IN865**: frequency bands IN865
1198 * **RU864**: frequency bands RU864
1199 * **KZ865: **frequency bands KZ865
1200
1201 1. Packing Info
1202
1203 **Package Includes**:
1204
1205 * RS485-BL x 1
1206 * Stick Antenna for LoRa RF part x 1
1207 * Program cable x 1
1208
1209 **Dimension and weight**:
1210
1211 * Device Size: 13.5 x 7 x 3 cm
1212 * Device Weight: 105g
1213 * Package Size / pcs : 14.5 x 8 x 5 cm
1214 * Weight / pcs : 170g
1215
1216 1. Support
1217
1218 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1219 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1220
1221 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]