Version 53.1 by Bei Jinggeng on 2022/07/08 16:52

Show last authors
1
2
3
4
5
6
7
8
9 == ==
10
11 (% style="text-align:center" %)
12 [[image:1652947681187-144.png||height="404" width="404"]]
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 **Table of Contents:**
28
29 {{toc/}}
30
31
32
33
34
35 = 1.Introduction =
36
37 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
38
39 (((
40
41 )))
42
43 (((
44 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
45 )))
46
47 (((
48 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
49 )))
50
51 (((
52 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
53 )))
54
55 (((
56 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
57 )))
58
59 (((
60 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
61 )))
62
63 (((
64 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
65 )))
66
67 (((
68 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
69
70
71 )))
72
73 [[image:1652953304999-717.png||height="424" width="733"]]
74
75
76
77 == 1.2 Specifications ==
78
79
80 **Hardware System:**
81
82 * STM32L072CZT6 MCU
83 * SX1276/78 Wireless Chip 
84 * Power Consumption (exclude RS485 device):
85 ** Idle: 6uA@3.3v
86 ** 20dB Transmit: 130mA@3.3v
87
88 **Interface for Model:**
89
90 * 1 x RS485 Interface
91 * 1 x TTL Serial , 3.3v or 5v.
92 * 1 x I2C Interface, 3.3v or 5v.
93 * 1 x one wire interface
94 * 1 x Interrupt Interface
95 * 1 x Controllable 5V output, max
96
97 **LoRa Spec:**
98
99 * Frequency Range:
100 ** Band 1 (HF): 862 ~~ 1020 Mhz
101 ** Band 2 (LF): 410 ~~ 528 Mhz
102 * 168 dB maximum link budget.
103 * +20 dBm - 100 mW constant RF output vs.
104 * Programmable bit rate up to 300 kbps.
105 * High sensitivity: down to -148 dBm.
106 * Bullet-proof front end: IIP3 = -12.5 dBm.
107 * Excellent blocking immunity.
108 * Fully integrated synthesizer with a resolution of 61 Hz.
109 * LoRa modulation.
110 * Built-in bit synchronizer for clock recovery.
111 * Preamble detection.
112 * 127 dB Dynamic Range RSSI.
113 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
114
115 == 1.3 Features ==
116
117 * LoRaWAN Class A & Class C protocol (default Class A)
118 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
119 * AT Commands to change parameters
120 * Remote configure parameters via LoRaWAN Downlink
121 * Firmware upgradable via program port
122 * Support multiply RS485 devices by flexible rules
123 * Support Modbus protocol
124 * Support Interrupt uplink
125
126 == 1.4 Applications ==
127
128 * Smart Buildings & Home Automation
129 * Logistics and Supply Chain Management
130 * Smart Metering
131 * Smart Agriculture
132 * Smart Cities
133 * Smart Factory
134
135 == 1.5 Firmware Change log ==
136
137 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
138
139
140 == 1.6 Hardware Change log ==
141
142 (((
143
144
145 (((
146 **v1.4**
147 )))
148 )))
149
150 (((
151 (((
152 ~1. Change Power IC to TPS22916
153 )))
154 )))
155
156 (((
157
158 )))
159
160 (((
161 (((
162 **v1.3**
163 )))
164 )))
165
166 (((
167 (((
168 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
169 )))
170 )))
171
172 (((
173
174 )))
175
176 (((
177 (((
178 **v1.2**
179 )))
180 )))
181
182 (((
183 (((
184 Release version ​​​​​
185 )))
186
187
188 )))
189
190
191 = 2. Pin mapping and Power ON Device =
192
193 (((
194 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
195 )))
196
197 [[image:1652953055962-143.png||height="387" width="728"]]
198
199
200 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
201
202
203 = 3. Operation Mode =
204
205 == 3.1 How it works? ==
206
207 (((
208 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
209
210
211 )))
212
213 == 3.2 Example to join LoRaWAN network ==
214
215 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
216
217 [[image:1652953414711-647.png||height="337" width="723"]]
218
219
220 (((
221 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
222 )))
223
224 (((
225 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
226 )))
227
228 (((
229 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
230 )))
231
232 (((
233 Each RS485-BL is shipped with a sticker with unique device EUI:
234 )))
235
236 [[image:1652953462722-299.png]]
237
238
239 (((
240 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
241 )))
242
243 (((
244 **Add APP EUI in the application.**
245 )))
246
247
248 [[image:image-20220519174512-1.png]]
249
250 [[image:image-20220519174512-2.png||height="328" width="731"]]
251
252 [[image:image-20220519174512-3.png||height="556" width="724"]]
253
254 [[image:image-20220519174512-4.png]]
255
256
257 You can also choose to create the device manually.
258
259 [[image:1652953542269-423.png||height="710" width="723"]]
260
261
262 Add APP KEY and DEV EUI
263
264 [[image:1652953553383-907.png||height="514" width="724"]]
265
266
267
268 (((
269 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
270 )))
271
272 [[image:1652953568895-172.png||height="232" width="724"]]
273
274
275 == 3.3 Configure Commands to read data ==
276
277 (((
278 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
279
280
281 )))
282
283 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
284
285 (((
286 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
287 )))
288
289 (((
290 **~1. RS485-MODBUS mode:**
291 )))
292
293 (((
294 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
295 )))
296
297 (((
298 **2. TTL mode:**
299 )))
300
301 (((
302 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
303 )))
304
305 (((
306 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
307 )))
308
309 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
310 |=(% style="width: 80px;" %)(((
311 (((
312 **AT Commands**
313 )))
314 )))|=(% style="width: 210px;" %)(((
315 (((
316 **Description**
317 )))
318 )))|=(% style="width: 210px;" %)(((
319 (((
320 **Example**
321 )))
322 )))
323 |(% style="width:80px" %)(((
324 (((
325 AT+BAUDR
326 )))
327 )))|(% style="width:210px" %)(((
328 (((
329 Set the baud rate (for RS485 connection). Default Value is: 9600.
330 )))
331 )))|(% style="width:210px" %)(((
332 (((
333 (((
334 AT+BAUDR=9600
335 )))
336 )))
337
338 (((
339 (((
340 Options: (1200,2400,4800,14400,19200,115200)
341 )))
342 )))
343 )))
344 |(% style="width:80px" %)(((
345 (((
346 AT+PARITY
347 )))
348 )))|(% style="width:210px" %)(((
349 (((
350 (((
351 Set UART parity (for RS485 connection)
352 )))
353 )))
354
355 (((
356 (((
357 Default Value is: no parity.
358 )))
359 )))
360 )))|(% style="width:210px" %)(((
361 (((
362 (((
363 AT+PARITY=0
364 )))
365 )))
366
367 (((
368 (((
369 Option: 0: no parity, 1: odd parity, 2: even parity
370 )))
371 )))
372 )))
373 |(% style="width:80px" %)(((
374 (((
375 AT+STOPBIT
376 )))
377 )))|(% style="width:210px" %)(((
378 (((
379 (((
380 Set serial stopbit (for RS485 connection)
381 )))
382 )))
383
384 (((
385 (((
386 Default Value is: 1bit.
387 )))
388 )))
389 )))|(% style="width:210px" %)(((
390 (((
391 (((
392 AT+STOPBIT=0 for 1bit
393 )))
394 )))
395
396 (((
397 (((
398 AT+STOPBIT=1 for 1.5 bit
399 )))
400 )))
401
402 (((
403 (((
404 AT+STOPBIT=2 for 2 bits
405 )))
406 )))
407 )))
408
409 === 3.3.2 Configure sensors ===
410
411 (((
412 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
413 )))
414
415 (((
416 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
417 )))
418
419 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
420 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
421 |AT+CFGDEV|(% style="width:80px" %)(((
422 (((
423 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
424 )))
425
426 (((
427 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
428 )))
429
430 (((
431 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
432 )))
433 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
434
435 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
436
437
438
439 === 3.3.3 Configure read commands for each sampling ===
440
441 (((
442 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
443 )))
444
445 (((
446 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
447 )))
448
449 (((
450 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
451 )))
452
453 (((
454 This section describes how to achieve above goals.
455 )))
456
457 (((
458 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
459
460
461 )))
462
463 (((
464 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
465 )))
466
467 (((
468 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
469
470
471 )))
472
473 (((
474 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
475 )))
476
477 (((
478 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
479 )))
480
481 * (((
482 (% style="color:blue" %)**AT+DATACUT**
483 )))
484
485 (((
486 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
487
488
489 )))
490
491 * (((
492 (% style="color:blue" %)**AT+SEARCH**
493 )))
494
495 (((
496 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
497 )))
498
499 (((
500
501
502 (% style="color:blue" %)**Define wait timeout:**
503 )))
504
505 (((
506 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
507 )))
508
509 (((
510 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
511 )))
512
513 (((
514
515
516 **Examples:**
517 )))
518
519 (((
520 Below are examples for the how above AT Commands works.
521 )))
522
523 (((
524 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
525 )))
526
527 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
528 |(% style="width:498px" %)(((
529 (((
530 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
531 )))
532
533 (((
534 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
535 )))
536
537 (((
538 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
539 )))
540 )))
541
542 (((
543 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
544 )))
545
546 (((
547 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
548 )))
549
550 (((
551
552 )))
553
554 (((
555 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
556 )))
557
558 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
559 |(% style="width:577px" %)(((
560 (((
561 **AT+SEARCHx=aa,xx xx xx xx xx**
562 )))
563
564 * (((
565 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
566 )))
567 * (((
568 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
569 )))
570 )))
571
572 (((
573
574
575 **Examples:**
576 )))
577
578 (((
579 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
580 )))
581
582 (((
583 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
584 )))
585
586 (((
587 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
588 )))
589
590 (((
591 [[image:1653271044481-711.png]]
592
593
594 )))
595
596 (((
597 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
598 )))
599
600 (((
601 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
602 )))
603
604 (((
605 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
606 )))
607
608 (((
609 [[image:1653271276735-972.png]]
610 )))
611
612 (((
613 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
614 )))
615
616 (% style="background-color:#4f81bd; color:white; width:510px" %)
617 |(% style="width:726px" %)(((
618 (((
619 **AT+DATACUTx=a,b,c**
620 )))
621
622 * (((
623 **a: length for the return of AT+COMMAND**
624 )))
625 * (((
626 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
627 )))
628 * (((
629 **c: define the position for valid value.  **
630 )))
631 )))
632
633 (((
634
635
636 **Examples:**
637 )))
638
639 * (((
640 (% style="color:blue" %)**Grab bytes:**
641 )))
642
643 (((
644 [[image:1653271581490-837.png||height="313" width="722"]]
645 )))
646
647 (((
648
649 )))
650
651 * (((
652 (% style="color:blue" %)**Grab a section.**
653 )))
654
655 (((
656 [[image:1653271648378-342.png||height="326" width="720"]]
657 )))
658
659 (((
660
661 )))
662
663 * (((
664 (% style="color:blue" %)**Grab different sections.**
665 )))
666
667 (((
668 [[image:1653271657255-576.png||height="305" width="730"]]
669
670
671 )))
672
673 (((
674 (((
675 (% style="color:red" %)**Note:**
676 )))
677 )))
678
679 (((
680 (((
681 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
682 )))
683 )))
684
685 (((
686 (((
687 **Example:**
688 )))
689 )))
690
691 (((
692 (((
693 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
694 )))
695 )))
696
697 (((
698 (((
699 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
700 )))
701 )))
702
703 (((
704 (((
705 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
706 )))
707 )))
708
709 (((
710 (((
711 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
712 )))
713 )))
714
715 (((
716 (((
717 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
718 )))
719 )))
720
721 (((
722 (((
723 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
724 )))
725 )))
726
727 (((
728 [[image:1653271763403-806.png]]
729 )))
730
731
732 === 3.3.4 Compose the uplink payload ===
733
734 (((
735 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
736
737
738 )))
739
740 (((
741 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
742
743
744 )))
745
746 (((
747 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
748 )))
749
750 (((
751 Final Payload is
752 )))
753
754 (((
755 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
756 )))
757
758 (((
759 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
760 )))
761
762 [[image:1653272787040-634.png||height="515" width="719"]]
763
764
765
766 (((
767 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
768
769
770 )))
771
772 (((
773 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
774 )))
775
776 (((
777 Final Payload is
778 )))
779
780 (((
781 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
782 )))
783
784 1. (((
785 Battery Info (2 bytes): Battery voltage
786 )))
787 1. (((
788 PAYVER (1 byte): Defined by AT+PAYVER
789 )))
790 1. (((
791 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
792 )))
793 1. (((
794 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
795 )))
796 1. (((
797 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
798
799
800 )))
801
802 [[image:1653272817147-600.png||height="437" width="717"]]
803
804 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
805
806
807 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
808
809 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
810
811 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
812
813
814 Below are the uplink payloads:
815
816 [[image:1653272901032-107.png]]
817
818
819 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
820
821 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
822
823 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
824
825 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
826
827 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
828
829
830
831 === 3.3.5 Uplink on demand ===
832
833 (((
834 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
835 )))
836
837 (((
838 Downlink control command:
839 )))
840
841 (((
842 **0x08 command**: Poll an uplink with current command set in RS485-BL.
843 )))
844
845 (((
846 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
847
848
849 )))
850
851 === 3.3.6 Uplink on Interrupt ===
852
853 Put the interrupt sensor between 3.3v_out and GPIO ext.
854
855 [[image:1653273818896-432.png]]
856
857
858 (((
859 AT+INTMOD=0  Disable Interrupt
860 )))
861
862 (((
863 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
864 )))
865
866 (((
867 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
868 )))
869
870 (((
871 AT+INTMOD=3  Interrupt trigger by rising edge.
872
873
874 )))
875
876 == 3.4 Uplink Payload ==
877
878 [[image:image-20220606105412-1.png]]
879
880 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
881
882 (((
883 {{{function Decoder(bytes, port) {}}}
884 )))
885
886 (((
887 {{{//Payload Formats of RS485-BL Deceive}}}
888 )))
889
890 (((
891 {{{return {}}}
892 )))
893
894 (((
895 {{{ //Battery,units:V}}}
896 )))
897
898 (((
899 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
900 )))
901
902 (((
903 {{{ //GPIO_EXTI }}}
904 )))
905
906 (((
907 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
908 )))
909
910 (((
911 {{{ //payload of version}}}
912 )))
913
914 (((
915 {{{ Pay_ver:bytes[2],}}}
916 )))
917
918 (((
919 {{{ }; }}}
920 )))
921
922 (((
923 **}**
924
925
926 )))
927
928 (((
929 TTN V3 uplink screen shot.
930 )))
931
932 [[image:1653274001211-372.png||height="192" width="732"]]
933
934
935 == 3.5 Configure RS485-BL via AT or Downlink ==
936
937 (((
938 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
939 )))
940
941 (((
942 There are two kinds of Commands:
943 )))
944
945 * (((
946 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
947 )))
948
949 * (((
950 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
951
952
953
954
955 )))
956
957 === 3.5.1 Common Commands: ===
958
959 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
960
961
962 === 3.5.2 Sensor related commands: ===
963
964
965
966 ==== (% style="color:blue" %)**Choose Device Type (RS485 or TTL)**(%%) ====
967
968 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
969
970 * (% style="color:#037691" %)**AT Command**
971
972 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
973
974 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
975
976
977 * (% style="color:#037691" %)**Downlink Payload**
978
979 **0A aa**  ~-~->  same as AT+MOD=aa
980
981
982
983
984 ==== (% style="color:blue" %)**RS485 Debug Command (AT+CFGDEV)**(%%) ====
985
986 (((
987 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
988 )))
989
990 * (((
991 (% style="color:#037691" %)**AT Command**
992
993 (((
994 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**  m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
995 )))
996 )))
997
998 (((
999
1000 )))
1001
1002 * (((
1003 (% style="color:#037691" %)**Downlink Payload**
1004 )))
1005
1006 (((
1007 Format: A8 MM NN XX XX XX XX YY
1008 )))
1009
1010 (((
1011 Where:
1012 )))
1013
1014 * (((
1015 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1016 )))
1017 * (((
1018 NN: The length of RS485 command
1019 )))
1020 * (((
1021 XX XX XX XX: RS485 command total NN bytes
1022 )))
1023 * (((
1024 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1025 )))
1026
1027 (((
1028 **Example 1:**
1029 )))
1030
1031 (((
1032 To connect a Modbus Alarm with below commands.
1033 )))
1034
1035 * (((
1036 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1037 )))
1038
1039 * (((
1040 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1041 )))
1042
1043 (((
1044 So if user want to use downlink command to control to RS485 Alarm, he can use:
1045 )))
1046
1047 (((
1048 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1049 )))
1050
1051 (((
1052 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1053 )))
1054
1055 (((
1056 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1057 )))
1058
1059 (((
1060
1061 )))
1062
1063 (((
1064 **Example 2:**
1065 )))
1066
1067 (((
1068 Check TTL Sensor return:
1069 )))
1070
1071 (((
1072 [[image:1654132684752-193.png]]
1073 )))
1074
1075
1076
1077
1078 ==== (% style="color:blue" %)**Set Payload version**(%%) ====
1079
1080 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1081
1082 * (% style="color:#037691" %)**AT Command:**
1083
1084 **AT+PAYVER:   **Set PAYVER field = 1
1085
1086
1087 * (% style="color:#037691" %)**Downlink Payload:**
1088
1089 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1090
1091 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1092
1093
1094
1095
1096 ==== (% style="color:blue" %)**Set RS485 Sampling Commands**(%%) ====
1097
1098 (((
1099 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1100 )))
1101
1102 (((
1103 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1104 )))
1105
1106 (((
1107
1108 )))
1109
1110 * (((
1111 (% style="color:#037691" %)**AT Command:**
1112 )))
1113
1114 **AT+COMMANDx:  Configure RS485 read command to sensor.**
1115
1116 **AT+DATACUTx:  Configure how to handle return from RS485 devices.**
1117
1118 **AT+SEARCHx:  Configure search command**
1119
1120
1121 * (((
1122 (% style="color:#037691" %)**Downlink Payload:**
1123 )))
1124
1125 (((
1126 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1127 )))
1128
1129 (((
1130 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1131 )))
1132
1133 (((
1134 Format: AF MM NN LL XX XX XX XX YY
1135 )))
1136
1137 (((
1138 Where:
1139 )))
1140
1141 * (((
1142 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1143 )))
1144 * (((
1145 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1146 )))
1147 * (((
1148 LL:  The length of AT+COMMAND or AT+DATACUT command
1149 )))
1150 * (((
1151 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1152 )))
1153 * (((
1154 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1155 )))
1156
1157 (((
1158 **Example:**
1159 )))
1160
1161 (((
1162 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1163 )))
1164
1165 (((
1166 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1167 )))
1168
1169 (((
1170 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1171 )))
1172
1173 (((
1174
1175 )))
1176
1177 (((
1178 **0xAB** downlink command can be used for set AT+SEARCHx
1179 )))
1180
1181 (((
1182 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1183 )))
1184
1185 * (((
1186 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1187 )))
1188 * (((
1189 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1190 )))
1191
1192 (((
1193 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1194 )))
1195
1196
1197
1198
1199 ==== (% style="color:blue" %)**Fast command to handle MODBUS device**(%%) ====
1200
1201 (((
1202 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1203 )))
1204
1205 (((
1206 This command is valid since v1.3 firmware version
1207 )))
1208
1209 (((
1210
1211 )))
1212
1213 (((
1214 (% style="color:#037691" %)**AT+MBFUN has only two value:**
1215 )))
1216
1217 * (((
1218 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1219 )))
1220
1221 (((
1222 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1223 )))
1224
1225 * (((
1226 **AT+MBFUN=0**: Disable Modbus fast reading.
1227 )))
1228
1229 (((
1230
1231
1232 **Example:**
1233 )))
1234
1235 * (((
1236 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1237 )))
1238 * (((
1239 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1240 )))
1241 * (((
1242 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1243 )))
1244
1245 [[image:1654133913295-597.png]]
1246
1247
1248 [[image:1654133954153-643.png]]
1249
1250
1251 * (((
1252 (% style="color:#037691" %)**Downlink Commands:**
1253 )))
1254
1255 (((
1256 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1257 )))
1258
1259
1260
1261
1262 ==== (% style="color:blue" %)**RS485 command timeout**(%%) ====
1263
1264 (((
1265 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1266 )))
1267
1268 (((
1269 Default value: 0, range:  0 ~~ 5 seconds
1270 )))
1271
1272 (((
1273
1274 )))
1275
1276 * (((
1277 (% style="color:#037691" %)**AT Command:**
1278
1279 **AT+CMDDLaa=hex(bb cc)**
1280
1281
1282 )))
1283
1284 (((
1285 **Example:**
1286 )))
1287
1288 (((
1289 **AT+CMDDL1=1000** to send the open time to 1000ms
1290 )))
1291
1292 (((
1293
1294 )))
1295
1296 * (((
1297 (% style="color:#037691" %)**Downlink Payload:**
1298 )))
1299
1300 (((
1301 0x AA aa bb cc
1302 )))
1303
1304 (((
1305 Same as: AT+CMDDLaa=hex(bb cc)
1306 )))
1307
1308 (((
1309 **Example:**
1310 )))
1311
1312 (((
1313 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1314 )))
1315
1316
1317
1318
1319 ==== (% style="color:blue" %)**Uplink payload mode**(%%) ====
1320
1321 (((
1322 Define to use one uplink or multiple uplinks for the sampling.
1323 )))
1324
1325 (((
1326 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1327 )))
1328
1329 * (((
1330 (% style="color:#037691" %)**AT Command:**
1331
1332 **AT+DATAUP=0**
1333
1334 **AT+DATAUP=1**
1335 )))
1336
1337 (((
1338
1339 )))
1340
1341 * (((
1342 (% style="color:#037691" %)**Downlink Payload:**
1343 )))
1344
1345 (((
1346 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1347 )))
1348
1349 (((
1350 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1351 )))
1352
1353
1354
1355
1356 ==== (% style="color:blue" %)**Manually trigger an Uplink**(%%) ====
1357
1358 Ask device to send an uplink immediately.
1359
1360 * (% style="color:#037691" %)**Downlink Payload:**
1361
1362 **0x08 FF**, RS485-BL will immediately send an uplink.
1363
1364
1365
1366
1367 ==== (% style="color:blue" %)**Clear RS485 Command**(%%) ====
1368
1369 (((
1370 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1371 )))
1372
1373 (((
1374
1375 )))
1376
1377 * (((
1378 (% style="color:#037691" %)**AT Command:**
1379 )))
1380
1381 (((
1382 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1383 )))
1384
1385 (((
1386 Example screen shot after clear all RS485 commands. 
1387 )))
1388
1389 (((
1390
1391 )))
1392
1393 (((
1394 The uplink screen shot is:
1395 )))
1396
1397 (((
1398 [[image:1654134704555-320.png]]
1399 )))
1400
1401 (((
1402
1403 )))
1404
1405 * (((
1406 (% style="color:#037691" %)**Downlink Payload:**
1407 )))
1408
1409 (((
1410 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1411 )))
1412
1413
1414
1415
1416 ==== (% style="color:blue" %)**Set Serial Communication Parameters**(%%) ====
1417
1418 (((
1419 Set the Rs485 serial communication parameters:
1420 )))
1421
1422 * (((
1423 (% style="color:#037691" %)**AT Command:**
1424 )))
1425
1426 (((
1427
1428
1429 * Set Baud Rate:
1430 )))
1431
1432 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1433
1434
1435 * Set UART Parity
1436
1437 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1438
1439
1440 * Set STOPBIT
1441
1442 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1443
1444
1445 * (((
1446 (% style="color:#037691" %)**Downlink Payload:**
1447 )))
1448
1449 (((
1450 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1451 )))
1452
1453 (((
1454
1455
1456 **Example:**
1457 )))
1458
1459 * (((
1460 A7 01 00 60   same as AT+BAUDR=9600
1461 )))
1462 * (((
1463 A7 01 04 80  same as AT+BAUDR=115200
1464 )))
1465
1466 (((
1467 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1468 )))
1469
1470 (((
1471 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1472 )))
1473
1474
1475
1476
1477 ==== (% style="color:blue" %)**Control output power duration**(%%) ====
1478
1479 (((
1480 User can set the output power duration before each sampling.
1481 )))
1482
1483 * (((
1484 (% style="color:#037691" %)**AT Command:**
1485 )))
1486
1487 (((
1488 **Example:**
1489 )))
1490
1491 (((
1492 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1493 )))
1494
1495 (((
1496 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1497 )))
1498
1499 (((
1500
1501 )))
1502
1503 * (((
1504 (% style="color:#037691" %)**LoRaWAN Downlink Command:**
1505 )))
1506
1507 (((
1508 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1509 )))
1510
1511 (((
1512 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1513 )))
1514
1515
1516
1517 == 3.6 Buttons ==
1518
1519 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1520 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1521 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1522
1523
1524 == 3.7 +3V3 Output ==
1525
1526 (((
1527 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1528 )))
1529
1530 (((
1531 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1532 )))
1533
1534 (((
1535 The +3V3 output time can be controlled by AT Command.
1536 )))
1537
1538 (((
1539
1540 )))
1541
1542 (((
1543 (% style="color:#037691" %)**AT+3V3T=1000**
1544 )))
1545
1546 (((
1547
1548 )))
1549
1550 (((
1551 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1552 )))
1553
1554 (((
1555 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1556 )))
1557
1558
1559 == 3.8 +5V Output ==
1560
1561 (((
1562 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1563 )))
1564
1565 (((
1566 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1567 )))
1568
1569 (((
1570 The 5V output time can be controlled by AT Command.
1571 )))
1572
1573 (((
1574
1575 )))
1576
1577 (((
1578 (% style="color:#037691" %)**AT+5VT=1000**
1579 )))
1580
1581 (((
1582
1583 )))
1584
1585 (((
1586 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1587 )))
1588
1589 (((
1590 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1591 )))
1592
1593
1594
1595 == 3.9 LEDs ==
1596
1597 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1598 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1599 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1600
1601
1602 == 3.10 Switch Jumper ==
1603
1604 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1605 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1606 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1607 Flash position: Configure device, check running status.
1608 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1609 3.3v position: set to compatible with 3.3v I/O.,
1610
1611 (((
1612 **+3.3V**: is always ON
1613 )))
1614
1615 (((
1616 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1617 )))
1618
1619
1620 = 4. Case Study =
1621
1622 User can check this URL for some case studies:  [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1623
1624
1625 = 5. Use AT Command =
1626
1627 == 5.1 Access AT Command ==
1628
1629 (((
1630 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1631 )))
1632
1633 [[image:1654135840598-282.png]]
1634
1635
1636 (((
1637 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1638 )))
1639
1640 [[image:1654136105500-922.png]]
1641
1642
1643 (((
1644 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1645 )))
1646
1647
1648 == 5.2 Common AT Command Sequence ==
1649
1650
1651 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1652
1653 If device has not joined network yet:
1654
1655 * (% style="color:#037691" %)**AT+FDR**
1656 * (% style="color:#037691" %)**AT+NJM=0**
1657 * (% style="color:#037691" %)**ATZ**
1658
1659 (((
1660
1661
1662 If device already joined network:
1663
1664 * (% style="color:#037691" %)**AT+NJM=0**
1665 * (% style="color:#037691" %)**ATZ**
1666 )))
1667
1668
1669
1670 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1671
1672
1673 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1674
1675 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%) Set to ABP mode
1676
1677 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) Set the Adaptive Data Rate Off
1678
1679 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%) Set Data Rate
1680
1681 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1682
1683 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%)  Set transmit frequency to 868.4Mhz
1684
1685 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1686
1687 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1688
1689 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1690
1691 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1692
1693
1694 (% style="color:red" %)**Note:**
1695
1696 (((
1697 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1698 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1699 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1700 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1701 )))
1702
1703 [[image:1654136435598-589.png]]
1704
1705
1706
1707 = 6. FAQ =
1708
1709 == 6.1 How to upgrade the image? ==
1710
1711 (((
1712 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1713 )))
1714
1715 * (((
1716 Support new features
1717 )))
1718 * (((
1719 For bug fix
1720 )))
1721 * (((
1722 Change LoRaWAN bands.
1723 )))
1724
1725 (((
1726 Below shows the hardware connection for how to upload an image to RS485-BL:
1727 )))
1728
1729 [[image:1654136646995-976.png]]
1730
1731 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1732
1733 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1734
1735 (% style="color:blue" %)**Step3**(%%)**: **Open flashloader; choose the correct COM port to update.
1736
1737 [[image:image-20220602102605-1.png]]
1738
1739
1740 [[image:image-20220602102637-2.png]]
1741
1742
1743 [[image:image-20220602102715-3.png]]
1744
1745
1746
1747 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1748
1749 (((
1750 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1751 )))
1752
1753
1754 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1755
1756 (((
1757 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1758 )))
1759
1760
1761
1762 == 6.4How to Use RS485-BL  to connect to RS232 devices? ==
1763
1764 [[Use RS485-BL or RS485-LN to connect to RS232 devices. - DRAGINO>>url:http://8.211.40.43:8080/xwiki/bin/view/Main/RS485%20to%20RS232/]]
1765
1766
1767
1768 = 7. Trouble Shooting =
1769
1770
1771 == 7.1 Downlink doesn't work, how to solve it? ==
1772
1773 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1774
1775
1776 == 7.2 Why I can't join TTN V3 in US915 /AU915 bands? ==
1777
1778 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1779
1780
1781 = 8. Order Info =
1782
1783 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1784
1785 (% style="color:blue" %)**XXX:**
1786
1787 * (% style="color:red" %)**EU433**(%%):  frequency bands EU433
1788 * (% style="color:red" %)**EU868**(%%):  frequency bands EU868
1789 * (% style="color:red" %)**KR920**(%%):  frequency bands KR920
1790 * (% style="color:red" %)**CN470**(%%):  frequency bands CN470
1791 * (% style="color:red" %)**AS923**(%%):  frequency bands AS923
1792 * (% style="color:red" %)**AU915**(%%):  frequency bands AU915
1793 * (% style="color:red" %)**US915**(%%):  frequency bands US915
1794 * (% style="color:red" %)**IN865**(%%):  frequency bands IN865
1795 * (% style="color:red" %)**RU864**(%%):  frequency bands RU864
1796 * (% style="color:red" %)**KZ865**(%%):  frequency bands KZ865
1797
1798 = 9. Packing Info =
1799
1800 (((
1801 **Package Includes**:
1802 )))
1803
1804 * (((
1805 RS485-BL x 1
1806 )))
1807 * (((
1808 Stick Antenna for LoRa RF part x 1
1809 )))
1810 * (((
1811 Program cable x 1
1812 )))
1813
1814 (((
1815 **Dimension and weight**:
1816 )))
1817
1818 * (((
1819 Device Size: 13.5 x 7 x 3 cm
1820 )))
1821 * (((
1822 Device Weight: 105g
1823 )))
1824 * (((
1825 Package Size / pcs : 14.5 x 8 x 5 cm
1826 )))
1827 * (((
1828 Weight / pcs : 170g
1829
1830
1831
1832 )))
1833
1834 = 10. Support =
1835
1836 * (((
1837 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1838 )))
1839 * (((
1840 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1841 )))