Version 44.21 by Xiaoling on 2022/06/14 10:14

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18
19 (((
20
21 )))
22
23 (((
24 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
25 )))
26
27 (((
28 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
29 )))
30
31 (((
32 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
33 )))
34
35 (((
36 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
37 )))
38
39 (((
40 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42
43 (((
44 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
45 )))
46
47 (((
48 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
49 )))
50
51 [[image:1652953304999-717.png||height="424" width="733"]]
52
53
54
55 == 1.2 Specifications ==
56
57
58 **Hardware System:**
59
60 * STM32L072CZT6 MCU
61 * SX1276/78 Wireless Chip 
62 * Power Consumption (exclude RS485 device):
63 ** Idle: 6uA@3.3v
64 ** 20dB Transmit: 130mA@3.3v
65
66 **Interface for Model:**
67
68 * 1 x RS485 Interface
69 * 1 x TTL Serial , 3.3v or 5v.
70 * 1 x I2C Interface, 3.3v or 5v.
71 * 1 x one wire interface
72 * 1 x Interrupt Interface
73 * 1 x Controllable 5V output, max
74
75 **LoRa Spec:**
76
77 * Frequency Range:
78 ** Band 1 (HF): 862 ~~ 1020 Mhz
79 ** Band 2 (LF): 410 ~~ 528 Mhz
80 * 168 dB maximum link budget.
81 * +20 dBm - 100 mW constant RF output vs.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Fully integrated synthesizer with a resolution of 61 Hz.
87 * LoRa modulation.
88 * Built-in bit synchronizer for clock recovery.
89 * Preamble detection.
90 * 127 dB Dynamic Range RSSI.
91 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
92
93 == 1.3 Features ==
94
95 * LoRaWAN Class A & Class C protocol (default Class A)
96 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
97 * AT Commands to change parameters
98 * Remote configure parameters via LoRaWAN Downlink
99 * Firmware upgradable via program port
100 * Support multiply RS485 devices by flexible rules
101 * Support Modbus protocol
102 * Support Interrupt uplink
103
104 == 1.4 Applications ==
105
106 * Smart Buildings & Home Automation
107 * Logistics and Supply Chain Management
108 * Smart Metering
109 * Smart Agriculture
110 * Smart Cities
111 * Smart Factory
112
113 == 1.5 Firmware Change log ==
114
115 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
116
117
118 == 1.6 Hardware Change log ==
119
120 (((
121
122
123 (((
124 v1.4
125 )))
126 )))
127
128 (((
129 (((
130 ~1. Change Power IC to TPS22916
131 )))
132 )))
133
134 (((
135
136 )))
137
138 (((
139 (((
140 v1.3
141 )))
142 )))
143
144 (((
145 (((
146 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
147 )))
148 )))
149
150 (((
151
152 )))
153
154 (((
155 (((
156 v1.2
157 )))
158 )))
159
160 (((
161 (((
162 Release version ​​​​​
163 )))
164
165
166 )))
167
168 = 2. Pin mapping and Power ON Device =
169
170 (((
171 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
172 )))
173
174 [[image:1652953055962-143.png||height="387" width="728"]]
175
176
177 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
178
179
180 = 3. Operation Mode =
181
182 == 3.1 How it works? ==
183
184 (((
185 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
186
187
188 )))
189
190 == 3.2 Example to join LoRaWAN network ==
191
192 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
193
194 [[image:1652953414711-647.png||height="337" width="723"]]
195
196
197 (((
198 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
199 )))
200
201 (((
202 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
203 )))
204
205 (((
206 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
207 )))
208
209 (((
210 Each RS485-BL is shipped with a sticker with unique device EUI:
211 )))
212
213 [[image:1652953462722-299.png]]
214
215
216 (((
217 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
218 )))
219
220 (((
221 **Add APP EUI in the application.**
222 )))
223
224
225 [[image:image-20220519174512-1.png]]
226
227 [[image:image-20220519174512-2.png||height="328" width="731"]]
228
229 [[image:image-20220519174512-3.png||height="556" width="724"]]
230
231 [[image:image-20220519174512-4.png]]
232
233
234 You can also choose to create the device manually.
235
236 [[image:1652953542269-423.png||height="710" width="723"]]
237
238
239 Add APP KEY and DEV EUI
240
241 [[image:1652953553383-907.png||height="514" width="724"]]
242
243
244
245 (((
246 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
247 )))
248
249 [[image:1652953568895-172.png||height="232" width="724"]]
250
251
252 == 3.3 Configure Commands to read data ==
253
254 (((
255 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
256
257
258 )))
259
260 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
261
262 (((
263 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
264 )))
265
266 (((
267 **~1. RS485-MODBUS mode:**
268 )))
269
270 (((
271 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
272 )))
273
274 (((
275 **2. TTL mode:**
276 )))
277
278 (((
279 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
280 )))
281
282 (((
283 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
284 )))
285
286 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
287 |=(% style="width: 80px;" %)(((
288 (((
289 **AT Commands**
290 )))
291 )))|=(% style="width: 210px;" %)(((
292 (((
293 **Description**
294 )))
295 )))|=(% style="width: 210px;" %)(((
296 (((
297 **Example**
298 )))
299 )))
300 |(% style="width:80px" %)(((
301 (((
302 AT+BAUDR
303 )))
304 )))|(% style="width:210px" %)(((
305 (((
306 Set the baud rate (for RS485 connection). Default Value is: 9600.
307 )))
308 )))|(% style="width:210px" %)(((
309 (((
310 (((
311 AT+BAUDR=9600
312 )))
313 )))
314
315 (((
316 (((
317 Options: (1200,2400,4800,14400,19200,115200)
318 )))
319 )))
320 )))
321 |(% style="width:80px" %)(((
322 (((
323 AT+PARITY
324 )))
325 )))|(% style="width:210px" %)(((
326 (((
327 (((
328 Set UART parity (for RS485 connection)
329 )))
330 )))
331
332 (((
333 (((
334 Default Value is: no parity.
335 )))
336 )))
337 )))|(% style="width:210px" %)(((
338 (((
339 (((
340 AT+PARITY=0
341 )))
342 )))
343
344 (((
345 (((
346 Option: 0: no parity, 1: odd parity, 2: even parity
347 )))
348 )))
349 )))
350 |(% style="width:80px" %)(((
351 (((
352 AT+STOPBIT
353 )))
354 )))|(% style="width:210px" %)(((
355 (((
356 (((
357 Set serial stopbit (for RS485 connection)
358 )))
359 )))
360
361 (((
362 (((
363 Default Value is: 1bit.
364 )))
365 )))
366 )))|(% style="width:210px" %)(((
367 (((
368 (((
369 AT+STOPBIT=0 for 1bit
370 )))
371 )))
372
373 (((
374 (((
375 AT+STOPBIT=1 for 1.5 bit
376 )))
377 )))
378
379 (((
380 (((
381 AT+STOPBIT=2 for 2 bits
382 )))
383 )))
384 )))
385
386
387 === 3.3.2 Configure sensors ===
388
389 (((
390 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
391 )))
392
393 (((
394 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
395 )))
396
397 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
398 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
399 |AT+CFGDEV|(% style="width:80px" %)(((
400 (((
401 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
402 )))
403
404 (((
405 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
406 )))
407
408 (((
409 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
410 )))
411 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
412
413 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
414
415
416
417 === 3.3.3 Configure read commands for each sampling ===
418
419 (((
420 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
421 )))
422
423 (((
424 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
425 )))
426
427 (((
428 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
429 )))
430
431 (((
432 This section describes how to achieve above goals.
433 )))
434
435 (((
436 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
437
438
439 )))
440
441 (((
442 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
443 )))
444
445 (((
446 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
447
448
449 )))
450
451 (((
452 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
453 )))
454
455 (((
456 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
457 )))
458
459 * (((
460 (% style="color:blue" %)**AT+DATACUT**
461 )))
462
463 (((
464 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
465
466
467 )))
468
469 * (((
470 (% style="color:blue" %)**AT+SEARCH**
471 )))
472
473 (((
474 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
475 )))
476
477 (((
478
479
480 (% style="color:blue" %)**Define wait timeout:**
481 )))
482
483 (((
484 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
485 )))
486
487 (((
488 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
489 )))
490
491 (((
492
493
494 **Examples:**
495 )))
496
497 (((
498 Below are examples for the how above AT Commands works.
499 )))
500
501 (((
502 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
503 )))
504
505 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
506 |(% style="width:498px" %)(((
507 (((
508 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
509 )))
510
511 (((
512 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
513 )))
514
515 (((
516 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
517 )))
518 )))
519
520 (((
521 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
522 )))
523
524 (((
525 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
526 )))
527
528 (((
529
530 )))
531
532 (((
533 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
534 )))
535
536 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
537 |(% style="width:577px" %)(((
538 (((
539 **AT+SEARCHx=aa,xx xx xx xx xx**
540 )))
541
542 * (((
543 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
544 )))
545 * (((
546 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
547 )))
548 )))
549
550 (((
551
552
553 **Examples:**
554 )))
555
556 (((
557 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
558 )))
559
560 (((
561 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
562 )))
563
564 (((
565 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
566 )))
567
568 (((
569 [[image:1653271044481-711.png]]
570
571
572 )))
573
574 (((
575 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
576 )))
577
578 (((
579 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
580 )))
581
582 (((
583 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
584 )))
585
586 (((
587 [[image:1653271276735-972.png]]
588 )))
589
590 (((
591 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
592 )))
593
594 (% style="background-color:#4f81bd; color:white; width:510px" %)
595 |(% style="width:726px" %)(((
596 (((
597 **AT+DATACUTx=a,b,c**
598 )))
599
600 * (((
601 **a: length for the return of AT+COMMAND**
602 )))
603 * (((
604 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
605 )))
606 * (((
607 **c: define the position for valid value.  **
608 )))
609 )))
610
611 (((
612
613
614 **Examples:**
615 )))
616
617 * (((
618 (% style="color:blue" %)**Grab bytes:**
619 )))
620
621 (((
622 [[image:1653271581490-837.png||height="313" width="722"]]
623 )))
624
625 (((
626
627 )))
628
629 * (((
630 (% style="color:blue" %)**Grab a section.**
631 )))
632
633 (((
634 [[image:1653271648378-342.png||height="326" width="720"]]
635 )))
636
637 (((
638
639 )))
640
641 * (((
642 (% style="color:blue" %)**Grab different sections.**
643 )))
644
645 (((
646 [[image:1653271657255-576.png||height="305" width="730"]]
647
648
649 )))
650
651 (((
652 (((
653 (% style="color:red" %)**Note:**
654 )))
655 )))
656
657 (((
658 (((
659 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
660 )))
661 )))
662
663 (((
664 (((
665 **Example:**
666 )))
667 )))
668
669 (((
670 (((
671 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
672 )))
673 )))
674
675 (((
676 (((
677 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
678 )))
679 )))
680
681 (((
682 (((
683 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
684 )))
685 )))
686
687 (((
688 (((
689 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
690 )))
691 )))
692
693 (((
694 (((
695 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
696 )))
697 )))
698
699 (((
700 (((
701 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
702 )))
703 )))
704
705 (((
706 [[image:1653271763403-806.png]]
707 )))
708
709
710 === 3.3.4 Compose the uplink payload ===
711
712 (((
713 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
714
715
716 )))
717
718 (((
719 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
720
721
722 )))
723
724 (((
725 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
726 )))
727
728 (((
729 Final Payload is
730 )))
731
732 (((
733 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
734 )))
735
736 (((
737 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
738 )))
739
740 [[image:1653272787040-634.png||height="515" width="719"]]
741
742
743
744 (((
745 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
746
747
748 )))
749
750 (((
751 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
752 )))
753
754 (((
755 Final Payload is
756 )))
757
758 (((
759 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
760 )))
761
762 1. (((
763 Battery Info (2 bytes): Battery voltage
764 )))
765 1. (((
766 PAYVER (1 byte): Defined by AT+PAYVER
767 )))
768 1. (((
769 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
770 )))
771 1. (((
772 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
773 )))
774 1. (((
775 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
776
777
778 )))
779
780 [[image:1653272817147-600.png||height="437" width="717"]]
781
782 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
783
784
785 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
786
787 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
788
789 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
790
791
792 Below are the uplink payloads:
793
794 [[image:1653272901032-107.png]]
795
796
797 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
798
799 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
800
801 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
802
803 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
804
805 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
806
807
808
809 === 3.3.5 Uplink on demand ===
810
811 (((
812 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
813 )))
814
815 (((
816 Downlink control command:
817 )))
818
819 (((
820 **0x08 command**: Poll an uplink with current command set in RS485-BL.
821 )))
822
823 (((
824 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
825
826
827 )))
828
829 === 3.3.6 Uplink on Interrupt ===
830
831 Put the interrupt sensor between 3.3v_out and GPIO ext.
832
833 [[image:1653273818896-432.png]]
834
835
836 (((
837 AT+INTMOD=0  Disable Interrupt
838 )))
839
840 (((
841 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
842 )))
843
844 (((
845 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
846 )))
847
848 (((
849 AT+INTMOD=3  Interrupt trigger by rising edge.
850
851
852 )))
853
854 == 3.4 Uplink Payload ==
855
856 [[image:image-20220606105412-1.png]]
857
858 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
859
860 (((
861 {{{function Decoder(bytes, port) {}}}
862 )))
863
864 (((
865 {{{//Payload Formats of RS485-BL Deceive}}}
866 )))
867
868 (((
869 {{{return {}}}
870 )))
871
872 (((
873 {{{ //Battery,units:V}}}
874 )))
875
876 (((
877 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
878 )))
879
880 (((
881 {{{ //GPIO_EXTI }}}
882 )))
883
884 (((
885 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
886 )))
887
888 (((
889 {{{ //payload of version}}}
890 )))
891
892 (((
893 {{{ Pay_ver:bytes[2],}}}
894 )))
895
896 (((
897 {{{ }; }}}
898 )))
899
900 (((
901 {{{}}}}
902
903
904 )))
905
906 (((
907 TTN V3 uplink screen shot.
908 )))
909
910 [[image:1653274001211-372.png||height="192" width="732"]]
911
912
913 == 3.5 Configure RS485-BL via AT or Downlink ==
914
915 (((
916 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
917 )))
918
919 (((
920 There are two kinds of Commands:
921 )))
922
923 * (((
924 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
925 )))
926
927 * (((
928 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
929
930
931
932
933 )))
934
935 === 3.5.1 Common Commands: ===
936
937 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
938
939
940 === 3.5.2 Sensor related commands: ===
941
942
943
944 ==== **Choose Device Type (RS485 or TTL)** ====
945
946 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
947
948 * **AT Command**
949
950 (% class="box infomessage" %)
951 (((
952 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
953 )))
954
955 (% class="box infomessage" %)
956 (((
957 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
958 )))
959
960
961 * **Downlink Payload**
962
963 **0A aa**  ~-~->  same as AT+MOD=aa
964
965
966
967
968 ==== **RS485 Debug Command (AT+CFGDEV)** ====
969
970 (((
971 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
972 )))
973
974 * (((
975 **AT Command**
976 )))
977
978 (% class="box infomessage" %)
979 (((
980 (((
981 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
982 )))
983 )))
984
985 (((
986 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
987 )))
988
989 (((
990
991 )))
992
993 * (((
994 **Downlink Payload**
995 )))
996
997 (((
998 Format: A8 MM NN XX XX XX XX YY
999 )))
1000
1001 (((
1002 Where:
1003 )))
1004
1005 * (((
1006 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1007 )))
1008 * (((
1009 NN: The length of RS485 command
1010 )))
1011 * (((
1012 XX XX XX XX: RS485 command total NN bytes
1013 )))
1014 * (((
1015 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1016 )))
1017
1018 (((
1019 **Example 1:**
1020 )))
1021
1022 (((
1023 To connect a Modbus Alarm with below commands.
1024 )))
1025
1026 * (((
1027 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1028 )))
1029
1030 * (((
1031 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1032 )))
1033
1034 (((
1035 So if user want to use downlink command to control to RS485 Alarm, he can use:
1036 )))
1037
1038 (((
1039 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1040 )))
1041
1042 (((
1043 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1044 )))
1045
1046 (((
1047 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1048 )))
1049
1050 (((
1051
1052 )))
1053
1054 (((
1055 **Example 2:**
1056 )))
1057
1058 (((
1059 Check TTL Sensor return:
1060 )))
1061
1062 (((
1063 [[image:1654132684752-193.png]]
1064 )))
1065
1066
1067
1068
1069
1070 ==== **Set Payload version** ====
1071
1072 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1073
1074 * **AT Command:**
1075
1076 (% class="box infomessage" %)
1077 (((
1078 **AT+PAYVER: Set PAYVER field = 1**
1079 )))
1080
1081
1082 * **Downlink Payload:**
1083
1084 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1085
1086 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1087
1088
1089
1090
1091 ==== **Set RS485 Sampling Commands** ====
1092
1093 (((
1094 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1095 )))
1096
1097 (((
1098 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1099 )))
1100
1101 (((
1102
1103 )))
1104
1105 * (((
1106 **AT Command:**
1107 )))
1108
1109 (% class="box infomessage" %)
1110 (((
1111 (((
1112 **AT+COMMANDx: Configure RS485 read command to sensor.**
1113 )))
1114 )))
1115
1116 (% class="box infomessage" %)
1117 (((
1118 (((
1119 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
1120 )))
1121 )))
1122
1123 (% class="box infomessage" %)
1124 (((
1125 (((
1126 **AT+SEARCHx: Configure search command**
1127 )))
1128 )))
1129
1130 (((
1131
1132 )))
1133
1134 * (((
1135 **Downlink Payload:**
1136 )))
1137
1138 (((
1139 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1140 )))
1141
1142 (((
1143 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1144 )))
1145
1146 (((
1147 Format: AF MM NN LL XX XX XX XX YY
1148 )))
1149
1150 (((
1151 Where:
1152 )))
1153
1154 * (((
1155 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1156 )))
1157 * (((
1158 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1159 )))
1160 * (((
1161 LL:  The length of AT+COMMAND or AT+DATACUT command
1162 )))
1163 * (((
1164 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1165 )))
1166 * (((
1167 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1168 )))
1169
1170 (((
1171 **Example:**
1172 )))
1173
1174 (((
1175 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1176 )))
1177
1178 (((
1179 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1180 )))
1181
1182 (((
1183 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1184 )))
1185
1186 (((
1187
1188 )))
1189
1190 (((
1191 **0xAB** downlink command can be used for set AT+SEARCHx
1192 )))
1193
1194 (((
1195 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1196 )))
1197
1198 * (((
1199 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1200 )))
1201 * (((
1202 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1203 )))
1204
1205 (((
1206 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1207 )))
1208
1209
1210
1211
1212 ==== **Fast command to handle MODBUS device** ====
1213
1214 (((
1215 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1216 )))
1217
1218 (((
1219 This command is valid since v1.3 firmware version
1220 )))
1221
1222 (((
1223
1224 )))
1225
1226 (((
1227 **AT+MBFUN has only two value:**
1228 )))
1229
1230 * (((
1231 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1232 )))
1233
1234 (((
1235 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1236 )))
1237
1238 * (((
1239 **AT+MBFUN=0**: Disable Modbus fast reading.
1240 )))
1241
1242 (((
1243 **Example:**
1244 )))
1245
1246 * (((
1247 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1248 )))
1249 * (((
1250 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1251 )))
1252 * (((
1253 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1254 )))
1255
1256 [[image:1654133913295-597.png]]
1257
1258
1259 [[image:1654133954153-643.png]]
1260
1261
1262 * (((
1263 **Downlink Commands:**
1264 )))
1265
1266 (((
1267 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1268 )))
1269
1270
1271
1272
1273 ==== **RS485 command timeout** ====
1274
1275 (((
1276 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1277 )))
1278
1279 (((
1280 Default value: 0, range:  0 ~~ 5 seconds
1281 )))
1282
1283 (((
1284
1285 )))
1286
1287 * (((
1288 **AT Command:**
1289 )))
1290
1291 (% class="box infomessage" %)
1292 (((
1293 (((
1294 **AT+CMDDLaa=hex(bb cc)**
1295 )))
1296 )))
1297
1298 (((
1299 **Example:**
1300 )))
1301
1302 (((
1303 **AT+CMDDL1=1000** to send the open time to 1000ms
1304 )))
1305
1306 (((
1307
1308 )))
1309
1310 * (((
1311 **Downlink Payload:**
1312 )))
1313
1314 (((
1315 0x AA aa bb cc
1316 )))
1317
1318 (((
1319 Same as: AT+CMDDLaa=hex(bb cc)
1320 )))
1321
1322 (((
1323 **Example:**
1324 )))
1325
1326 (((
1327 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1328 )))
1329
1330
1331
1332
1333 ==== **Uplink payload mode** ====
1334
1335 (((
1336 Define to use one uplink or multiple uplinks for the sampling.
1337 )))
1338
1339 (((
1340 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1341 )))
1342
1343 * (((
1344 **AT Command:**
1345 )))
1346
1347 (% class="box infomessage" %)
1348 (((
1349 (((
1350 **AT+DATAUP=0**
1351 )))
1352 )))
1353
1354 (% class="box infomessage" %)
1355 (((
1356 (((
1357 **AT+DATAUP=1**
1358 )))
1359 )))
1360
1361 (((
1362
1363 )))
1364
1365 * (((
1366 **Downlink Payload:**
1367 )))
1368
1369 (((
1370 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1371 )))
1372
1373 (((
1374 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1375 )))
1376
1377
1378
1379
1380 ==== **Manually trigger an Uplink** ====
1381
1382 Ask device to send an uplink immediately.
1383
1384 * **Downlink Payload:**
1385
1386 **0x08 FF**, RS485-BL will immediately send an uplink.
1387
1388
1389
1390
1391 ==== **Clear RS485 Command** ====
1392
1393 (((
1394 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1395 )))
1396
1397 (((
1398
1399 )))
1400
1401 * (((
1402 **AT Command:**
1403 )))
1404
1405 (((
1406 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1407 )))
1408
1409 (((
1410 Example screen shot after clear all RS485 commands. 
1411 )))
1412
1413 (((
1414
1415 )))
1416
1417 (((
1418 The uplink screen shot is:
1419 )))
1420
1421 (((
1422 [[image:1654134704555-320.png]]
1423 )))
1424
1425 (((
1426
1427 )))
1428
1429 * (((
1430 **Downlink Payload:**
1431 )))
1432
1433 (((
1434 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1435 )))
1436
1437
1438
1439
1440 ==== **Set Serial Communication Parameters** ====
1441
1442 (((
1443 Set the Rs485 serial communication parameters:
1444 )))
1445
1446 * (((
1447 **AT Command:**
1448 )))
1449
1450 (((
1451 Set Baud Rate:
1452 )))
1453
1454 (% class="box infomessage" %)
1455 (((
1456 (((
1457 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1458
1459 Set UART Parity
1460 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1461
1462 Set STOPBIT
1463
1464 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1465 )))
1466 )))
1467
1468
1469 * (((
1470 **Downlink Payload:**
1471 )))
1472
1473 (((
1474 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1475 )))
1476
1477 (((
1478 **Example:**
1479 )))
1480
1481 * (((
1482 A7 01 00 60   same as AT+BAUDR=9600
1483 )))
1484 * (((
1485 A7 01 04 80  same as AT+BAUDR=115200
1486 )))
1487
1488 (((
1489 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1490 )))
1491
1492 (((
1493 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1494 )))
1495
1496
1497
1498
1499 ==== **Control output power duration** ====
1500
1501 (((
1502 User can set the output power duration before each sampling.
1503 )))
1504
1505 * (((
1506 **AT Command:**
1507 )))
1508
1509 (((
1510 **Example:**
1511 )))
1512
1513 (((
1514 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1515 )))
1516
1517 (((
1518 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1519 )))
1520
1521 (((
1522
1523 )))
1524
1525 * (((
1526 **LoRaWAN Downlink Command:**
1527 )))
1528
1529 (((
1530 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1531 )))
1532
1533 (((
1534 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1535 )))
1536
1537
1538
1539 == 3.6 Buttons ==
1540
1541 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1542 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1543 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1544
1545 == 3.7 +3V3 Output ==
1546
1547 (((
1548 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1549 )))
1550
1551 (((
1552 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1553 )))
1554
1555 (((
1556 The +3V3 output time can be controlled by AT Command.
1557 )))
1558
1559 (((
1560
1561 )))
1562
1563 (((
1564 (% style="color:#037691" %)**AT+3V3T=1000**
1565 )))
1566
1567 (((
1568
1569 )))
1570
1571 (((
1572 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1573 )))
1574
1575 (((
1576 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1577 )))
1578
1579
1580 == 3.8 +5V Output ==
1581
1582 (((
1583 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1584 )))
1585
1586 (((
1587 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1588 )))
1589
1590 (((
1591 The 5V output time can be controlled by AT Command.
1592 )))
1593
1594 (((
1595
1596 )))
1597
1598 (((
1599 (% style="color:#037691" %)**AT+5VT=1000**
1600 )))
1601
1602 (((
1603
1604 )))
1605
1606 (((
1607 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1608 )))
1609
1610 (((
1611 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1612 )))
1613
1614
1615
1616 == 3.9 LEDs ==
1617
1618 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1619 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1620 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1621
1622 == 3.10 Switch Jumper ==
1623
1624 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1625 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1626 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1627 Flash position: Configure device, check running status.
1628 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1629 3.3v position: set to compatible with 3.3v I/O.,
1630
1631 (((
1632 **+3.3V**: is always ON
1633 )))
1634
1635 (((
1636 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1637 )))
1638
1639
1640 = 4. Case Study =
1641
1642 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1643
1644
1645 = 5. Use AT Command =
1646
1647 == 5.1 Access AT Command ==
1648
1649 (((
1650 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1651 )))
1652
1653 [[image:1654135840598-282.png]]
1654
1655
1656 (((
1657 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1658 )))
1659
1660 [[image:1654136105500-922.png]]
1661
1662
1663 (((
1664 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1665 )))
1666
1667
1668 == 5.2 Common AT Command Sequence ==
1669
1670 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1671
1672 If device has not joined network yet:
1673
1674 (% class="box infomessage" %)
1675 (((
1676 **AT+FDR**
1677 **AT+NJM=0**
1678 **ATZ**
1679 )))
1680
1681
1682 (((
1683 If device already joined network:
1684 )))
1685
1686 (% class="box infomessage" %)
1687 (((
1688 **AT+NJM=0**
1689 )))
1690
1691 (% class="box infomessage" %)
1692 (((
1693 **ATZ**
1694 )))
1695
1696
1697 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1698
1699
1700 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1701
1702 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1703
1704 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1705
1706 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1707
1708 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1709
1710 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1711
1712 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1713
1714 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1715
1716 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1717
1718 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1719
1720
1721 (% style="color:red" %)**Note:**
1722
1723 (((
1724 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1725 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1726 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1727 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1728 )))
1729
1730 [[image:1654136435598-589.png]]
1731
1732
1733 = 6. FAQ =
1734
1735 == 6.1 How to upgrade the image? ==
1736
1737 (((
1738 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1739 )))
1740
1741 * (((
1742 Support new features
1743 )))
1744 * (((
1745 For bug fix
1746 )))
1747 * (((
1748 Change LoRaWAN bands.
1749 )))
1750
1751 (((
1752 Below shows the hardware connection for how to upload an image to RS485-BL:
1753 )))
1754
1755 [[image:1654136646995-976.png]]
1756
1757 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1758
1759 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1760
1761 **Step3: **Open flashloader; choose the correct COM port to update.
1762
1763 [[image:image-20220602102605-1.png]]
1764
1765
1766 [[image:image-20220602102637-2.png]]
1767
1768
1769 [[image:image-20220602102715-3.png]]
1770
1771
1772
1773 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1774
1775 (((
1776 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1777 )))
1778
1779
1780
1781 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1782
1783 (((
1784 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1785 )))
1786
1787
1788
1789 = 7. Trouble Shooting =
1790
1791
1792 == 7.1 Downlink doesn’t work, how to solve it? ==
1793
1794 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1795
1796
1797 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1798
1799 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1800
1801
1802 = 8. Order Info =
1803
1804 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1805
1806 (% style="color:blue" %)**XXX:**
1807
1808 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1809 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1810 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1811 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1812 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1813 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1814 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1815 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1816 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1817 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1818
1819 = 9. Packing Info =
1820
1821 (((
1822 **Package Includes**:
1823 )))
1824
1825 * (((
1826 RS485-BL x 1
1827 )))
1828 * (((
1829 Stick Antenna for LoRa RF part x 1
1830 )))
1831 * (((
1832 Program cable x 1
1833 )))
1834
1835 (((
1836 **Dimension and weight**:
1837 )))
1838
1839 * (((
1840 Device Size: 13.5 x 7 x 3 cm
1841 )))
1842 * (((
1843 Device Weight: 105g
1844 )))
1845 * (((
1846 Package Size / pcs : 14.5 x 8 x 5 cm
1847 )))
1848 * (((
1849 Weight / pcs : 170g
1850
1851
1852 )))
1853
1854 = 10. Support =
1855
1856 * (((
1857 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1858 )))
1859 * (((
1860 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1861 )))