Changes for page RS485-BL – Waterproof RS485 to LoRaWAN Converter
Last modified by Xiaoling on 2025/04/23 15:57
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -25,19 +25,19 @@ 25 25 ))) 26 26 27 27 ((( 28 -The Dragino RS485-BL is a **RS485 / UART to LoRaWAN Converter** for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server. 28 +The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server. 29 29 ))) 30 30 31 31 ((( 32 -RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides **a 3.3v output** and** a 5v output** to power external sensors. Both output voltages are controllable to minimize the total system power consumption. 32 +RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption. 33 33 ))) 34 34 35 35 ((( 36 -RS485-BL is IP67 **waterproof** and powered by **8500mAh Li-SOCI2 battery**, it is designed for long term use for several years. 36 +RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years. 37 37 ))) 38 38 39 39 ((( 40 -RS485-BL runs standard **LoRaWAN 1.0.3 in Class A**. It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server. 40 +RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server. 41 41 ))) 42 42 43 43 ((( ... ... @@ -54,8 +54,11 @@ 54 54 55 55 [[image:1652953304999-717.png||height="424" width="733"]] 56 56 57 + 58 + 57 57 == 1.2 Specifications == 58 58 61 + 59 59 **Hardware System:** 60 60 61 61 * STM32L072CZT6 MCU ... ... @@ -62,8 +62,6 @@ 62 62 * SX1276/78 Wireless Chip 63 63 * Power Consumption (exclude RS485 device): 64 64 ** Idle: 6uA@3.3v 65 - 66 -* 67 67 ** 20dB Transmit: 130mA@3.3v 68 68 69 69 **Interface for Model:** ... ... @@ -117,9 +117,12 @@ 117 117 118 118 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]] 119 119 121 + 120 120 == 1.6 Hardware Change log == 121 121 122 122 ((( 125 + 126 + 123 123 v1.4 124 124 ))) 125 125 ... ... @@ -143,6 +143,8 @@ 143 143 144 144 ((( 145 145 Release version 150 + 151 + 146 146 ))) 147 147 148 148 = 2. Pin mapping and Power ON Device = ... ... @@ -156,6 +156,7 @@ 156 156 157 157 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper. 158 158 165 + 159 159 = 3. Operation Mode = 160 160 161 161 == 3.1 How it works? == ... ... @@ -162,6 +162,8 @@ 162 162 163 163 ((( 164 164 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA. 172 + 173 + 165 165 ))) 166 166 167 167 == 3.2 Example to join LoRaWAN network == ... ... @@ -197,8 +197,6 @@ 197 197 ))) 198 198 199 199 200 - 201 - 202 202 [[image:image-20220519174512-1.png]] 203 203 204 204 [[image:image-20220519174512-2.png||height="328" width="731"]] ... ... @@ -222,6 +222,7 @@ 222 222 223 223 [[image:1652953568895-172.png||height="232" width="724"]] 224 224 232 + 225 225 == 3.3 Configure Commands to read data == 226 226 227 227 ((( ... ... @@ -328,8 +328,9 @@ 328 328 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command 329 329 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m 330 330 331 -Detail of AT+CFGDEV command see [[AT+CFGDEV detail>> path:#AT_CFGDEV]].339 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]]. 332 332 341 + 333 333 === 3.3.3 Configure read commands for each sampling === 334 334 335 335 ((( ... ... @@ -427,7 +427,7 @@ 427 427 428 428 **Examples:** 429 429 430 -1 .For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49439 +1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 431 431 432 432 If we set AT+SEARCH1=1,1E 56 34. (max 5 bytes for prefix) 433 433 ... ... @@ -435,7 +435,7 @@ 435 435 436 436 [[image:1653271044481-711.png]] 437 437 438 - 1.For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49447 +2)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 439 439 440 440 If we set AT+SEARCH1=2, 1E 56 34+31 00 49 441 441 ... ... @@ -454,16 +454,18 @@ 454 454 * **c: define the position for valid value. ** 455 455 ))) 456 456 457 -Examples: 466 +**Examples:** 458 458 459 459 * Grab bytes: 460 460 461 461 [[image:1653271581490-837.png||height="313" width="722"]] 462 462 472 + 463 463 * Grab a section. 464 464 465 465 [[image:1653271648378-342.png||height="326" width="720"]] 466 466 477 + 467 467 * Grab different sections. 468 468 469 469 [[image:1653271657255-576.png||height="305" width="730"]] ... ... @@ -506,6 +506,7 @@ 506 506 507 507 [[image:1653271763403-806.png]] 508 508 520 + 509 509 === 3.3.4 Compose the uplink payload === 510 510 511 511 ((( ... ... @@ -513,7 +513,7 @@ 513 513 ))) 514 514 515 515 ((( 516 -(% style="color:# 4f81bd" %)**Examples: AT+DATAUP=0**528 +(% style="color:#037691" %)**Examples: AT+DATAUP=0** 517 517 ))) 518 518 519 519 ((( ... ... @@ -525,7 +525,7 @@ 525 525 ))) 526 526 527 527 ((( 528 -(% style="color:#4f81bd" %)Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx 540 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx** 529 529 ))) 530 530 531 531 ((( ... ... @@ -534,8 +534,12 @@ 534 534 535 535 [[image:1653272787040-634.png||height="515" width="719"]] 536 536 549 + 550 + 537 537 ((( 538 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1** 552 +(% style="color:#037691" %)**Examples: AT+DATAUP=1** 553 + 554 + 539 539 ))) 540 540 541 541 ((( ... ... @@ -547,7 +547,7 @@ 547 547 ))) 548 548 549 549 ((( 550 -(% style="color:#4f81bd" %)Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA 566 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA** 551 551 ))) 552 552 553 553 1. ((( ... ... @@ -570,6 +570,7 @@ 570 570 571 571 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA 572 572 589 + 573 573 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41 574 574 575 575 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20 ... ... @@ -576,10 +576,12 @@ 576 576 577 577 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30 578 578 596 + 579 579 Below are the uplink payloads: 580 580 581 581 [[image:1653272901032-107.png]] 582 582 601 + 583 583 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below: 584 584 585 585 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date) ... ... @@ -590,6 +590,8 @@ 590 590 591 591 ~* For all other bands: max 51 bytes for each uplink ( so 51 -5 = 46 max valid date). 592 592 612 + 613 + 593 593 === 3.3.5 Uplink on demand === 594 594 595 595 ((( ... ... @@ -606,6 +606,8 @@ 606 606 607 607 ((( 608 608 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors. 630 + 631 + 609 609 ))) 610 610 611 611 === 3.3.6 Uplink on Interrupt === ... ... @@ -614,6 +614,7 @@ 614 614 615 615 [[image:1653273818896-432.png]] 616 616 640 + 617 617 ((( 618 618 AT+INTMOD=0 Disable Interrupt 619 619 ))) ... ... @@ -628,6 +628,8 @@ 628 628 629 629 ((( 630 630 AT+INTMOD=3 Interrupt trigger by rising edge. 655 + 656 + 631 631 ))) 632 632 633 633 == 3.4 Uplink Payload == ... ... @@ -655,47 +655,49 @@ 655 655 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors. 656 656 657 657 ((( 658 -function Decoder(bytes, port) { 684 +{{{function Decoder(bytes, port) {}}} 659 659 ))) 660 660 661 661 ((( 662 - ~/~/Payload Formats of RS485-BL Deceive688 +{{{//Payload Formats of RS485-BL Deceive}}} 663 663 ))) 664 664 665 665 ((( 666 -return { 692 +{{{return {}}} 667 667 ))) 668 668 669 669 ((( 670 - ~/~/Battery,units:V696 +{{{ //Battery,units:V}}} 671 671 ))) 672 672 673 673 ((( 674 - BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000, 700 +{{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}} 675 675 ))) 676 676 677 677 ((( 678 - ~/~/GPIO_EXTI704 +{{{ //GPIO_EXTI }}} 679 679 ))) 680 680 681 681 ((( 682 - EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE", 708 +{{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}} 683 683 ))) 684 684 685 685 ((( 686 - ~/~/payload of version712 +{{{ //payload of version}}} 687 687 ))) 688 688 689 689 ((( 690 - Pay_ver:bytes[2], 716 +{{{ Pay_ver:bytes[2],}}} 691 691 ))) 692 692 693 693 ((( 694 - }; 720 +{{{ }; }}} 695 695 ))) 696 696 697 697 ((( 698 - } 724 +} 725 + 726 + 699 699 ))) 700 700 701 701 ((( ... ... @@ -704,32 +704,33 @@ 704 704 705 705 [[image:1653274001211-372.png||height="192" width="732"]] 706 706 735 + 707 707 == 3.5 Configure RS485-BL via AT or Downlink == 708 708 709 -User can configure RS485-BL via [[AT Commands>>path:#_Using_the_AT]]or LoRaWAN Downlink Commands738 +User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands 710 710 711 711 There are two kinds of Commands: 712 712 713 -* **Common Commands**: They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: http:~/~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands742 +* (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]] 714 714 715 -* **Sensor Related Commands**: These commands are special designed for RS485-BL. User can see these commands below: 744 +* (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL. User can see these commands below: 716 716 717 -1. 718 -11. 719 -111. Common Commands: 720 720 721 -They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]] 722 722 748 +=== 3.5.1 Common Commands: === 723 723 724 -1. 725 -11. 726 -111. Sensor related commands: 750 +They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]] 727 727 728 -==== Choose Device Type (RS485 or TTL) ==== 729 729 753 +=== 3.5.2 Sensor related commands: === 754 + 755 +==== ==== 756 + 757 +==== **Choose Device Type (RS485 or TTL)** ==== 758 + 730 730 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect. 731 731 732 -* AT Command 761 +* **AT Command** 733 733 734 734 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins. 735 735 ... ... @@ -736,17 +736,17 @@ 736 736 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins. 737 737 738 738 739 -* Downlink Payload 768 +* **Downlink Payload** 740 740 741 -**0A aa** àsame as AT+MOD=aa770 +**0A aa** ~-~-> same as AT+MOD=aa 742 742 743 743 744 744 745 -==== [[RS485 Debug Command>>path:#downlink_A8]](AT+CFGDEV) ====774 +==== **RS485 Debug Command (AT+CFGDEV)** ==== 746 746 747 747 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling. 748 748 749 -* AT Command 778 +* **AT Command** 750 750 751 751 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m 752 752 ... ... @@ -753,9 +753,8 @@ 753 753 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command. 754 754 755 755 785 +* **Downlink Payload** 756 756 757 -* Downlink Payload 758 - 759 759 Format: A8 MM NN XX XX XX XX YY 760 760 761 761 Where: ... ... @@ -769,15 +769,15 @@ 769 769 770 770 To connect a Modbus Alarm with below commands. 771 771 772 -* The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually. 800 +* The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually. 773 773 774 -* The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually. 802 +* The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually. 775 775 776 776 So if user want to use downlink command to control to RS485 Alarm, he can use: 777 777 778 -**A8 01 06 0A 05 00 04 00 01 00**: to activate the RS485 Alarm 806 +(% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm 779 779 780 -**A8 01 06 0A 05 00 04 00 00 00**: to deactivate the RS485 Alarm 808 +(% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm 781 781 782 782 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output. 783 783 ... ... @@ -786,7 +786,7 @@ 786 786 787 787 Check TTL Sensor return: 788 788 789 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.png]]817 +[[image:1654132684752-193.png]] 790 790 791 791 792 792
- 1654132684752-193.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.8 KB - Content