Version 105.1 by Karry Zhuang on 2024/11/08 12:00

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
17
18
19 (((
20 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
21 )))
22
23 (((
24 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
25 )))
26
27 (((
28 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
29 )))
30
31 (((
32 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
33 )))
34
35 (((
36 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
37 )))
38
39 (((
40 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
41 )))
42
43 (((
44 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
45
46
47 )))
48
49 [[image:1652953304999-717.png||height="424" width="733"]]
50
51
52 == 1.2 Specifications ==
53
54
55 (% style="color:#037691" %)**Operate Temperature:**
56
57 * -40°C ~~ 65°C
58
59 (% style="color:#037691" %)**Hardware System:**
60
61 * STM32L072xxxx MCU
62 * SX1276/78 Wireless Chip 
63 * Power Consumption (exclude RS485 device):
64 ** Idle: 6uA@3.3v
65 ** 20dB Transmit: 130mA@3.3v
66 * 5V sampling maximum current:500mA
67
68 (% style="color:#037691" %)**Interface for Model:**
69
70 * 1 x RS485 Interface
71 * 1 x TTL Serial , 3.3v or 5v.
72 * 1 x I2C Interface, 3.3v or 5v.
73 * 1 x one wire interface
74 * 1 x Interrupt Interface
75 * 1 x Controllable 5V output, max
76
77 (% style="color:#037691" %)**LoRa Spec:**
78
79 * Frequency Range:
80 ** Band 1 (HF): 862 ~~ 1020 Mhz
81 ** Band 2 (LF): 410 ~~ 528 Mhz
82 * 168 dB maximum link budget.
83 * +20 dBm - 100 mW constant RF output vs.
84 * Programmable bit rate up to 300 kbps.
85 * High sensitivity: down to -148 dBm.
86 * Bullet-proof front end: IIP3 = -12.5 dBm.
87 * Excellent blocking immunity.
88 * Fully integrated synthesizer with a resolution of 61 Hz.
89 * LoRa modulation.
90 * Built-in bit synchronizer for clock recovery.
91 * Preamble detection.
92 * 127 dB Dynamic Range RSSI.
93 * Automatic RF Sense and CAD with ultra-fast AFC.
94
95 ​​​
96
97 == 1.3 Features ==
98
99
100 * LoRaWAN Class A & Class C protocol (default Class A)
101 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864/MA869
102 * AT Commands to change parameters
103 * Remote configure parameters via LoRaWAN Downlink
104 * Firmware upgradable via program port
105 * Support multiply RS485 devices by flexible rules
106 * Support Modbus protocol
107 * Support Interrupt uplink
108
109 == 1.4 Applications ==
110
111
112 * Smart Buildings & Home Automation
113 * Logistics and Supply Chain Management
114 * Smart Metering
115 * Smart Agriculture
116 * Smart Cities
117 * Smart Factory
118
119 == 1.5 Firmware Change log ==
120
121
122 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
123
124
125 == 1.6 Hardware Change log ==
126
127 (((
128
129
130 (((
131 **v1.4**
132 )))
133 )))
134
135 (((
136 (((
137 ~1. Change Power IC to TPS22916
138 )))
139 )))
140
141 (((
142
143 )))
144
145 (((
146 (((
147 **v1.3**
148 )))
149 )))
150
151 (((
152 (((
153 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
154 )))
155 )))
156
157 (((
158
159 )))
160
161 (((
162 (((
163 **v1.2**
164 )))
165 )))
166
167 (((
168 (((
169 Release version ​​​​​
170 )))
171 )))
172
173
174 = 2. Pin mapping and Power ON Device =
175
176
177 (((
178 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
179
180
181 )))
182
183 [[image:1652953055962-143.png||height="387" width="728"]]
184
185
186 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
187
188
189 = 3. Operation Mode =
190
191 == 3.1 How it works? ==
192
193
194 (((
195 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
196
197
198 )))
199
200 == 3.2 Example to join LoRaWAN network ==
201
202
203 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
204
205 [[image:1652953414711-647.png||height="337" width="723"]]
206
207
208 (((
209 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
210 )))
211
212 (((
213 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
214
215
216 )))
217
218 (((
219 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
220 )))
221
222 (((
223 Each RS485-BL is shipped with a sticker with unique device EUI:
224 )))
225
226 [[image:image-20230425173638-1.png||height="254" width="547"]]
227
228
229 (((
230 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
231 )))
232
233 (((
234 **Add APP EUI in the application.**
235 )))
236
237
238 [[image:image-20220519174512-1.png]]
239
240 [[image:image-20220519174512-2.png||height="328" width="731"]]
241
242 [[image:image-20220519174512-3.png||height="556" width="724"]]
243
244 [[image:image-20220519174512-4.png]]
245
246
247 You can also choose to create the device manually.
248
249 [[image:1652953542269-423.png||height="710" width="723"]]
250
251
252 Add APP KEY and DEV EUI
253
254 [[image:1652953553383-907.png||height="514" width="724"]]
255
256
257
258 (((
259 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
260
261
262 )))
263
264 [[image:1652953568895-172.png||height="232" width="724"]]
265
266
267 == 3.3 Configure Device to Read RS485 Sensor ==
268
269
270 (((
271 There are plenty of RS485 and TTL level devices in the market and each device has different commands to read the valid data. To support these devices in most flexible, RS485-BL supports flexible command set. User can use [[Dragino RS485 Tool>>url:https://www.dropbox.com/sh/us9qecn39fwt8n1/AABREdqUCzEmJMRrfuWuXasoa?dl=0]],  [[AT Commands or LoRaWAN Downlink>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/#H3.5ConfigureRS485-LBviaATorDownlink]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
272
273
274 === 3.3.1 Method 1 ~-~- via RS485 Configure Tool ===
275
276
277 Use the RS485 Configure tool is the recommand method. Please see the instruction of how to use the tool:
278
279 * **[[RS485 Configure Tool Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/RS485_Configure_Tool/]]**
280
281 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20231127144411-1.png?width=494&height=368&rev=1.1||alt="image-20231127144411-1.png" height="368" width="494"]]
282 )))
283
284
285 === 3.3.2 Method 2 ~-~- via AT Commands ===
286
287 ==== 3.3.2.1 Configure UART settings for RS485 or TTL communication(Since v1.3.3) ====
288
289
290 (((
291 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
292 )))
293
294
295 (((
296 (% style="color:blue" %)**1.  RS485-MODBUS mode:**
297 )))
298
299 (((
300 (% style="color:#037691" %)**AT+MOD=1**  (%%) ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
301 )))
302
303
304 (((
305 (% style="color:blue" %)**2.  TTL mode:**
306 )))
307
308 (((
309 (% style="color:#037691" %)**AT+MOD=2**  (%%) ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
310 )))
311
312 (((
313 RS485-BL default UART settings is (% style="color:green" %)**9600, no parity, stop bit 1**(%%). If the sensor has a different settings, user can change the RS485-BL setting to match.
314 )))
315
316 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
317 |=(% style="width: 140px; background-color:#4F81BD;color:white" %)(((
318 (((
319 **AT Commands**
320 )))
321 )))|=(% style="width: 132px; background-color:#4F81BD;color:white" %)(((
322 (((
323 **Description**
324 )))
325 )))|=(% style="width: 238px;background-color:#4F81BD;color:white" %)(((
326 (((
327 **Example**
328 )))
329 )))
330 |(% style="width:120px" %)(((
331 (((
332 AT+BAUDR
333 )))
334 )))|(% style="width:115px" %)(((
335 (((
336 Set the baud rate (for RS485 connection).
337 Default Value is: 9600.
338 )))
339 )))|(% style="width:226px" %)(((
340 (((
341 (((
342 AT+BAUDR=9600
343 )))
344 )))
345
346 (((
347 (((
348 Options: (1200,2400,4800,14400,19200,115200)
349 )))
350 )))
351 )))
352 |(% style="width:120px" %)(((
353 (((
354 AT+PARITY
355 )))
356 )))|(% style="width:115px" %)(((
357 (((
358 (((
359 Set UART parity (for RS485 connection)
360 )))
361 )))
362
363 (((
364 (((
365 Default Value is: no parity.
366 )))
367 )))
368 )))|(% style="width:226px" %)(((
369 (((
370 (((
371 AT+PARITY=0
372 )))
373 )))
374
375 (((
376 (((
377 Option: 0: no parity, 1: odd parity, 2: even parity
378 )))
379 )))
380 )))
381 |(% style="width:120px" %)(((
382 (((
383 AT+STOPBIT
384 )))
385 )))|(% style="width:115px" %)(((
386 (((
387 (((
388 Set serial stopbit (for RS485 connection)
389 )))
390 )))
391
392 (((
393 (((
394 Default Value is: 1bit.
395 )))
396 )))
397 )))|(% style="width:226px" %)(((
398 (((
399 (((
400 AT+STOPBIT=0 for 1bit
401 )))
402 )))
403
404 (((
405 (((
406 AT+STOPBIT=1 for 1.5 bit
407 )))
408 )))
409
410 (((
411 (((
412 AT+STOPBIT=2 for 2 bits
413 )))
414 )))
415 )))
416
417 Example(Soil three-parameter detector):
418
419 (% style="color:blue" %)**Wiring the UART sensor**
420
421 (((
422 **GND <~-~-~-~-~-~-~-~-> GND
423 TX  <~-~-~-~-~-~-~-~->  RX
424 RX  <~-~-~-~-~-~-~-~->  TX
425 VCC  <~-~-~-~-~-~-~-~->  3.3/5V**
426 )))
427
428 [[image:image-20230220110129-1.png||height="277" width="395"]]
429
430
431 (% style="color:blue" %)**Set the correct configuration:**
432
433 (% style="color:#037691" %)**AT+BAUDR=9600**
434
435 (% style="color:#037691" %)**AT+PARITY=0**
436
437 (% style="color:#037691" %)**AT+STOPBIT=1**
438
439 If the sensor needs 5v. Need to move the switch position to 5v and then use the command
440
441 (% style="color:blue" %)**AT+5VT=30000**
442
443
444 (% style="color:blue" %)**Configuration read command:**
445
446 (% style="color:#037691" %)**AT+CFGDEV=FE 03 00 00 00 03 11 C4,0**
447
448 **FE:** Station address
449
450 **03:** Function code
451
452 **00 00: **Register start address
453
454 **00 03:** Number of registers
455
456 **11 04:**  Check code
457
458 [[image:image-20230220111709-2.png]]
459
460
461 Use AT+COMMAND1 to set it as a command, and use AT+DATACUT1 to intercept the bytes I need
462
463 [[image:image-20230220112421-3.png]]
464
465
466 (% style="color:blue" %)**upload payload:**
467
468 [[image:image-20230220112517-4.png]]
469
470
471 === 3.3.3  Configure sensors ===
472
473
474 (((
475 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
476 )))
477
478 (((
479 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won't run during each sampling.
480 )))
481
482 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
483 |=(% style="width: 130px;background-color:#4F81BD;color:white" %)**AT Commands**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Example**
484 |(% style="width:121px" %)AT+CFGDEV|(% style="width:179px" %)(((
485 (((
486 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
487 )))
488
489 (((
490 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
491 )))
492
493 (((
494 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
495 )))
496 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
497
498 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
499
500
501 === 3.3.4 Configure read commands for each sampling ===
502
503
504 (((
505 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
506 )))
507
508 (((
509 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
510 )))
511
512 (((
513 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
514 )))
515
516 (((
517 This section describes how to achieve above goals.
518 )))
519
520 (((
521 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
522
523
524 )))
525
526 (((
527 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
528 )))
529
530 (((
531 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
532
533
534 )))
535
536 (((
537 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
538 )))
539
540 (((
541 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
542 )))
543
544 * (((
545 (% style="color:blue" %)**AT+DATACUT**
546 )))
547
548 (((
549 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
550
551
552 )))
553
554 * (((
555 (% style="color:blue" %)**AT+SEARCH**
556 )))
557
558 (((
559 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
560 )))
561
562 (((
563
564
565 (% style="color:blue" %)**Define wait timeout:**
566 )))
567
568 (((
569 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
570 )))
571
572 (((
573 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
574 )))
575
576 (((
577
578
579 **Examples:**
580 )))
581
582 (((
583 Below are examples for the how above AT Commands works.
584 )))
585
586 (((
587 (% style="color:blue" %)**AT+COMMANDx **(%%)**: **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
588
589
590 )))
591
592 (% border="1" class="table-bordered" style="background-color:#f2f2f2; width:497px" %)
593 |(% style="width:494px" %)(((
594 (((
595 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
596 )))
597
598 (((
599 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
600 )))
601
602 (((
603 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
604 )))
605 )))
606
607 (((
608 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
609 )))
610
611 (((
612 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
613 )))
614
615 (((
616
617 )))
618
619 (((
620 (% style="color:blue" %)**AT+SEARCHx**(%%): This command defines how to handle the return from AT+COMMANDx.
621
622
623 )))
624
625 (% border="1" class="table-bordered" style="background-color:#f2f2f2; width:473px" %)
626 |(% style="width:470px" %)(((
627 (((
628 **AT+SEARCHx=aa,xx xx xx xx xx**
629 )))
630
631 * (((
632 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
633 )))
634 * (((
635 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
636 )))
637 )))
638
639 (((
640
641
642 **Examples:**
643 )))
644
645 (((
646 1) For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
647 )))
648
649 (((
650 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
651 )))
652
653 (((
654 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
655 )))
656
657 (((
658 [[image:1653271044481-711.png]]
659
660
661 )))
662
663 (((
664 2) For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
665 )))
666
667 (((
668 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
669 )))
670
671 (((
672 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
673 )))
674
675 (((
676 [[image:1653271276735-972.png]]
677 )))
678
679 (((
680 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 100 bytes.(Since 1.4.0)
681 )))
682
683 (% style="background-color:#f2f2f2; width:496px" %)
684 |(% style="width:493px" %)(((
685 (((
686 **AT+DATACUTx=a,b,c**
687 )))
688
689 * (((
690 **a: length for the return of AT+COMMAND**
691 )))
692 * (((
693 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
694 )))
695 * (((
696 **c: define the position for valid value.  **
697 )))
698 )))
699
700 (((
701
702
703 **Examples:**
704 )))
705
706 * (((
707 (% style="color:blue" %)**Grab bytes:**
708 )))
709
710 (((
711 [[image:1653271581490-837.png||height="313" width="722"]]
712 )))
713
714 (((
715
716 )))
717
718 * (((
719 (% style="color:blue" %)**Grab a section.**
720 )))
721
722 (((
723 [[image:1653271648378-342.png||height="326" width="720"]]
724 )))
725
726 (((
727
728 )))
729
730 * (((
731 (% style="color:blue" %)**Grab different sections.**
732 )))
733
734 (((
735 [[image:1653271657255-576.png||height="305" width="730"]]
736
737
738 )))
739
740 (((
741 (((
742 (% style="color:red" %)**Note:**
743 )))
744 )))
745
746 (((
747 (((
748 (% style="color:#037691" %)**AT+SEARCHx** (%%)and (% style="color:#037691" %)**AT+DATACUTx**(%%) can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format** AT+DATACUTx=0,xx,xx** where the return bytes set to **0**.
749
750
751 )))
752 )))
753
754 (((
755 (((
756 **Example:**
757 )))
758 )))
759
760 (((
761 (((
762 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
763 )))
764 )))
765
766 (((
767 (((
768 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
769 )))
770 )))
771
772 (((
773 (((
774 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
775 )))
776 )))
777
778 (((
779 (((
780 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
781 )))
782 )))
783
784 (((
785 (((
786 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
787 )))
788 )))
789
790 (((
791 (((
792 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
793
794
795 )))
796 )))
797
798 (((
799 [[image:1653271763403-806.png]]
800 )))
801
802
803 === 3.3.4 Compose the uplink payload ===
804
805
806 (((
807 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
808
809
810 )))
811
812 (((
813 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
814 )))
815
816 (((
817 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
818 )))
819
820 (((
821 Final Payload is
822 )))
823
824 (((
825 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
826 )))
827
828 (((
829 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
830 )))
831
832 [[image:1653272787040-634.png||height="515" width="719"]]
833
834
835 (((
836 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
837 )))
838
839 (((
840 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
841 )))
842
843 (((
844 Final Payload is
845 )))
846
847 (((
848 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
849 )))
850
851 1. (((
852 Battery Info (2 bytes): Battery voltage
853 )))
854 1. (((
855 PAYVER (1 byte): Defined by AT+PAYVER
856 )))
857 1. (((
858 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
859 )))
860 1. (((
861 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
862 )))
863 1. (((
864 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
865
866
867 )))
868
869 [[image:1653272817147-600.png||height="437" width="717"]]
870
871 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
872
873
874 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
875
876 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% _mstmutation="1" style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
877
878 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% _mstmutation="1" style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
879
880
881 Below are the uplink payloads:
882
883 [[image:1653272901032-107.png]]
884
885
886 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
887
888 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
889
890 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
891
892 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
893
894 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
895
896 *(% style="color:red" %)** When AT+DATAUP=1, the maximum number of segments is 15, and the maximum total number of bytes is 1500;**
897
898 (% style="color:red" %)** When AT+DATAUP=1 and AT+ADR=0, the maximum number of bytes of each payload is determined by the DR value. (Since v1.4.0)**
899
900 (((
901
902 )))
903
904 * (((
905 (% style="color:blue" %)**If the data is empty, return to the display (Since v1.4.0)**
906 )))
907
908 (% class="wikigeneratedid" %)
909 **1) ** When (% style="color:blue" %)**AT+MOD=1**(%%), if the data intercepted by (% style="color:#037691" %)** AT+DATACUT**(%%) or (% style="color:#037691" %)** AT+MBFUN **(%%)is empty, it will display **NULL**, and the payload will be filled with **n FFs**.
910
911
912 (% class="wikigeneratedid" %)
913 [[image:image-20220824114359-3.png||height="297" width="1106"]]
914
915
916
917 **2)**  When** (% style="color:blue" %)AT+MOD=2(%%)**, if the data intercepted by (% style="color:#037691" %)** AT+DATACUT** (%%)or (% style="color:#037691" %)** AT+MBFUN**(%%) is empty, it will display **NULL**, and the payload will be filled with **n 00s**.
918
919
920 [[image:image-20220824114330-2.png]]
921
922
923 === 3.3.5 Uplink on demand ===
924
925
926 (((
927 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
928
929
930 )))
931
932 (((
933 (% style="color:blue" %)** Downlink control command:**
934 )))
935
936 (((
937 (% style="color:#4472c4" %)** 0x08 command**(%%): Poll an uplink with current command set in RS485-BL.
938 )))
939
940 (((
941 (% style="color:#4472c4" %)** 0xA8 command**(%%): Send a command to RS485-BL and uplink the output from sensors.
942 )))
943
944
945 === 3.3.6 Uplink on Interrupt ===
946
947
948 Put the interrupt sensor between 3.3v_out and GPIO ext.
949
950 [[image:1653273818896-432.png]]
951
952
953 (((
954 (% style="color:#4472c4" %)**AT+INTMOD=0**(%%)  Disable Interrupt
955 )))
956
957 (((
958 (% style="color:#4472c4" %)**AT+INTMOD=1**(%%)  Interrupt trigger by rising or falling edge.
959 )))
960
961 (((
962 (% style="color:#4472c4" %)**AT+INTMOD=2** (%%) Interrupt trigger by falling edge. (Default Value)
963 )))
964
965 (((
966 (% style="color:#4472c4" %)**AT+INTMOD=3**(%%)  Interrupt trigger by rising edge.
967 )))
968
969
970 == 3.4 Uplink Payload ==
971
972
973 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
974 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**1**|(% style="background-color:#4f81bd; color:white; width:270px" %)**Length depends on the return from the commands**
975 |Value|(((
976 Battery(mV) & Interrupt _Flag
977 )))|(((
978 PAYLOAD_VER
979
980
981 )))|If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
982
983 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
984
985
986 (((
987 {{{function Decoder(bytes, port) {}}}
988 )))
989
990 (((
991 {{{//Payload Formats of RS485-BL Deceive}}}
992 )))
993
994 (((
995 {{{return {}}}
996 )))
997
998 (((
999 {{{ //Battery,units:V}}}
1000 )))
1001
1002 (((
1003 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
1004 )))
1005
1006 (((
1007 {{{ //GPIO_EXTI }}}
1008 )))
1009
1010 (((
1011 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
1012 )))
1013
1014 (((
1015 {{{ //payload of version}}}
1016 )))
1017
1018 (((
1019 {{{ Pay_ver:bytes[2],}}}
1020 )))
1021
1022 (((
1023 {{{ }; }}}
1024 )))
1025
1026 (((
1027 **}**
1028
1029
1030 )))
1031
1032 (((
1033 TTN V3 uplink screen shot.
1034 )))
1035
1036 [[image:1653274001211-372.png||height="192" width="732"]]
1037
1038
1039 == 3.5 Configure RS485-BL via AT or Downlink ==
1040
1041
1042 (((
1043 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
1044 )))
1045
1046 (((
1047 There are two kinds of Commands:
1048 )))
1049
1050 * (((
1051 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1052 )))
1053
1054 * (((
1055 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
1056
1057
1058 )))
1059
1060 === 3.5.1 Common Commands: ===
1061
1062
1063 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1064
1065
1066 === 3.5.2 Sensor related commands: ===
1067
1068
1069 ==== (% style="color:blue" %)**Choose Device Type (RS485 or TTL) (Since v1.3.3)**(%%) ====
1070
1071
1072 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
1073
1074 * (% style="color:#037691" %)**AT Command**
1075
1076 (% style="color:#4472c4" %)** AT+MOD=1** (%%) ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
1077
1078 (% style="color:#4472c4" %)** AT+MOD=2** (%%) ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
1079
1080
1081 * (% style="color:#037691" %)**Downlink Payload**
1082
1083 (% style="color:#4472c4" %)** 0A aa** (%%) ~-~->  same as AT+MOD=aa
1084
1085
1086 ==== (% style="color:blue" %)**RS485 Debug Command (AT+CFGDEV)**(%%) ====
1087
1088
1089 (((
1090 This command is used to configure the RS485 or TTL sensors; they won't be used during sampling. Max Length of AT+CFGDEV is **40 bytes**.
1091 )))
1092
1093 (((
1094 * (% style="color:#037691" %)**AT Command**
1095
1096 (((
1097 (% style="color:#4472c4" %)** AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**  (%%) m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
1098 )))
1099 )))
1100
1101 (((
1102
1103 )))
1104
1105 * (((
1106 (% style="color:#037691" %)**Downlink Payload**
1107 )))
1108
1109 (((
1110 Format:  (% style="color:#4472c4" %)** A8 MM NN XX XX XX XX YY**
1111 )))
1112
1113 (((
1114 Where:
1115 )))
1116
1117 * (((
1118 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1119 )))
1120 * (((
1121 NN: The length of RS485 command
1122 )))
1123 * (((
1124 XX XX XX XX: RS485 command total NN bytes
1125 )))
1126 * (((
1127 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1128
1129
1130 )))
1131
1132 (((
1133 (% style="color:blue" %)**Example 1:**
1134 )))
1135
1136 (((
1137 To connect a Modbus Alarm with below commands.
1138 )))
1139
1140 * (((
1141 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1142 )))
1143
1144 * (((
1145 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1146 )))
1147
1148 (((
1149 So if user want to use downlink command to control to RS485 Alarm, he can use:
1150 )))
1151
1152 (((
1153 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1154 )))
1155
1156 (((
1157 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1158 )))
1159
1160 (((
1161 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don't need to acquire output.
1162 )))
1163
1164 (((
1165
1166 )))
1167
1168 (((
1169 (% style="color:blue" %)**Example 2:**
1170 )))
1171
1172 (((
1173 Check TTL Sensor return:
1174 )))
1175
1176 (((
1177 [[image:1654132684752-193.png]]
1178 )))
1179
1180
1181 ==== (% style="color:blue" %)**Set Payload version**(%%) ====
1182
1183
1184 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1185
1186 * (% style="color:#037691" %)**AT Command:**
1187
1188 (% style="color:#4472c4" %)** AT+PAYVER:   **(%%)Set PAYVER field = 1
1189
1190
1191 * (% style="color:#037691" %)**Downlink Payload:**
1192
1193 (% style="color:#4472c4" %)** 0xAE 01** (%%) ~-~-> Set PAYVER field =  0x01
1194
1195 (% style="color:#4472c4" %)** 0xAE 0F** (%%) ~-~-> Set PAYVER field =  0x0F
1196
1197
1198 ==== (% style="color:blue" %)**Set RS485 Sampling Commands**(%%) ====
1199
1200
1201 (((
1202 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1203 )))
1204
1205 (((
1206 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1207 )))
1208
1209 * (((
1210 (% style="color:#037691" %)**AT Command:**
1211 )))
1212
1213 (% style="color:#4472c4" %)** AT+COMMANDx: **(%%)** Configure RS485 read command to sensor.**
1214
1215 (% style="color:#4472c4" %)** AT+DATACUTx: **(%%)** Configure how to handle return from RS485 devices.**
1216
1217 (% style="color:#4472c4" %)** AT+SEARCHx:  **(%%)** Configure search command**
1218
1219
1220 * (((
1221 (% style="color:#037691" %)**Downlink Payload:**
1222 )))
1223
1224 (((
1225 (% style="color:#4472c4" %)** 0xAF**(%%) downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1226 )))
1227
1228 (((
1229 (% style="color:red" %)**Note : if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
1230 )))
1231
1232 (((
1233 Format: AF MM NN LL XX XX XX XX YY
1234 )))
1235
1236 (((
1237 Where:
1238 )))
1239
1240 * (((
1241 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1242 )))
1243 * (((
1244 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1245 )))
1246 * (((
1247 LL:  The length of AT+COMMAND or AT+DATACUT command
1248 )))
1249 * (((
1250 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1251 )))
1252 * (((
1253 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1254 )))
1255
1256 (((
1257
1258
1259 **Example:**
1260 )))
1261
1262 (((
1263 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1264 )))
1265
1266 (((
1267 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1268 )))
1269
1270 (((
1271 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1272 )))
1273
1274 (((
1275
1276 )))
1277
1278 (((
1279 (% style="color:#4472c4" %)** 0xAB**(%%) downlink command can be used for set AT+SEARCHx
1280 )))
1281
1282 (((
1283
1284
1285 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1286 )))
1287
1288 * (((
1289 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1290 )))
1291 * (((
1292 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1293 )))
1294
1295 (((
1296 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1297 )))
1298
1299
1300 ==== (% style="color:blue" %)**Fast command to handle MODBUS device**(%%) ====
1301
1302
1303 (((
1304 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1305 )))
1306
1307 (((
1308 This command is valid since v1.3 firmware version
1309 )))
1310
1311 (((
1312
1313 )))
1314
1315 (((
1316 (% style="color:#037691" %)**AT+MBFUN has only two value:**
1317 )))
1318
1319 * (((
1320 (% style="color:#4472c4" %)** AT+MBFUN=1**(%%): Enable Modbus reading. And get response base on the MODBUS return
1321 )))
1322
1323 (((
1324 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1325 )))
1326
1327 * (((
1328 (% style="color:#4472c4" %)**AT+MBFUN=0**(%%): Disable Modbus fast reading.
1329 )))
1330
1331 (((
1332
1333
1334 **Example:**
1335 )))
1336
1337 * (((
1338 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1339 )))
1340 * (((
1341 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1342 )))
1343 * (((
1344 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1345 )))
1346
1347 [[image:1654133913295-597.png]]
1348
1349
1350 [[image:1654133954153-643.png]]
1351
1352 * (((
1353 (% style="color:#037691" %)**Downlink Commands:**
1354 )))
1355
1356 (((
1357 (% style="color:#4472c4" %)** A9 aa** (%%)~-~-> Same as AT+MBFUN=aa
1358 )))
1359
1360
1361 ==== (% style="color:blue" %)**RS485 command timeout**(%%) ====
1362
1363
1364 (((
1365 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1366 )))
1367
1368 (((
1369 Default value: 0, range:  0 ~~ 5 seconds
1370 )))
1371
1372 (((
1373
1374 )))
1375
1376 (((
1377 * (% style="color:#037691" %)**AT Command:**
1378
1379 (% style="color:#4472c4" %)**AT+CMDDLaa=hex(bb cc)**
1380
1381
1382 )))
1383
1384 (((
1385 **Example:**
1386 )))
1387
1388 (((
1389 **AT+CMDDL1=1000** to send the open time to 1000ms
1390 )))
1391
1392 (((
1393
1394 )))
1395
1396 * (((
1397 (% style="color:#037691" %)**Downlink Payload:**
1398 )))
1399
1400 (((
1401 (% style="color:#4472c4" %) **0x AA aa bb cc**(%%)  Same as:** AT+CMDDLaa=hex(bb cc)**
1402 )))
1403
1404 (((
1405
1406
1407 **Example:**
1408 )))
1409
1410 (((
1411 (% style="color:#4472c4" %)** 0xAA 01 03 E8**(%%)  ~-~-> Same as (% _mstmutation="1" %)**AT+CMDDL1=1000 ms**
1412 )))
1413
1414
1415 ==== (% style="color:blue" %)**Uplink payload mode**(%%) ====
1416
1417
1418 (((
1419 Define to use one uplink or multiple uplinks for the sampling.
1420 )))
1421
1422 (((
1423 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1424 )))
1425
1426 (((
1427 * (% style="color:#037691" %)**AT Command:**
1428
1429 (% style="color:#4472c4" %)** AT+DATAUP=0**
1430
1431 (% style="color:#4472c4" %)** AT+DATAUP=1**
1432
1433
1434 )))
1435
1436 (((
1437 (% style="color:#4472c4" %)** AT+DATAUP=2  **(%%)~/~/The external sensor is sent as a separate packet and the data returned by the AT+COMMAND command is sent as a separate packet.
1438
1439 An asterisk ( * ) indicates that it is optional and can be added, refer to instructions (% style="color:red" %)**AT+EXT=a,b,c **(%%) to set up external sensors and pulse counts.
1440
1441 **(FPORT2)**Battery(mV) & Interrupt_Flag + PAYLOAD_VER + *SHT31 temp + *SHT31 Hum + *counting + *DS18B20
1442 **(FPORT3)**PAYLOAD COUNT + PAYLOAD# + Length depends on the return from the commands
1443
1444 (% style="color:red" %)**Note: AT+DATAUP=2 is only valid for the new firmware v1.4.5, which is not released, please contact us for testing.**
1445
1446
1447 )))
1448
1449 * (((
1450 (% style="color:#037691" %)**Downlink Payload:**
1451 )))
1452
1453 (((
1454 (% style="color:#4472c4" %)** 0xAD 00**  (%%) **~-~->** Same as AT+DATAUP=0
1455 )))
1456
1457 (((
1458 (% style="color:#4472c4" %)** 0xAD 01**   (%%)**~-~->** Same as AT+DATAUP=1  ~/~/ Each uplink is sent to the server one after the other as it is segmented.
1459
1460 (% style="color:#4472c4" %)** 0xAD 02   **(%%)**~-~->** Same as AT+DATAUP=2 
1461
1462
1463
1464 )))
1465
1466 (((
1467 * (% style="color:#037691" %)**AT Command:**
1468
1469 (% style="color:#4472c4" %)**AT+DATAUP=1,Timeout**
1470 )))
1471
1472 (((
1473
1474 )))
1475
1476 * (((
1477 (% style="color:#037691" %)**Downlink Payload:**
1478 )))
1479
1480 (((
1481 (% style="color:#4472c4" %)** 0xAD 01 00 00 14** (%%) **~-~->** Same as AT+DATAUP=1,20000  ~/~/ (00 00 14 is 20 seconds)
1482 )))
1483
1484 (((
1485 Each uplink is sent to the server at 20-second intervals when segmented.
1486
1487
1488 )))
1489
1490 ==== (% style="color:blue" %)**Cut data separation processing(Since Version 1.4.2)**(%%) ====
1491
1492
1493 AT+NEWLINE command, which only takes effect when AT+DATAUP=1 or AT+DATAUP=1, timeout.
1494
1495 When not set, each part of AT+DATAUP is sent according to the maximum number of bytes of DR.
1496
1497 When setting, each part of AT+DATAUP is sent according to the value set by AT+NEWLINE.
1498
1499
1500 * (((
1501 (% style="color:#037691" %)** AT Command:**
1502 )))
1503
1504 (% style="color:#4472c4" %)//**AT+NEWLINE=ALL**//(%%)//   //The data cut out by each AT+COMMANDx command is sent separately as an uplink.
1505
1506 (% style="color:#4472c4" %)//**AT+NEWLINE=ALL**//(%%)//   equal:  (% style="color:#4472c4" %)**AT+NEWLINE=1+2+3+4+5+6+7+8+9+10+11+12+13+14+15**//
1507
1508
1509 (% style="color:#4472c4" %)//**AT+NEWLINE=a+b+c**//(%%)//  //The data returned by all commands is divided into three parts, COMMAND(1~~a) is the first part, COMMAND(a+1~~b) is the second part,COMMAND(b+1~~c) is the third part.
1510
1511
1512 (% style="color:#4472c4" %)//**AT+NEWLINE=NULL**//(%%)//  //Turn off the functionality of this AT command.
1513
1514
1515 * (((
1516 (% style="color:#037691" %)** Downlink Payload:**
1517 )))
1518
1519 //AT+NEWLINE=ALL  ~-~-->  (% style="color:#4472c4" %)**0xAC 01**//
1520
1521 // AT+NEWLINE= NULL  ~-~-->  (% style="color:#4472c4" %)**0xAC 00**//
1522
1523 //AT+NEWLINE= a+b+c   ~-~-->  (% style="color:#4472c4" %)**0xAC number of bytes a b c**//
1524
1525 //AT+NEWLINE= 1+5+15 ~-~-->  (% style="color:#4472c4" %)**0xAC 03 01 05 0F**//
1526
1527
1528 ==== (% style="color:blue" %)**Manually trigger an Uplink**(%%) ====
1529
1530
1531 Ask device to send an uplink immediately.
1532
1533 * (% style="color:#037691" %)**Downlink Payload:**
1534
1535 (% style="color:#4472c4" %)** 0x08 FF**(%%), RS485-BL will immediately send an uplink.
1536
1537
1538 ==== (% style="color:blue" %)**Clear RS485 Command**(%%) ====
1539
1540
1541 (((
1542 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1543 )))
1544
1545 (((
1546
1547 )))
1548
1549 * (((
1550 (% style="color:#037691" %)**AT Command:**
1551 )))
1552
1553 (((
1554 (% style="color:#4472c4" %) **AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1555 )))
1556
1557 (((
1558 Example screen shot after clear all RS485 commands. 
1559 )))
1560
1561 (((
1562
1563 )))
1564
1565 (((
1566 The uplink screen shot is:
1567 )))
1568
1569 (((
1570 [[image:1654134704555-320.png]]
1571 )))
1572
1573 (((
1574
1575 )))
1576
1577 * (((
1578 (% style="color:#037691" %)**Downlink Payload:**
1579 )))
1580
1581 (((
1582 (% style="color:#4472c4" %)** 0x09 aa bb**(%%) same as AT+CMDEAR=aa,bb
1583 )))
1584
1585
1586 ==== (% style="color:blue" %)**Set Serial Communication Parameters**(%%) ====
1587
1588
1589 (((
1590 Set the Rs485 serial communication parameters:
1591 )))
1592
1593 * (((
1594 (% style="color:#037691" %)**AT Command:**
1595 )))
1596
1597 (((
1598
1599
1600 * **Set Baud Rate:**
1601 )))
1602
1603 (% style="color:#4472c4" %)** AT+BAUDR=9600** (%%) ~/~/ Options: (200~~115200),When using low baud rate or receiving multiple bytes, you need to use AT+CMDDL to increase the receive timeout (the default receive timeout is 300ms), otherwise data will be lost
1604
1605
1606 * **Set UART Parity**
1607
1608 (% style="color:#4472c4" %)** AT+PARITY=0**  (%%) ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1609
1610
1611 * **Set STOPBIT**
1612
1613 (% style="color:#4472c4" %)** AT+STOPBIT=0** (%%) ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1614
1615
1616 * (((
1617 (% style="color:#037691" %)**Downlink Payload:**
1618 )))
1619
1620 (((
1621 (% style="color:#4472c4" %)** A7 01 aa bb**(%%): Same  AT+BAUDR=hex(aa bb)*100
1622 )))
1623
1624 (((
1625
1626
1627 **Example:**
1628 )))
1629
1630 * (((
1631 A7 01 00 60   same as AT+BAUDR=9600
1632 )))
1633 * (((
1634 A7 01 04 80  same as AT+BAUDR=115200
1635 )))
1636
1637 (((
1638 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00, 01 or 02)
1639 )))
1640
1641 (((
1642 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00, 01 or 02)
1643 )))
1644
1645
1646 ==== (% style="color:blue" %)**Configure Databit(Since version 1.4.0)**(%%) ====
1647
1648 * (((
1649 (% style="color:#037691" %)**AT Command:**
1650 )))
1651
1652 **~ AT+DATABIT=7    **~/~/ Set the data bits to 7
1653
1654 **~ AT+DATABIT=8   **~/~/ Set the data bits to 8
1655
1656
1657 * (((
1658 (% style="color:#037691" %)**Downlink Payload:**
1659 )))
1660
1661 **~ A7 04 07**: Same as  AT+DATABIT=7
1662
1663 **~ A7 04 08**: Same as  AT+DATABIT=8
1664
1665
1666 ==== (% style="color:blue" %)**Encrypted payload**(%%) ====
1667
1668 (((
1669
1670 )))
1671
1672 * (((
1673 (% style="color:#037691" %)**AT Command:**
1674 )))
1675
1676 (% style="color:#4472c4" %)** AT+DECRYPT=1 **(%%)** **~/~/ The payload is uploaded without encryption
1677
1678 (% style="color:#4472c4" %)** AT+DECRYPT=0   **(%%)~/~/  Encrypt when uploading payload (default)
1679
1680
1681 ==== (% style="color:blue" %)**Get sensor value**(%%) ====
1682
1683 (((
1684
1685 )))
1686
1687 * (((
1688 (% style="color:#037691" %)**AT Command:**
1689 )))
1690
1691 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=0 **(%%)** **~/~/ The serial port gets the reading of the current sensor
1692
1693 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1694
1695
1696 ==== (% style="color:blue" %)**Resets the downlink packet count**(%%) ====
1697
1698 (((
1699
1700 )))
1701
1702 * (((
1703 (% style="color:#037691" %)**AT Command:**
1704 )))
1705
1706 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=0    **(%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1707
1708 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=1    **(%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1709
1710
1711 ==== (% style="color:blue" %)**When the limit bytes are exceeded, upload in batches**(%%) ====
1712
1713 (((
1714
1715 )))
1716
1717 * (((
1718 (% style="color:#037691" %)**AT Command:**
1719 )))
1720
1721 (% style="color:#4472c4" %)** AT+DISMACANS=0**  (%%) ~/~/  When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1722
1723 (% style="color:#4472c4" %)** AT+DISMACANS=1**  (%%) ~/~/  When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1724
1725
1726 * (((
1727 (% style="color:#037691" %)**Downlink Payload**
1728 )))
1729
1730 (% style="color:#4472c4" %)** 0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1731
1732
1733 ==== (% style="color:blue" %)**Copy downlink to uplink **(%%) ====
1734
1735 (((
1736
1737 )))
1738
1739 * (((
1740 (% style="color:#037691" %)**AT Command:**
1741 )))
1742
1743 (% style="color:#4472c4" %)** AT+RPL=5** (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1744
1745
1746 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1747
1748
1749 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1750
1751
1752 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1753
1754
1755 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1756
1757
1758 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1759
1760
1761 ==== (% style="color:blue" %)**Query version number and frequency band 、TDC**(%%) ====
1762
1763
1764 * (((
1765 (% style="color:#037691" %)**Downlink Payload: 26 01  **(%%) ~/~/ Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1766 )))
1767
1768 **Example:**
1769
1770
1771 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1772
1773
1774 ==== (% style="color:blue" %)**Control output power duration**(%%) ====
1775
1776
1777 (% style="color:red" %)**Before v1.4.4, the maximum settable time of 3V3T and 5VT is 65535 milliseconds. After v1.4.4, the maximum settable time of 3V3T and 5VT is 180 seconds.**
1778
1779 (((
1780 User can set the output power duration before each sampling.
1781 )))
1782
1783 * (((
1784 (% style="color:#037691" %)**AT Command:**
1785 )))
1786
1787 (((
1788 **Example:**
1789 )))
1790
1791 (((
1792 (% style="color:#4472c4" %)** AT+3V3T=1000**(%%)  ~/~/ 3V3 output power will open 1s before each sampling.
1793 )))
1794
1795 (((
1796 (% style="color:#4472c4" %)** AT+5VT=1000**  (%%) ~/~/ +5V output power will open 1s before each sampling.
1797 )))
1798
1799 (((
1800
1801 )))
1802
1803 * (((
1804 (% style="color:#037691" %)**LoRaWAN Downlink Command:**
1805
1806 **Example:**
1807
1808 (% style="color:#037691" %)**When the delay is less than 65 seconds, Downlink can be controlled by 4 bytes or 5 bytes:**
1809 )))
1810
1811 (((
1812 (% style="color:#4472c4" %)** 07 01 aa bb** (%%) Same as AT+5VT=(aa<<8 | bb)
1813 )))
1814
1815 (((
1816 (% style="color:#4472c4" %)** 07 02 aa bb** (%%) Same as AT+3V3T=(aa<<8 | bb)
1817
1818 (((
1819 (% style="color:#4472c4" %)** 07 01 aa bb** **cc**(%%) Same as AT+5VT=(aa<<16 | bb<<8 | cc)
1820 )))
1821
1822 (((
1823 (% style="color:#4472c4" %)** 07 02 aa bb** **cc **(%%)Same as AT+3V3T=(aa<<16 | bb<<8 | cc)
1824
1825 (% style="color:#037691" %)** When the delay is greater than 65 seconds, the Downlink is controlled by 5 bytes:**
1826 )))
1827 )))
1828
1829 (((
1830 (% style="color:#4472c4" %)** 07 01 aa bb** **cc**(%%) Same as AT+5VT=(aa<<16 | bb<<8 | cc)
1831 )))
1832
1833 (((
1834 (% style="color:#4472c4" %)** 07 02 aa bb** **cc **(%%)Same as AT+3V3T=(aa<<16 | bb<<8 | cc)
1835 )))
1836
1837
1838 == 3.6 Connect to external temperature sensor & counting sensor ==
1839
1840
1841 (% style="color:red" %)**Note: This feature is only available for new unreleased firmware v1.4.5, please contact us for testing.**
1842
1843 * (% style="color:#037691" %)**AT Command:**
1844
1845 (% style="color:#4472c4" %)**AT+EXT=a,b,c**(%%)
1846
1847 (% style="color:#4472c4" %)**a:**(%%)  **0:** ignore I2C interface.  ** 1:** Add SHT31 sensor support (4 bytes).
1848 (% style="color:#4472c4" %)**b: **(%%) **0:** ignore pulse interface ( doesn't effect interrupt ).  **1:** Add Counting Support (4 bytes).
1849 (% style="color:#4472c4" %)**c:**(%%)  **0:** ignore one wire interface.  **1:** add DS18B20 support (2 bytes).
1850
1851 **Example:**
1852
1853 (% style="color:#4472c4" %)**AT+EXT=1,1,1**
1854
1855 Device will add SHT31, counting, DS18B20 support.
1856
1857 The payload will be:
1858 Battery(mV) & Interrupt _Flag + PAYLOAD_VER + ***SHT31 temp** + ***SHT31 Hum** + ***counting** + *DS18B20 + Length depends on the return from the commands
1859
1860 (% style="color:#4472c4" %)**AT+EXT=0,1,0**
1861
1862 Device will add counting support.
1863
1864 The payload will be:
1865 Battery(mV) & Interrupt _Flag + PAYLOAD_VER + ***counting** + Length depends on the return from the commands
1866
1867
1868 * (% style="color:#037691" %)**AT Command:**
1869
1870 (% style="color:#4472c4" %)**AT+SETCNT=aa     **(%%)~/~/ Set the pulse count value.
1871
1872 **Example:**
1873
1874 AT+SETCNT=100  (% style="display:none" %) (%%)~/~/ Set the pulse count to 10.(% style="display:none" %)
1875
1876 Downlink Payload 0x0C 00 00 00 64
1877
1878
1879 (% style="color:blue" %)**Connect DS18B20 sensor**
1880
1881 **RED <~-~-~-~-~-~-~-~--> +3.3V**
1882
1883 **YELLOW <~-~-~-~-> ONE_WIRE**
1884
1885 **BLACK <~-~-~-~-~-~-> GND**
1886
1887 [[image:image-20240105110044-2.jpeg||height="328" width="496"]]
1888
1889
1890 (% style="color:blue" %)**Connect SHT31 sensor**
1891
1892
1893 **RED <~-~-~-~-~-~-~-~--> +3.3V**
1894
1895 **YELLOW <~-~-~-~-> SCL**
1896
1897 **GREEN <~-~-~-~-~-~-> SDA**
1898
1899 **BLACK <~-~-~-~-~-~-> GND**
1900
1901 [[image:image-20240105111233-3.jpeg||height="330" width="492"]]
1902
1903
1904 (% style="color:blue" %)**Connect counting sensor**
1905
1906 The counting sensor cables are connected to the +3.3v pin and GPIO_EXTI pin of the RS485_BL motherboard.
1907
1908 [[image:image-20240105112545-4.jpeg||height="335" width="490"]]
1909
1910
1911 == 3.7 Buttons ==
1912
1913
1914 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:233px" %)
1915 |=(% style="width: 89px;background-color:#4F81BD;color:white" %)**Button**|=(% style="width: 141px;background-color:#4F81BD;color:white" %)**Feature**
1916 |(% style="width:89px" %)RST|(% style="width:141px" %)Reboot RS485-BL
1917
1918 == 3.8 +3V3 Output (Since v1.3.3) ==
1919
1920
1921 (((
1922 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1923 )))
1924
1925 (((
1926 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1927 )))
1928
1929 (((
1930 The +3V3 output time can be controlled by AT Command.
1931 )))
1932
1933 (((
1934
1935 )))
1936
1937 (((
1938 (% style="color:#037691" %)**AT+3V3T=1000**
1939 )))
1940
1941 (((
1942
1943 )))
1944
1945 (((
1946 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1947 )))
1948
1949 (((
1950 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1951 )))
1952
1953
1954 == 3.9 +5V Output (Since v1.3.3) ==
1955
1956
1957 (((
1958 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1959 )))
1960
1961 (((
1962 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1963 )))
1964
1965 (((
1966 The 5V output time can be controlled by AT Command.
1967 )))
1968
1969 (((
1970 (% style="color:red" %)**(AT+5VT increased from the maximum 5000ms to 65000ms.Since v1.4.0)**
1971 )))
1972
1973 (((
1974 (% style="color:#037691" %)**AT+5VT=1000**
1975 )))
1976
1977 (((
1978
1979 )))
1980
1981 (((
1982 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1983 )))
1984
1985 (((
1986 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1987 )))
1988
1989
1990 == 3.10 LEDs ==
1991
1992
1993 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:332px" %)
1994 |=(% style="background-color:#4F81BD;color:white" %)**LEDs**|=(% style="width: 274px;background-color:#4F81BD;color:white" %)**Feature**
1995 |LED1|(% style="width:274px" %)Blink when device transmit a packet.
1996
1997 == 3.11 Switch Jumper ==
1998
1999
2000 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:463px" %)
2001 |=(% style="width: 123px;background-color:#4F81BD;color:white" %)**Switch Jumper**|=(% style="width: 340px;background-color:#4F81BD;color:white" %)**Feature**
2002 |(% style="width:123px" %)SW1|(% style="width:336px" %)ISP position: Upgrade firmware via UART
2003 Flash position: Configure device, check running status.
2004 |(% style="width:123px" %)SW2|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
2005 3.3v position: set to compatible with 3.3v I/O.,
2006
2007 (((
2008 (% style="color:blue" %)** +3.3V**(%%): is always ON
2009 )))
2010
2011 (((
2012 (% style="color:blue" %)** +5V**(%%): Only open before every sampling. The time is by default, it is (% style="color:#4472c4" %)** AT+5VT=0**(%%).  Max open time. 65000 ms.(Since v1.4.0)
2013
2014
2015 )))
2016
2017 == 3.12 Battery & Power Consumption ==
2018
2019
2020 RS485-BL uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
2021
2022 [[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
2023
2024
2025 = 4. Case Study =
2026
2027
2028 User can check this URL for some case studies:  [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
2029
2030
2031 = 5. Use AT Command =
2032
2033 == 5.1 Access AT Command ==
2034
2035
2036 (((
2037 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
2038 )))
2039
2040 [[image:1654135840598-282.png]]
2041
2042
2043 (((
2044 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
2045 )))
2046
2047 [[image:1654136105500-922.png]]
2048
2049
2050 (((
2051 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
2052 )))
2053
2054
2055 == 5.2 Common AT Command Sequence ==
2056
2057 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2058
2059
2060 If device has not joined network yet:
2061
2062 * (% style="color:#037691" %)**AT+FDR**
2063 * (% style="color:#037691" %)**AT+NJM=0**
2064 * (% style="color:#037691" %)**ATZ**
2065
2066 (((
2067
2068
2069 If device already joined network:
2070
2071 * (% style="color:#037691" %)**AT+NJM=0**
2072 * (% style="color:#037691" %)**ATZ**
2073 )))
2074
2075
2076 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
2077
2078
2079 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
2080
2081 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%) Set to ABP mode
2082
2083 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) Set the Adaptive Data Rate Off
2084
2085 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%) Set Data Rate
2086
2087 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
2088
2089 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%)  Set transmit frequency to 868.4Mhz
2090
2091 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
2092
2093 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
2094
2095 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2096
2097 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
2098
2099
2100 (% style="color:red" %)**Note:**
2101
2102 (((
2103 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
2104 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
2105 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
2106 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
2107
2108
2109 )))
2110
2111 [[image:1654136435598-589.png]]
2112
2113
2114 = 6. FAQ =
2115
2116 == 6.1 How to upgrade the image? ==
2117
2118
2119 (((
2120 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
2121 )))
2122
2123 * (((
2124 Support new features
2125 )))
2126 * (((
2127 For bug fix
2128 )))
2129 * (((
2130 Change LoRaWAN bands.
2131 )))
2132
2133 (((
2134 Below shows the hardware connection for how to upload an image to RS485-BL:
2135 )))
2136
2137 [[image:1654136646995-976.png]]
2138
2139
2140 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2141
2142 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACc1xfL4lk-ZKECY3_JaUeVa/RS485-BL/Firmware?dl=0&subfolder_nav_tracking=1]].
2143
2144 (% style="color:blue" %)**Step3**(%%)**: **Open flashloader; choose the correct COM port to update.
2145
2146 [[image:image-20220602102605-1.png]]
2147
2148
2149 [[image:image-20220602102637-2.png]]
2150
2151
2152 [[image:image-20220602102715-3.png]]
2153
2154
2155 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2156
2157
2158 (((
2159 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2160 )))
2161
2162
2163 == 6.3 How many RS485-Slave can RS485-BL connects? ==
2164
2165
2166 (((
2167 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
2168 )))
2169
2170
2171 == 6.4 How to Use RS485-BL  to connect to RS232 devices? ==
2172
2173
2174 [[Use RS485-BL or RS485-LN to connect to RS232 devices. - DRAGINO>>http://wiki.dragino.com/xwiki/bin/view/Main/RS485%20to%20RS232/]]
2175
2176
2177 == 6.5 How to judge whether there is a problem with the set COMMAND ==
2178
2179 === 6.5.1 Introduce: ===
2180
2181
2182 Users can use below the structure to fast debug the communication between RS485BL and RS485-LN. The principle is to put the PC in the RS485 network and sniff the packet between Modbus MTU and RS485-BL/LN. We can (% style="color:blue" %)**use this way to:**
2183
2184 1. Test if Modbus-MTU works with PC commands.
2185 1. Check if RS485-LN sent the expected command to Mobus-MTU
2186 1. Check if Modbus-MTU return back the expected result to RS485-LN.
2187 1. If both b) and c) has issue, we can compare PC's output and RS485-LN output.
2188
2189 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-1.png?width=680&height=380&rev=1.1||alt="image-20221130104310-1.png" height="380" width="680"]]
2190
2191
2192 (% style="color:blue" %)**Example Connection: **
2193
2194 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-2.png?rev=1.1||alt="image-20221130104310-2.png"]]
2195
2196
2197 === 6.5.2 Set up PC to monitor RS485 network With Serial tool ===
2198
2199
2200 (% style="color:red" %)**Note: Receive and send set to hex mode**
2201
2202 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-3.png?width=714&height=616&rev=1.1||alt="image-20221130104310-3.png" height="616" width="714"]]
2203
2204
2205 === 6.5.3 With ModRSsim2: ===
2206
2207
2208 (% style="color:blue" %)**(1) Select serial port MODBUS RS-232**
2209
2210 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-4.png?width=865&height=390&rev=1.1||alt="image-20221130104310-4.png" height="390" width="865"]]
2211
2212
2213 (% style="color:blue" %)**(2) Click the serial port icon**
2214
2215 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-5.png?width=870&height=392&rev=1.1||alt="image-20221130104310-5.png" height="392" width="870"]]
2216
2217
2218 (% style="color:blue" %)**(3) After selecting the correct serial port and baud rate, click ok**
2219
2220 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-6.png?rev=1.1||alt="image-20221130104310-6.png"]]
2221
2222
2223 (% style="color:blue" %)**(4) Click the comms.**
2224
2225 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-7.png?width=835&height=376&rev=1.1||alt="image-20221130104310-7.png" height="376" width="835"]]
2226
2227 Run RS485-LN/BL command and monitor if it is correct.
2228
2229
2230 === 6.5.4 Example – Test the CFGDEV command ===
2231
2232
2233 RS485-LN sent below command:
2234
2235 (% style="color:blue" %)**AT+CFGDEV=01 03 20 00 01 85 c0,1**(%%) to RS485 network, and PC is able to get this command and return commands from MTU to show in the serial tool.
2236
2237 We can see the output from the Serial port tool to analyze. And check if they are expected result.
2238
2239 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-8.png?width=797&height=214&rev=1.1||alt="image-20221130104310-8.png" height="214" width="797"]]
2240
2241
2242 We can also use ModRSsim2 to see the output.
2243
2244 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-9.png?width=729&height=531&rev=1.1||alt="image-20221130104310-9.png" height="531" width="729"]]
2245
2246
2247 === 6.5.5 Example – Test CMD command sets. ===
2248
2249
2250 Run (% style="color:blue" %)**AT+SENSORVALUE=1**(%%) to test the CMD commands set in RS485-LN.
2251
2252 (% style="color:blue" %)**Serial port tool:**
2253
2254 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-10.png?width=844&height=339&rev=1.1||alt="image-20221130104310-10.png" height="339" width="844"]]
2255
2256
2257 (% style="color:blue" %)**ModRSsim2:**
2258
2259 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-11.png?width=962&height=281&rev=1.1||alt="image-20221130104310-11.png" height="281" width="962"]]
2260
2261
2262 === 6.5.6 Test with PC ===
2263
2264
2265 If there is still have problem to set up correctly the commands between RS485-LN and MTU. User can test the correct RS485 command set in PC and compare with the RS485 command sent out via RS485-LN. as long as both commands are the same, the MTU should return correct result.
2266
2267 Or User can send the working commands set in PC serial tool to Dragino Support to check what should be configured in RS485-LN.
2268
2269 (% style="color:blue" %)**Connection method:**
2270
2271 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-12.png?rev=1.1||alt="image-20221130104310-12.png"]]
2272
2273
2274 (% style="color:blue" %)**Link situation:**
2275
2276 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-13.png?width=486&height=458&rev=1.1||alt="image-20221130104310-13.png" height="458" width="486"]]
2277
2278
2279 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-14.png?width=823&height=371&rev=1.1||alt="image-20221130104310-14.png" height="371" width="823"]]
2280
2281
2282 == 6.6 Where to get the decoder for RS485-BL? ==
2283
2284
2285 The decoder for RS485-BL needs to be written by yourself. Because the sensor to which the user is connected is custom, the read device data bytes also need custom parsing, so there is no universal decoder. We can only provide [[templates>>https://github.com/dragino/dragino-end-node-decoder/tree/main/RS485-BL]] for decoders (no intermediate data parsing part involved)
2286
2287
2288 == 6.7 Why does my TTL sensor have returned data, but after using the command AT+DATACUT, the data in the payload is 0? ==
2289
2290
2291 In TTL mode, you cannot use the node to automatically calculate the check code, you need to manually add the check code.
2292
2293
2294 == 6.8 Where can I get a decoder? ==
2295
2296
2297 Provides two decoders:
2298
2299 [[dragino-end-node-decoder/RS485-BL at main · dragino/dragino-end-node-decoder (github.com)>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/RS485-BL]]
2300
2301 [[https:~~/~~/github.com/zorbaproject/ArduinoModbusForDraginoRS485#payload-decoder-for-thethingsnetwork>>url:https://github.com/zorbaproject/ArduinoModbusForDraginoRS485#payload-decoder-for-thethingsnetwork]]
2302
2303
2304 == 6.9 How to configure RS485 commands more conveniently? ==
2305
2306
2307 Dragino has developed an application for the RS485 series of products.
2308
2309 It can help you configure RS485 sensors more conveniently
2310 Please refer to the link below for specific usage:
2311
2312 [[RS485 Configure Tool - DRAGINO>>url:http://wiki.dragino.com/xwiki/bin/view/Main/RS485_Configure_Tool/#HTableofContentsFF1A]]
2313
2314
2315 = 7. Trouble Shooting =
2316
2317 == 7.1 Downlink doesn't work, how to solve it? ==
2318
2319
2320 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
2321
2322
2323 == 7.2 Why I can't join TTN V3 in US915 /AU915 bands? ==
2324
2325
2326 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2327
2328
2329 == 7.3 Possible reasons why the device is unresponsive: ==
2330
2331
2332 ~1. Check whether the battery voltage is lower than 2.8V
2333 2. Check whether the jumper of the device is correctly connected
2334
2335 [[image:image-20240330173015-1.png]]
2336 3. Check whether the switch here of the device is at the ISP(The switch can operate normally only when it is in RUN)
2337
2338 [[image:image-20240330173044-2.png]]
2339
2340
2341 == 7.4 Why can't customers see the device's data in the server when the data is too long? ==
2342
2343
2344 This is due to the limitation of the lorawan protocol, and the fixed DR needs to be adjusted to improve this problem.
2345
2346 Please refer to the following link for the number of bytes limited by different frequencies and different DRs in the lorawan protocol
2347
2348 [[lora-alliance.org/wp-content/uploads/2021/05/RP002-1.0.3-FINAL-1.pdf>>url:https://lora-alliance.org/wp-content/uploads/2021/05/RP002-1.0.3-FINAL-1.pdf]]
2349
2350 Example:
2351
2352 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20240620145456-1.png?rev=1.1||alt="image-20240620145456-1.png"]]
2353
2354 Please refer to the following command to fix DR
2355
2356 AT+ADR=0
2357
2358 AT+DR=3
2359
2360 Downlink command:
2361
2362 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.4DataRate>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.4DataRate]]
2363
2364
2365 = 8. Order Info =
2366
2367
2368 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
2369
2370 (% style="color:blue" %)**XXX:**
2371
2372 * (% style="color:red" %)**EU433**(%%):  frequency bands EU433
2373 * (% style="color:red" %)**EU868**(%%):  frequency bands EU868
2374 * (% style="color:red" %)**KR920**(%%):  frequency bands KR920
2375 * (% style="color:red" %)**CN470**(%%):  frequency bands CN470
2376 * (% style="color:red" %)**AS923**(%%):  frequency bands AS923
2377 * (% style="color:red" %)**AU915**(%%):  frequency bands AU915
2378 * (% style="color:red" %)**US915**(%%):  frequency bands US915
2379 * (% style="color:red" %)**IN865**(%%):  frequency bands IN865
2380 * (% style="color:red" %)**RU864**(%%):  frequency bands RU864
2381 * (% style="color:red" %)**KZ865**(%%):  frequency bands KZ865
2382
2383 = 9. Packing Info =
2384
2385
2386 (((
2387 **Package Includes**:
2388 )))
2389
2390 * (((
2391 RS485-BL x 1
2392 )))
2393 * (((
2394 Stick Antenna for LoRa RF part x 1
2395 )))
2396 * (((
2397 Program cable x 1
2398 )))
2399
2400 (((
2401 **Dimension and weight**:
2402 )))
2403
2404 * (((
2405 Device Size: 13.5 x 7 x 3 cm
2406 )))
2407 * (((
2408 Device Weight: 105g
2409 )))
2410 * (((
2411 Package Size / pcs : 14.5 x 8 x 5 cm
2412 )))
2413 * (((
2414 Weight / pcs : 170g
2415
2416
2417
2418 )))
2419
2420 = 10. Support =
2421
2422
2423 * (((
2424 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2425 )))
2426 * (((
2427 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2428
2429
2430
2431 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0