Version 44.3 by Xiaoling on 2022/06/14 09:44

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="385" width="385"]]
3
4
5
6
7
8 **Table of Contents:**
9
10 {{toc/}}
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
19
20 (((
21
22 )))
23
24 (((
25 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
26 )))
27
28 (((
29 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
30 )))
31
32 (((
33 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
34 )))
35
36 (((
37 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
38 )))
39
40 (((
41 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
42 )))
43
44 (((
45 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
46 )))
47
48 (((
49 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
50 )))
51
52 [[image:1652953304999-717.png||height="424" width="733"]]
53
54
55
56 == 1.2 Specifications ==
57
58
59 **Hardware System:**
60
61 * STM32L072CZT6 MCU
62 * SX1276/78 Wireless Chip 
63 * Power Consumption (exclude RS485 device):
64 ** Idle: 6uA@3.3v
65 ** 20dB Transmit: 130mA@3.3v
66
67 **Interface for Model:**
68
69 * 1 x RS485 Interface
70 * 1 x TTL Serial , 3.3v or 5v.
71 * 1 x I2C Interface, 3.3v or 5v.
72 * 1 x one wire interface
73 * 1 x Interrupt Interface
74 * 1 x Controllable 5V output, max
75
76 **LoRa Spec:**
77
78 * Frequency Range:
79 ** Band 1 (HF): 862 ~~ 1020 Mhz
80 ** Band 2 (LF): 410 ~~ 528 Mhz
81 * 168 dB maximum link budget.
82 * +20 dBm - 100 mW constant RF output vs.
83 * Programmable bit rate up to 300 kbps.
84 * High sensitivity: down to -148 dBm.
85 * Bullet-proof front end: IIP3 = -12.5 dBm.
86 * Excellent blocking immunity.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * LoRa modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
93
94 == 1.3 Features ==
95
96 * LoRaWAN Class A & Class C protocol (default Class A)
97 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
98 * AT Commands to change parameters
99 * Remote configure parameters via LoRaWAN Downlink
100 * Firmware upgradable via program port
101 * Support multiply RS485 devices by flexible rules
102 * Support Modbus protocol
103 * Support Interrupt uplink
104
105 == 1.4 Applications ==
106
107 * Smart Buildings & Home Automation
108 * Logistics and Supply Chain Management
109 * Smart Metering
110 * Smart Agriculture
111 * Smart Cities
112 * Smart Factory
113
114 == 1.5 Firmware Change log ==
115
116 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
117
118
119 == 1.6 Hardware Change log ==
120
121 (((
122
123
124 (((
125 v1.4
126 )))
127 )))
128
129 (((
130 (((
131 ~1. Change Power IC to TPS22916
132 )))
133 )))
134
135 (((
136
137 )))
138
139 (((
140 (((
141 v1.3
142 )))
143 )))
144
145 (((
146 (((
147 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
148 )))
149 )))
150
151 (((
152
153 )))
154
155 (((
156 (((
157 v1.2
158 )))
159 )))
160
161 (((
162 (((
163 Release version ​​​​​
164 )))
165
166
167 )))
168
169 = 2. Pin mapping and Power ON Device =
170
171 (((
172 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
173 )))
174
175 [[image:1652953055962-143.png||height="387" width="728"]]
176
177
178 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
179
180
181 = 3. Operation Mode =
182
183 == 3.1 How it works? ==
184
185 (((
186 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
187
188
189 )))
190
191 == 3.2 Example to join LoRaWAN network ==
192
193 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
194
195 [[image:1652953414711-647.png||height="337" width="723"]]
196
197 (((
198 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
199 )))
200
201 (((
202 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
203 )))
204
205 (((
206 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
207 )))
208
209 (((
210 Each RS485-BL is shipped with a sticker with unique device EUI:
211 )))
212
213 [[image:1652953462722-299.png]]
214
215 (((
216 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
217 )))
218
219 (((
220 Add APP EUI in the application.
221 )))
222
223
224 [[image:image-20220519174512-1.png]]
225
226 [[image:image-20220519174512-2.png||height="328" width="731"]]
227
228 [[image:image-20220519174512-3.png||height="556" width="724"]]
229
230 [[image:image-20220519174512-4.png]]
231
232 You can also choose to create the device manually.
233
234 [[image:1652953542269-423.png||height="710" width="723"]]
235
236 Add APP KEY and DEV EUI
237
238 [[image:1652953553383-907.png||height="514" width="724"]]
239
240
241 (((
242 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
243 )))
244
245 [[image:1652953568895-172.png||height="232" width="724"]]
246
247
248 == 3.3 Configure Commands to read data ==
249
250 (((
251 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
252
253
254 )))
255
256 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
257
258 (((
259 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
260 )))
261
262 (((
263 **~1. RS485-MODBUS mode:**
264 )))
265
266 (((
267 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
268 )))
269
270 (((
271 **2. TTL mode:**
272 )))
273
274 (((
275 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
276 )))
277
278 (((
279 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
280 )))
281
282 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
283 |=(% style="width: 80px;" %)(((
284 (((
285 **AT Commands**
286 )))
287 )))|=(% style="width: 210px;" %)(((
288 (((
289 **Description**
290 )))
291 )))|=(% style="width: 210px;" %)(((
292 (((
293 **Example**
294 )))
295 )))
296 |(% style="width:80px" %)(((
297 (((
298 AT+BAUDR
299 )))
300 )))|(% style="width:210px" %)(((
301 (((
302 Set the baud rate (for RS485 connection). Default Value is: 9600.
303 )))
304 )))|(% style="width:210px" %)(((
305 (((
306 (((
307 AT+BAUDR=9600
308 )))
309 )))
310
311 (((
312 (((
313 Options: (1200,2400,4800,14400,19200,115200)
314 )))
315 )))
316 )))
317 |(% style="width:80px" %)(((
318 (((
319 AT+PARITY
320 )))
321 )))|(% style="width:210px" %)(((
322 (((
323 (((
324 Set UART parity (for RS485 connection)
325 )))
326 )))
327
328 (((
329 (((
330 Default Value is: no parity.
331 )))
332 )))
333 )))|(% style="width:210px" %)(((
334 (((
335 (((
336 AT+PARITY=0
337 )))
338 )))
339
340 (((
341 (((
342 Option: 0: no parity, 1: odd parity, 2: even parity
343 )))
344 )))
345 )))
346 |(% style="width:80px" %)(((
347 (((
348 AT+STOPBIT
349 )))
350 )))|(% style="width:210px" %)(((
351 (((
352 (((
353 Set serial stopbit (for RS485 connection)
354 )))
355 )))
356
357 (((
358 (((
359 Default Value is: 1bit.
360 )))
361 )))
362 )))|(% style="width:210px" %)(((
363 (((
364 (((
365 AT+STOPBIT=0 for 1bit
366 )))
367 )))
368
369 (((
370 (((
371 AT+STOPBIT=1 for 1.5 bit
372 )))
373 )))
374
375 (((
376 (((
377 AT+STOPBIT=2 for 2 bits
378 )))
379 )))
380 )))
381
382 === 3.3.2 Configure sensors ===
383
384 (((
385 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
386 )))
387
388 (((
389 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
390 )))
391
392 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
393 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
394 |AT+CFGDEV|(% style="width:80px" %)(((
395 (((
396 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
397 )))
398
399 (((
400 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
401 )))
402
403 (((
404 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
405 )))
406 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
407
408 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
409
410
411
412 === 3.3.3 Configure read commands for each sampling ===
413
414 (((
415 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
416 )))
417
418 (((
419 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
420 )))
421
422 (((
423 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
424 )))
425
426 (((
427 This section describes how to achieve above goals.
428 )))
429
430 (((
431 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
432 )))
433
434 (((
435 **Command from RS485-BL to Sensor:**
436 )))
437
438 (((
439 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
440 )))
441
442 (((
443 **Handle return from sensors to RS485-BL**:
444 )))
445
446 (((
447 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
448 )))
449
450 * (((
451 **AT+DATACUT**
452 )))
453
454 (((
455 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
456 )))
457
458 * (((
459 **AT+SEARCH**
460 )))
461
462 (((
463 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
464 )))
465
466 (((
467 **Define wait timeout:**
468 )))
469
470 (((
471 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
472 )))
473
474 (((
475 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
476 )))
477
478 (((
479 **Examples:**
480 )))
481
482 (((
483 Below are examples for the how above AT Commands works.
484 )))
485
486 (((
487 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
488 )))
489
490 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
491 |(% style="width:498px" %)(((
492 (((
493 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
494 )))
495
496 (((
497 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
498 )))
499
500 (((
501 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
502 )))
503 )))
504
505 (((
506 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
507 )))
508
509 (((
510 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
511 )))
512
513 (((
514
515 )))
516
517 (((
518 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
519 )))
520
521 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
522 |(% style="width:577px" %)(((
523 (((
524 **AT+SEARCHx=aa,xx xx xx xx xx**
525 )))
526
527 * (((
528 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
529 )))
530 * (((
531 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
532 )))
533 )))
534
535 (((
536 **Examples:**
537 )))
538
539 (((
540 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
541 )))
542
543 (((
544 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
545 )))
546
547 (((
548 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
549 )))
550
551 (((
552 [[image:1653271044481-711.png]]
553 )))
554
555 (((
556 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
557 )))
558
559 (((
560 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
561 )))
562
563 (((
564 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
565 )))
566
567 (((
568 [[image:1653271276735-972.png]]
569 )))
570
571 (((
572 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
573 )))
574
575 (% style="background-color:#4f81bd; color:white; width:510px" %)
576 |(% style="width:726px" %)(((
577 (((
578 **AT+DATACUTx=a,b,c**
579 )))
580
581 * (((
582 **a: length for the return of AT+COMMAND**
583 )))
584 * (((
585 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
586 )))
587 * (((
588 **c: define the position for valid value.  **
589 )))
590 )))
591
592 (((
593 **Examples:**
594 )))
595
596 * (((
597 Grab bytes:
598 )))
599
600 (((
601 [[image:1653271581490-837.png||height="313" width="722"]]
602 )))
603
604 (((
605
606 )))
607
608 * (((
609 Grab a section.
610 )))
611
612 (((
613 [[image:1653271648378-342.png||height="326" width="720"]]
614 )))
615
616 (((
617
618 )))
619
620 * (((
621 Grab different sections.
622 )))
623
624 (((
625 [[image:1653271657255-576.png||height="305" width="730"]]
626 )))
627
628 (((
629 (((
630 (% style="color:red" %)**Note:**
631 )))
632 )))
633
634 (((
635 (((
636 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
637 )))
638 )))
639
640 (((
641 (((
642 **Example:**
643 )))
644 )))
645
646 (((
647 (((
648 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
649 )))
650 )))
651
652 (((
653 (((
654 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
655 )))
656 )))
657
658 (((
659 (((
660 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
661 )))
662 )))
663
664 (((
665 (((
666 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
667 )))
668 )))
669
670 (((
671 (((
672 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
673 )))
674 )))
675
676 (((
677 (((
678 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
679 )))
680 )))
681
682 (((
683 [[image:1653271763403-806.png]]
684 )))
685
686
687 === 3.3.4 Compose the uplink payload ===
688
689 (((
690 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
691
692
693 )))
694
695 (((
696 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
697
698
699 )))
700
701 (((
702 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
703 )))
704
705 (((
706 Final Payload is
707 )))
708
709 (((
710 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
711 )))
712
713 (((
714 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
715 )))
716
717 [[image:1653272787040-634.png||height="515" width="719"]]
718
719
720
721 (((
722 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
723
724
725 )))
726
727 (((
728 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
729 )))
730
731 (((
732 Final Payload is
733 )))
734
735 (((
736 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
737 )))
738
739 1. (((
740 Battery Info (2 bytes): Battery voltage
741 )))
742 1. (((
743 PAYVER (1 byte): Defined by AT+PAYVER
744 )))
745 1. (((
746 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
747 )))
748 1. (((
749 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
750 )))
751 1. (((
752 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
753 )))
754
755 [[image:1653272817147-600.png||height="437" width="717"]]
756
757 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
758
759
760 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
761
762 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
763
764 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
765
766
767 Below are the uplink payloads:
768
769 [[image:1653272901032-107.png]]
770
771
772 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
773
774 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
775
776 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
777
778 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
779
780 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
781
782
783
784 === 3.3.5 Uplink on demand ===
785
786 (((
787 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
788 )))
789
790 (((
791 Downlink control command:
792 )))
793
794 (((
795 **0x08 command**: Poll an uplink with current command set in RS485-BL.
796 )))
797
798 (((
799 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
800
801
802 )))
803
804 === 3.3.6 Uplink on Interrupt ===
805
806 Put the interrupt sensor between 3.3v_out and GPIO ext.
807
808 [[image:1653273818896-432.png]]
809
810
811 (((
812 AT+INTMOD=0  Disable Interrupt
813 )))
814
815 (((
816 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
817 )))
818
819 (((
820 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
821 )))
822
823 (((
824 AT+INTMOD=3  Interrupt trigger by rising edge.
825
826
827 )))
828
829 == 3.4 Uplink Payload ==
830
831 [[image:image-20220606105412-1.png]]
832
833 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
834
835 (((
836 {{{function Decoder(bytes, port) {}}}
837 )))
838
839 (((
840 {{{//Payload Formats of RS485-BL Deceive}}}
841 )))
842
843 (((
844 {{{return {}}}
845 )))
846
847 (((
848 {{{ //Battery,units:V}}}
849 )))
850
851 (((
852 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
853 )))
854
855 (((
856 {{{ //GPIO_EXTI }}}
857 )))
858
859 (((
860 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
861 )))
862
863 (((
864 {{{ //payload of version}}}
865 )))
866
867 (((
868 {{{ Pay_ver:bytes[2],}}}
869 )))
870
871 (((
872 {{{ }; }}}
873 )))
874
875 (((
876 **}**
877
878
879 )))
880
881 (((
882 TTN V3 uplink screen shot.
883 )))
884
885 [[image:1653274001211-372.png||height="192" width="732"]]
886
887
888 == 3.5 Configure RS485-BL via AT or Downlink ==
889
890 (((
891 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
892 )))
893
894 (((
895 There are two kinds of Commands:
896 )))
897
898 * (((
899 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
900 )))
901
902 * (((
903 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
904 )))
905
906 === 3.5.1 Common Commands: ===
907
908 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
909
910
911 === 3.5.2 Sensor related commands: ===
912
913
914
915 ==== **Choose Device Type (RS485 or TTL)** ====
916
917 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
918
919 * **AT Command**
920
921 (% class="box infomessage" %)
922 (((
923 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
924 )))
925
926 (% class="box infomessage" %)
927 (((
928 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
929 )))
930
931
932 * **Downlink Payload**
933
934 **0A aa**  ~-~->  same as AT+MOD=aa
935
936
937
938
939 ==== **RS485 Debug Command (AT+CFGDEV)** ====
940
941 (((
942 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
943 )))
944
945 * (((
946 **AT Command**
947 )))
948
949 (% class="box infomessage" %)
950 (((
951 (((
952 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
953 )))
954 )))
955
956 (((
957 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
958 )))
959
960 (((
961
962 )))
963
964 * (((
965 **Downlink Payload**
966 )))
967
968 (((
969 Format: A8 MM NN XX XX XX XX YY
970 )))
971
972 (((
973 Where:
974 )))
975
976 * (((
977 MM: 1: add CRC-16/MODBUS ; 0: no CRC
978 )))
979 * (((
980 NN: The length of RS485 command
981 )))
982 * (((
983 XX XX XX XX: RS485 command total NN bytes
984 )))
985 * (((
986 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
987 )))
988
989 (((
990 **Example 1:**
991 )))
992
993 (((
994 To connect a Modbus Alarm with below commands.
995 )))
996
997 * (((
998 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
999 )))
1000
1001 * (((
1002 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1003 )))
1004
1005 (((
1006 So if user want to use downlink command to control to RS485 Alarm, he can use:
1007 )))
1008
1009 (((
1010 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1011 )))
1012
1013 (((
1014 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1015 )))
1016
1017 (((
1018 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1019 )))
1020
1021 (((
1022
1023 )))
1024
1025 (((
1026 **Example 2:**
1027 )))
1028
1029 (((
1030 Check TTL Sensor return:
1031 )))
1032
1033 (((
1034 [[image:1654132684752-193.png]]
1035 )))
1036
1037
1038
1039
1040
1041 ==== **Set Payload version** ====
1042
1043 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1044
1045 * **AT Command:**
1046
1047 (% class="box infomessage" %)
1048 (((
1049 **AT+PAYVER: Set PAYVER field = 1**
1050 )))
1051
1052
1053 * **Downlink Payload:**
1054
1055 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1056
1057 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1058
1059
1060
1061
1062 ==== **Set RS485 Sampling Commands** ====
1063
1064 (((
1065 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1066 )))
1067
1068 (((
1069 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1070 )))
1071
1072 (((
1073
1074 )))
1075
1076 * (((
1077 **AT Command:**
1078 )))
1079
1080 (% class="box infomessage" %)
1081 (((
1082 (((
1083 **AT+COMMANDx: Configure RS485 read command to sensor.**
1084 )))
1085 )))
1086
1087 (% class="box infomessage" %)
1088 (((
1089 (((
1090 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
1091 )))
1092 )))
1093
1094 (% class="box infomessage" %)
1095 (((
1096 (((
1097 **AT+SEARCHx: Configure search command**
1098 )))
1099 )))
1100
1101 (((
1102
1103 )))
1104
1105 * (((
1106 **Downlink Payload:**
1107 )))
1108
1109 (((
1110 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1111 )))
1112
1113 (((
1114 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1115 )))
1116
1117 (((
1118 Format: AF MM NN LL XX XX XX XX YY
1119 )))
1120
1121 (((
1122 Where:
1123 )))
1124
1125 * (((
1126 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1127 )))
1128 * (((
1129 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1130 )))
1131 * (((
1132 LL:  The length of AT+COMMAND or AT+DATACUT command
1133 )))
1134 * (((
1135 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1136 )))
1137 * (((
1138 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1139 )))
1140
1141 (((
1142 **Example:**
1143 )))
1144
1145 (((
1146 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1147 )))
1148
1149 (((
1150 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1151 )))
1152
1153 (((
1154 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1155 )))
1156
1157 (((
1158
1159 )))
1160
1161 (((
1162 **0xAB** downlink command can be used for set AT+SEARCHx
1163 )))
1164
1165 (((
1166 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1167 )))
1168
1169 * (((
1170 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1171 )))
1172 * (((
1173 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1174 )))
1175
1176 (((
1177 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1178 )))
1179
1180
1181
1182
1183 ==== **Fast command to handle MODBUS device** ====
1184
1185 (((
1186 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1187 )))
1188
1189 (((
1190 This command is valid since v1.3 firmware version
1191 )))
1192
1193 (((
1194
1195 )))
1196
1197 (((
1198 **AT+MBFUN has only two value:**
1199 )))
1200
1201 * (((
1202 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1203 )))
1204
1205 (((
1206 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1207 )))
1208
1209 * (((
1210 **AT+MBFUN=0**: Disable Modbus fast reading.
1211 )))
1212
1213 (((
1214 **Example:**
1215 )))
1216
1217 * (((
1218 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1219 )))
1220 * (((
1221 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1222 )))
1223 * (((
1224 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1225 )))
1226
1227 [[image:1654133913295-597.png]]
1228
1229
1230 [[image:1654133954153-643.png]]
1231
1232
1233 * (((
1234 **Downlink Commands:**
1235 )))
1236
1237 (((
1238 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1239 )))
1240
1241
1242
1243
1244 ==== **RS485 command timeout** ====
1245
1246 (((
1247 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1248 )))
1249
1250 (((
1251 Default value: 0, range:  0 ~~ 5 seconds
1252 )))
1253
1254 (((
1255
1256 )))
1257
1258 * (((
1259 **AT Command:**
1260 )))
1261
1262 (% class="box infomessage" %)
1263 (((
1264 (((
1265 **AT+CMDDLaa=hex(bb cc)**
1266 )))
1267 )))
1268
1269 (((
1270 **Example:**
1271 )))
1272
1273 (((
1274 **AT+CMDDL1=1000** to send the open time to 1000ms
1275 )))
1276
1277 (((
1278
1279 )))
1280
1281 * (((
1282 **Downlink Payload:**
1283 )))
1284
1285 (((
1286 0x AA aa bb cc
1287 )))
1288
1289 (((
1290 Same as: AT+CMDDLaa=hex(bb cc)
1291 )))
1292
1293 (((
1294 **Example:**
1295 )))
1296
1297 (((
1298 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1299 )))
1300
1301
1302
1303
1304 ==== **Uplink payload mode** ====
1305
1306 (((
1307 Define to use one uplink or multiple uplinks for the sampling.
1308 )))
1309
1310 (((
1311 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1312 )))
1313
1314 * (((
1315 **AT Command:**
1316 )))
1317
1318 (% class="box infomessage" %)
1319 (((
1320 (((
1321 **AT+DATAUP=0**
1322 )))
1323 )))
1324
1325 (% class="box infomessage" %)
1326 (((
1327 (((
1328 **AT+DATAUP=1**
1329 )))
1330 )))
1331
1332 (((
1333
1334 )))
1335
1336 * (((
1337 **Downlink Payload:**
1338 )))
1339
1340 (((
1341 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1342 )))
1343
1344 (((
1345 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1346 )))
1347
1348
1349
1350
1351 ==== **Manually trigger an Uplink** ====
1352
1353 Ask device to send an uplink immediately.
1354
1355 * **Downlink Payload:**
1356
1357 **0x08 FF**, RS485-BL will immediately send an uplink.
1358
1359
1360
1361
1362 ==== **Clear RS485 Command** ====
1363
1364 (((
1365 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1366 )))
1367
1368 (((
1369
1370 )))
1371
1372 * (((
1373 **AT Command:**
1374 )))
1375
1376 (((
1377 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1378 )))
1379
1380 (((
1381 Example screen shot after clear all RS485 commands. 
1382 )))
1383
1384 (((
1385
1386 )))
1387
1388 (((
1389 The uplink screen shot is:
1390 )))
1391
1392 (((
1393 [[image:1654134704555-320.png]]
1394 )))
1395
1396 (((
1397
1398 )))
1399
1400 * (((
1401 **Downlink Payload:**
1402 )))
1403
1404 (((
1405 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1406 )))
1407
1408
1409
1410
1411 ==== **Set Serial Communication Parameters** ====
1412
1413 (((
1414 Set the Rs485 serial communication parameters:
1415 )))
1416
1417 * (((
1418 **AT Command:**
1419 )))
1420
1421 (((
1422 Set Baud Rate:
1423 )))
1424
1425 (% class="box infomessage" %)
1426 (((
1427 (((
1428 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1429
1430 Set UART Parity
1431 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1432
1433 Set STOPBIT
1434
1435 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1436 )))
1437 )))
1438
1439
1440 * (((
1441 **Downlink Payload:**
1442 )))
1443
1444 (((
1445 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1446 )))
1447
1448 (((
1449 **Example:**
1450 )))
1451
1452 * (((
1453 A7 01 00 60   same as AT+BAUDR=9600
1454 )))
1455 * (((
1456 A7 01 04 80  same as AT+BAUDR=115200
1457 )))
1458
1459 (((
1460 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1461 )))
1462
1463 (((
1464 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1465 )))
1466
1467
1468
1469
1470 ==== **Control output power duration** ====
1471
1472 (((
1473 User can set the output power duration before each sampling.
1474 )))
1475
1476 * (((
1477 **AT Command:**
1478 )))
1479
1480 (((
1481 **Example:**
1482 )))
1483
1484 (((
1485 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1486 )))
1487
1488 (((
1489 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1490 )))
1491
1492 (((
1493
1494 )))
1495
1496 * (((
1497 **LoRaWAN Downlink Command:**
1498 )))
1499
1500 (((
1501 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1502 )))
1503
1504 (((
1505 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1506 )))
1507
1508
1509
1510 == 3.6 Buttons ==
1511
1512 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1513 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1514 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1515
1516 == 3.7 +3V3 Output ==
1517
1518 (((
1519 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1520 )))
1521
1522 (((
1523 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1524 )))
1525
1526 (((
1527 The +3V3 output time can be controlled by AT Command.
1528 )))
1529
1530 (((
1531
1532 )))
1533
1534 (((
1535 (% style="color:#037691" %)**AT+3V3T=1000**
1536 )))
1537
1538 (((
1539
1540 )))
1541
1542 (((
1543 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1544 )))
1545
1546 (((
1547 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1548 )))
1549
1550
1551 == 3.8 +5V Output ==
1552
1553 (((
1554 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1555 )))
1556
1557 (((
1558 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1559 )))
1560
1561 (((
1562 The 5V output time can be controlled by AT Command.
1563 )))
1564
1565 (((
1566
1567 )))
1568
1569 (((
1570 (% style="color:#037691" %)**AT+5VT=1000**
1571 )))
1572
1573 (((
1574
1575 )))
1576
1577 (((
1578 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1579 )))
1580
1581 (((
1582 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1583 )))
1584
1585
1586
1587 == 3.9 LEDs ==
1588
1589 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1590 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1591 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1592
1593 == 3.10 Switch Jumper ==
1594
1595 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1596 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1597 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1598 Flash position: Configure device, check running status.
1599 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1600 3.3v position: set to compatible with 3.3v I/O.,
1601
1602 (((
1603 **+3.3V**: is always ON
1604 )))
1605
1606 (((
1607 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1608 )))
1609
1610
1611 = 4. Case Study =
1612
1613 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1614
1615
1616 = 5. Use AT Command =
1617
1618 == 5.1 Access AT Command ==
1619
1620 (((
1621 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1622 )))
1623
1624 [[image:1654135840598-282.png]]
1625
1626
1627 (((
1628 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1629 )))
1630
1631 [[image:1654136105500-922.png]]
1632
1633
1634 (((
1635 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1636 )))
1637
1638
1639 == 5.2 Common AT Command Sequence ==
1640
1641 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1642
1643 If device has not joined network yet:
1644
1645 (% class="box infomessage" %)
1646 (((
1647 **AT+FDR**
1648 **AT+NJM=0**
1649 **ATZ**
1650 )))
1651
1652
1653 (((
1654 If device already joined network:
1655 )))
1656
1657 (% class="box infomessage" %)
1658 (((
1659 **AT+NJM=0**
1660 )))
1661
1662 (% class="box infomessage" %)
1663 (((
1664 **ATZ**
1665 )))
1666
1667
1668 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1669
1670
1671 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1672
1673 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1674
1675 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1676
1677 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1678
1679 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1680
1681 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1682
1683 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1684
1685 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1686
1687 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1688
1689 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1690
1691
1692 (% style="color:red" %)**Note:**
1693
1694 (((
1695 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1696 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1697 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1698 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1699 )))
1700
1701 [[image:1654136435598-589.png]]
1702
1703
1704 = 6. FAQ =
1705
1706 == 6.1 How to upgrade the image? ==
1707
1708 (((
1709 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1710 )))
1711
1712 * (((
1713 Support new features
1714 )))
1715 * (((
1716 For bug fix
1717 )))
1718 * (((
1719 Change LoRaWAN bands.
1720 )))
1721
1722 (((
1723 Below shows the hardware connection for how to upload an image to RS485-BL:
1724 )))
1725
1726 [[image:1654136646995-976.png]]
1727
1728 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1729
1730 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1731
1732 **Step3: **Open flashloader; choose the correct COM port to update.
1733
1734 [[image:image-20220602102605-1.png]]
1735
1736
1737 [[image:image-20220602102637-2.png]]
1738
1739
1740 [[image:image-20220602102715-3.png]]
1741
1742
1743
1744 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1745
1746 (((
1747 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1748 )))
1749
1750
1751
1752 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1753
1754 (((
1755 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1756 )))
1757
1758
1759
1760 = 7. Trouble Shooting =
1761
1762
1763 == 7.1 Downlink doesn’t work, how to solve it? ==
1764
1765 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1766
1767
1768 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1769
1770 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1771
1772
1773 = 8. Order Info =
1774
1775 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1776
1777 (% style="color:blue" %)**XXX:**
1778
1779 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1780 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1781 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1782 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1783 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1784 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1785 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1786 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1787 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1788 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1789
1790 = 9. Packing Info =
1791
1792 (((
1793 **Package Includes**:
1794 )))
1795
1796 * (((
1797 RS485-BL x 1
1798 )))
1799 * (((
1800 Stick Antenna for LoRa RF part x 1
1801 )))
1802 * (((
1803 Program cable x 1
1804 )))
1805
1806 (((
1807 **Dimension and weight**:
1808 )))
1809
1810 * (((
1811 Device Size: 13.5 x 7 x 3 cm
1812 )))
1813 * (((
1814 Device Weight: 105g
1815 )))
1816 * (((
1817 Package Size / pcs : 14.5 x 8 x 5 cm
1818 )))
1819 * (((
1820 Weight / pcs : 170g
1821
1822
1823 )))
1824
1825 = 10. Support =
1826
1827 * (((
1828 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1829 )))
1830 * (((
1831 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1832 )))