Version 44.18 by Xiaoling on 2022/06/14 10:13

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18
19 (((
20
21 )))
22
23 (((
24 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
25 )))
26
27 (((
28 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
29 )))
30
31 (((
32 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
33 )))
34
35 (((
36 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
37 )))
38
39 (((
40 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42
43 (((
44 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
45 )))
46
47 (((
48 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
49 )))
50
51 [[image:1652953304999-717.png||height="424" width="733"]]
52
53
54
55 == 1.2 Specifications ==
56
57
58 **Hardware System:**
59
60 * STM32L072CZT6 MCU
61 * SX1276/78 Wireless Chip 
62 * Power Consumption (exclude RS485 device):
63 ** Idle: 6uA@3.3v
64 ** 20dB Transmit: 130mA@3.3v
65
66 **Interface for Model:**
67
68 * 1 x RS485 Interface
69 * 1 x TTL Serial , 3.3v or 5v.
70 * 1 x I2C Interface, 3.3v or 5v.
71 * 1 x one wire interface
72 * 1 x Interrupt Interface
73 * 1 x Controllable 5V output, max
74
75 **LoRa Spec:**
76
77 * Frequency Range:
78 ** Band 1 (HF): 862 ~~ 1020 Mhz
79 ** Band 2 (LF): 410 ~~ 528 Mhz
80 * 168 dB maximum link budget.
81 * +20 dBm - 100 mW constant RF output vs.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Fully integrated synthesizer with a resolution of 61 Hz.
87 * LoRa modulation.
88 * Built-in bit synchronizer for clock recovery.
89 * Preamble detection.
90 * 127 dB Dynamic Range RSSI.
91 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
92
93 == 1.3 Features ==
94
95 * LoRaWAN Class A & Class C protocol (default Class A)
96 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
97 * AT Commands to change parameters
98 * Remote configure parameters via LoRaWAN Downlink
99 * Firmware upgradable via program port
100 * Support multiply RS485 devices by flexible rules
101 * Support Modbus protocol
102 * Support Interrupt uplink
103
104 == 1.4 Applications ==
105
106 * Smart Buildings & Home Automation
107 * Logistics and Supply Chain Management
108 * Smart Metering
109 * Smart Agriculture
110 * Smart Cities
111 * Smart Factory
112
113 == 1.5 Firmware Change log ==
114
115 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
116
117
118 == 1.6 Hardware Change log ==
119
120 (((
121
122
123 (((
124 v1.4
125 )))
126 )))
127
128 (((
129 (((
130 ~1. Change Power IC to TPS22916
131 )))
132 )))
133
134 (((
135
136 )))
137
138 (((
139 (((
140 v1.3
141 )))
142 )))
143
144 (((
145 (((
146 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
147 )))
148 )))
149
150 (((
151
152 )))
153
154 (((
155 (((
156 v1.2
157 )))
158 )))
159
160 (((
161 (((
162 Release version ​​​​​
163 )))
164
165
166 )))
167
168 = 2. Pin mapping and Power ON Device =
169
170 (((
171 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
172 )))
173
174 [[image:1652953055962-143.png||height="387" width="728"]]
175
176
177 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
178
179
180 = 3. Operation Mode =
181
182 == 3.1 How it works? ==
183
184 (((
185 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
186
187
188 )))
189
190 == 3.2 Example to join LoRaWAN network ==
191
192 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
193
194 [[image:1652953414711-647.png||height="337" width="723"]]
195
196
197 (((
198 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
199 )))
200
201 (((
202 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
203 )))
204
205 (((
206 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
207 )))
208
209 (((
210 Each RS485-BL is shipped with a sticker with unique device EUI:
211 )))
212
213 [[image:1652953462722-299.png]]
214
215
216 (((
217 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
218 )))
219
220 (((
221 **Add APP EUI in the application.**
222 )))
223
224
225 [[image:image-20220519174512-1.png]]
226
227 [[image:image-20220519174512-2.png||height="328" width="731"]]
228
229 [[image:image-20220519174512-3.png||height="556" width="724"]]
230
231 [[image:image-20220519174512-4.png]]
232
233
234 You can also choose to create the device manually.
235
236 [[image:1652953542269-423.png||height="710" width="723"]]
237
238
239 Add APP KEY and DEV EUI
240
241 [[image:1652953553383-907.png||height="514" width="724"]]
242
243
244
245 (((
246 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
247 )))
248
249 [[image:1652953568895-172.png||height="232" width="724"]]
250
251
252 == 3.3 Configure Commands to read data ==
253
254 (((
255 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
256
257
258 )))
259
260 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
261
262 (((
263 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
264 )))
265
266 (((
267 **~1. RS485-MODBUS mode:**
268 )))
269
270 (((
271 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
272 )))
273
274 (((
275 **2. TTL mode:**
276 )))
277
278 (((
279 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
280 )))
281
282 (((
283 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
284 )))
285
286 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
287 |=(% style="width: 80px;" %)(((
288 (((
289 **AT Commands**
290 )))
291 )))|=(% style="width: 210px;" %)(((
292 (((
293 **Description**
294 )))
295 )))|=(% style="width: 210px;" %)(((
296 (((
297 **Example**
298 )))
299 )))
300 |(% style="width:80px" %)(((
301 (((
302 AT+BAUDR
303 )))
304 )))|(% style="width:210px" %)(((
305 (((
306 Set the baud rate (for RS485 connection). Default Value is: 9600.
307 )))
308 )))|(% style="width:210px" %)(((
309 (((
310 (((
311 AT+BAUDR=9600
312 )))
313 )))
314
315 (((
316 (((
317 Options: (1200,2400,4800,14400,19200,115200)
318 )))
319 )))
320 )))
321 |(% style="width:80px" %)(((
322 (((
323 AT+PARITY
324 )))
325 )))|(% style="width:210px" %)(((
326 (((
327 (((
328 Set UART parity (for RS485 connection)
329 )))
330 )))
331
332 (((
333 (((
334 Default Value is: no parity.
335 )))
336 )))
337 )))|(% style="width:210px" %)(((
338 (((
339 (((
340 AT+PARITY=0
341 )))
342 )))
343
344 (((
345 (((
346 Option: 0: no parity, 1: odd parity, 2: even parity
347 )))
348 )))
349 )))
350 |(% style="width:80px" %)(((
351 (((
352 AT+STOPBIT
353 )))
354 )))|(% style="width:210px" %)(((
355 (((
356 (((
357 Set serial stopbit (for RS485 connection)
358 )))
359 )))
360
361 (((
362 (((
363 Default Value is: 1bit.
364 )))
365 )))
366 )))|(% style="width:210px" %)(((
367 (((
368 (((
369 AT+STOPBIT=0 for 1bit
370 )))
371 )))
372
373 (((
374 (((
375 AT+STOPBIT=1 for 1.5 bit
376 )))
377 )))
378
379 (((
380 (((
381 AT+STOPBIT=2 for 2 bits
382 )))
383 )))
384 )))
385
386
387 === 3.3.2 Configure sensors ===
388
389 (((
390 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
391 )))
392
393 (((
394 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
395 )))
396
397 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
398 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
399 |AT+CFGDEV|(% style="width:80px" %)(((
400 (((
401 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
402 )))
403
404 (((
405 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
406 )))
407
408 (((
409 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
410 )))
411 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
412
413 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
414
415
416
417 === 3.3.3 Configure read commands for each sampling ===
418
419 (((
420 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
421 )))
422
423 (((
424 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
425 )))
426
427 (((
428 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
429 )))
430
431 (((
432 This section describes how to achieve above goals.
433 )))
434
435 (((
436 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
437
438
439 )))
440
441 (((
442 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
443 )))
444
445 (((
446 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
447
448
449 )))
450
451 (((
452 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
453 )))
454
455 (((
456 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
457 )))
458
459 * (((
460 (% style="color:blue" %)**AT+DATACUT**
461 )))
462
463 (((
464 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
465
466
467 )))
468
469 * (((
470 (% style="color:blue" %)**AT+SEARCH**
471 )))
472
473 (((
474 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
475 )))
476
477 (((
478
479
480 (% style="color:blue" %)**Define wait timeout:**
481 )))
482
483 (((
484 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
485 )))
486
487 (((
488 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
489 )))
490
491 (((
492
493
494 **Examples:**
495 )))
496
497 (((
498 Below are examples for the how above AT Commands works.
499 )))
500
501 (((
502 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
503 )))
504
505 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
506 |(% style="width:498px" %)(((
507 (((
508 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
509 )))
510
511 (((
512 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
513 )))
514
515 (((
516 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
517 )))
518 )))
519
520 (((
521 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
522 )))
523
524 (((
525 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
526 )))
527
528 (((
529
530 )))
531
532 (((
533 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
534 )))
535
536 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
537 |(% style="width:577px" %)(((
538 (((
539 **AT+SEARCHx=aa,xx xx xx xx xx**
540 )))
541
542 * (((
543 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
544 )))
545 * (((
546 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
547 )))
548 )))
549
550 (((
551
552
553 **Examples:**
554 )))
555
556 (((
557 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
558 )))
559
560 (((
561 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
562 )))
563
564 (((
565 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
566 )))
567
568 (((
569 [[image:1653271044481-711.png]]
570
571
572 )))
573
574 (((
575 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
576 )))
577
578 (((
579 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
580 )))
581
582 (((
583 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
584 )))
585
586 (((
587 [[image:1653271276735-972.png]]
588 )))
589
590 (((
591 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
592 )))
593
594 (% style="background-color:#4f81bd; color:white; width:510px" %)
595 |(% style="width:726px" %)(((
596 (((
597 **AT+DATACUTx=a,b,c**
598 )))
599
600 * (((
601 **a: length for the return of AT+COMMAND**
602 )))
603 * (((
604 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
605 )))
606 * (((
607 **c: define the position for valid value.  **
608 )))
609 )))
610
611 (((
612
613
614 **Examples:**
615 )))
616
617 * (((
618 (% style="color:blue" %)**Grab bytes:**
619 )))
620
621 (((
622 [[image:1653271581490-837.png||height="313" width="722"]]
623 )))
624
625 (((
626
627 )))
628
629 * (((
630 (% style="color:blue" %)**Grab a section.**
631 )))
632
633 (((
634 [[image:1653271648378-342.png||height="326" width="720"]]
635 )))
636
637 (((
638
639 )))
640
641 * (((
642 (% style="color:blue" %)**Grab different sections.**
643 )))
644
645 (((
646 [[image:1653271657255-576.png||height="305" width="730"]]
647
648
649 )))
650
651 (((
652 (((
653 (% style="color:red" %)**Note:**
654 )))
655 )))
656
657 (((
658 (((
659 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
660 )))
661 )))
662
663 (((
664 (((
665 **Example:**
666 )))
667 )))
668
669 (((
670 (((
671 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
672 )))
673 )))
674
675 (((
676 (((
677 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
678 )))
679 )))
680
681 (((
682 (((
683 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
684 )))
685 )))
686
687 (((
688 (((
689 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
690 )))
691 )))
692
693 (((
694 (((
695 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
696 )))
697 )))
698
699 (((
700 (((
701 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
702 )))
703 )))
704
705 (((
706 [[image:1653271763403-806.png]]
707 )))
708
709
710 === 3.3.4 Compose the uplink payload ===
711
712 (((
713 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
714
715
716 )))
717
718 (((
719 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
720
721
722 )))
723
724 (((
725 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
726 )))
727
728 (((
729 Final Payload is
730 )))
731
732 (((
733 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
734 )))
735
736 (((
737 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
738 )))
739
740 [[image:1653272787040-634.png||height="515" width="719"]]
741
742
743
744 (((
745 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
746
747
748 )))
749
750 (((
751 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
752 )))
753
754 (((
755 Final Payload is
756 )))
757
758 (((
759 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
760 )))
761
762 1. (((
763 Battery Info (2 bytes): Battery voltage
764 )))
765 1. (((
766 PAYVER (1 byte): Defined by AT+PAYVER
767 )))
768 1. (((
769 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
770 )))
771 1. (((
772 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
773 )))
774 1. (((
775 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
776 )))
777
778 [[image:1653272817147-600.png||height="437" width="717"]]
779
780 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
781
782
783 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
784
785 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
786
787 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
788
789
790 Below are the uplink payloads:
791
792 [[image:1653272901032-107.png]]
793
794
795 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
796
797 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
798
799 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
800
801 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
802
803 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
804
805
806
807 === 3.3.5 Uplink on demand ===
808
809 (((
810 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
811 )))
812
813 (((
814 Downlink control command:
815 )))
816
817 (((
818 **0x08 command**: Poll an uplink with current command set in RS485-BL.
819 )))
820
821 (((
822 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
823
824
825 )))
826
827 === 3.3.6 Uplink on Interrupt ===
828
829 Put the interrupt sensor between 3.3v_out and GPIO ext.
830
831 [[image:1653273818896-432.png]]
832
833
834 (((
835 AT+INTMOD=0  Disable Interrupt
836 )))
837
838 (((
839 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
840 )))
841
842 (((
843 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
844 )))
845
846 (((
847 AT+INTMOD=3  Interrupt trigger by rising edge.
848
849
850 )))
851
852 == 3.4 Uplink Payload ==
853
854 [[image:image-20220606105412-1.png]]
855
856 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
857
858 (((
859 {{{function Decoder(bytes, port) {}}}
860 )))
861
862 (((
863 {{{//Payload Formats of RS485-BL Deceive}}}
864 )))
865
866 (((
867 {{{return {}}}
868 )))
869
870 (((
871 {{{ //Battery,units:V}}}
872 )))
873
874 (((
875 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
876 )))
877
878 (((
879 {{{ //GPIO_EXTI }}}
880 )))
881
882 (((
883 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
884 )))
885
886 (((
887 {{{ //payload of version}}}
888 )))
889
890 (((
891 {{{ Pay_ver:bytes[2],}}}
892 )))
893
894 (((
895 {{{ }; }}}
896 )))
897
898 (((
899 **}**
900
901
902 )))
903
904 (((
905 TTN V3 uplink screen shot.
906 )))
907
908 [[image:1653274001211-372.png||height="192" width="732"]]
909
910
911 == 3.5 Configure RS485-BL via AT or Downlink ==
912
913 (((
914 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
915 )))
916
917 (((
918 There are two kinds of Commands:
919 )))
920
921 * (((
922 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
923 )))
924
925 * (((
926 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
927 )))
928
929 === 3.5.1 Common Commands: ===
930
931 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
932
933
934 === 3.5.2 Sensor related commands: ===
935
936
937
938 ==== **Choose Device Type (RS485 or TTL)** ====
939
940 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
941
942 * **AT Command**
943
944 (% class="box infomessage" %)
945 (((
946 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
947 )))
948
949 (% class="box infomessage" %)
950 (((
951 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
952 )))
953
954
955 * **Downlink Payload**
956
957 **0A aa**  ~-~->  same as AT+MOD=aa
958
959
960
961
962 ==== **RS485 Debug Command (AT+CFGDEV)** ====
963
964 (((
965 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
966 )))
967
968 * (((
969 **AT Command**
970 )))
971
972 (% class="box infomessage" %)
973 (((
974 (((
975 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
976 )))
977 )))
978
979 (((
980 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
981 )))
982
983 (((
984
985 )))
986
987 * (((
988 **Downlink Payload**
989 )))
990
991 (((
992 Format: A8 MM NN XX XX XX XX YY
993 )))
994
995 (((
996 Where:
997 )))
998
999 * (((
1000 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1001 )))
1002 * (((
1003 NN: The length of RS485 command
1004 )))
1005 * (((
1006 XX XX XX XX: RS485 command total NN bytes
1007 )))
1008 * (((
1009 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1010 )))
1011
1012 (((
1013 **Example 1:**
1014 )))
1015
1016 (((
1017 To connect a Modbus Alarm with below commands.
1018 )))
1019
1020 * (((
1021 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1022 )))
1023
1024 * (((
1025 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1026 )))
1027
1028 (((
1029 So if user want to use downlink command to control to RS485 Alarm, he can use:
1030 )))
1031
1032 (((
1033 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1034 )))
1035
1036 (((
1037 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1038 )))
1039
1040 (((
1041 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1042 )))
1043
1044 (((
1045
1046 )))
1047
1048 (((
1049 **Example 2:**
1050 )))
1051
1052 (((
1053 Check TTL Sensor return:
1054 )))
1055
1056 (((
1057 [[image:1654132684752-193.png]]
1058 )))
1059
1060
1061
1062
1063
1064 ==== **Set Payload version** ====
1065
1066 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1067
1068 * **AT Command:**
1069
1070 (% class="box infomessage" %)
1071 (((
1072 **AT+PAYVER: Set PAYVER field = 1**
1073 )))
1074
1075
1076 * **Downlink Payload:**
1077
1078 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1079
1080 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1081
1082
1083
1084
1085 ==== **Set RS485 Sampling Commands** ====
1086
1087 (((
1088 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1089 )))
1090
1091 (((
1092 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1093 )))
1094
1095 (((
1096
1097 )))
1098
1099 * (((
1100 **AT Command:**
1101 )))
1102
1103 (% class="box infomessage" %)
1104 (((
1105 (((
1106 **AT+COMMANDx: Configure RS485 read command to sensor.**
1107 )))
1108 )))
1109
1110 (% class="box infomessage" %)
1111 (((
1112 (((
1113 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
1114 )))
1115 )))
1116
1117 (% class="box infomessage" %)
1118 (((
1119 (((
1120 **AT+SEARCHx: Configure search command**
1121 )))
1122 )))
1123
1124 (((
1125
1126 )))
1127
1128 * (((
1129 **Downlink Payload:**
1130 )))
1131
1132 (((
1133 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1134 )))
1135
1136 (((
1137 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1138 )))
1139
1140 (((
1141 Format: AF MM NN LL XX XX XX XX YY
1142 )))
1143
1144 (((
1145 Where:
1146 )))
1147
1148 * (((
1149 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1150 )))
1151 * (((
1152 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1153 )))
1154 * (((
1155 LL:  The length of AT+COMMAND or AT+DATACUT command
1156 )))
1157 * (((
1158 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1159 )))
1160 * (((
1161 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1162 )))
1163
1164 (((
1165 **Example:**
1166 )))
1167
1168 (((
1169 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1170 )))
1171
1172 (((
1173 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1174 )))
1175
1176 (((
1177 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1178 )))
1179
1180 (((
1181
1182 )))
1183
1184 (((
1185 **0xAB** downlink command can be used for set AT+SEARCHx
1186 )))
1187
1188 (((
1189 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1190 )))
1191
1192 * (((
1193 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1194 )))
1195 * (((
1196 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1197 )))
1198
1199 (((
1200 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1201 )))
1202
1203
1204
1205
1206 ==== **Fast command to handle MODBUS device** ====
1207
1208 (((
1209 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1210 )))
1211
1212 (((
1213 This command is valid since v1.3 firmware version
1214 )))
1215
1216 (((
1217
1218 )))
1219
1220 (((
1221 **AT+MBFUN has only two value:**
1222 )))
1223
1224 * (((
1225 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1226 )))
1227
1228 (((
1229 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1230 )))
1231
1232 * (((
1233 **AT+MBFUN=0**: Disable Modbus fast reading.
1234 )))
1235
1236 (((
1237 **Example:**
1238 )))
1239
1240 * (((
1241 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1242 )))
1243 * (((
1244 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1245 )))
1246 * (((
1247 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1248 )))
1249
1250 [[image:1654133913295-597.png]]
1251
1252
1253 [[image:1654133954153-643.png]]
1254
1255
1256 * (((
1257 **Downlink Commands:**
1258 )))
1259
1260 (((
1261 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1262 )))
1263
1264
1265
1266
1267 ==== **RS485 command timeout** ====
1268
1269 (((
1270 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1271 )))
1272
1273 (((
1274 Default value: 0, range:  0 ~~ 5 seconds
1275 )))
1276
1277 (((
1278
1279 )))
1280
1281 * (((
1282 **AT Command:**
1283 )))
1284
1285 (% class="box infomessage" %)
1286 (((
1287 (((
1288 **AT+CMDDLaa=hex(bb cc)**
1289 )))
1290 )))
1291
1292 (((
1293 **Example:**
1294 )))
1295
1296 (((
1297 **AT+CMDDL1=1000** to send the open time to 1000ms
1298 )))
1299
1300 (((
1301
1302 )))
1303
1304 * (((
1305 **Downlink Payload:**
1306 )))
1307
1308 (((
1309 0x AA aa bb cc
1310 )))
1311
1312 (((
1313 Same as: AT+CMDDLaa=hex(bb cc)
1314 )))
1315
1316 (((
1317 **Example:**
1318 )))
1319
1320 (((
1321 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1322 )))
1323
1324
1325
1326
1327 ==== **Uplink payload mode** ====
1328
1329 (((
1330 Define to use one uplink or multiple uplinks for the sampling.
1331 )))
1332
1333 (((
1334 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1335 )))
1336
1337 * (((
1338 **AT Command:**
1339 )))
1340
1341 (% class="box infomessage" %)
1342 (((
1343 (((
1344 **AT+DATAUP=0**
1345 )))
1346 )))
1347
1348 (% class="box infomessage" %)
1349 (((
1350 (((
1351 **AT+DATAUP=1**
1352 )))
1353 )))
1354
1355 (((
1356
1357 )))
1358
1359 * (((
1360 **Downlink Payload:**
1361 )))
1362
1363 (((
1364 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1365 )))
1366
1367 (((
1368 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1369 )))
1370
1371
1372
1373
1374 ==== **Manually trigger an Uplink** ====
1375
1376 Ask device to send an uplink immediately.
1377
1378 * **Downlink Payload:**
1379
1380 **0x08 FF**, RS485-BL will immediately send an uplink.
1381
1382
1383
1384
1385 ==== **Clear RS485 Command** ====
1386
1387 (((
1388 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1389 )))
1390
1391 (((
1392
1393 )))
1394
1395 * (((
1396 **AT Command:**
1397 )))
1398
1399 (((
1400 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1401 )))
1402
1403 (((
1404 Example screen shot after clear all RS485 commands. 
1405 )))
1406
1407 (((
1408
1409 )))
1410
1411 (((
1412 The uplink screen shot is:
1413 )))
1414
1415 (((
1416 [[image:1654134704555-320.png]]
1417 )))
1418
1419 (((
1420
1421 )))
1422
1423 * (((
1424 **Downlink Payload:**
1425 )))
1426
1427 (((
1428 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1429 )))
1430
1431
1432
1433
1434 ==== **Set Serial Communication Parameters** ====
1435
1436 (((
1437 Set the Rs485 serial communication parameters:
1438 )))
1439
1440 * (((
1441 **AT Command:**
1442 )))
1443
1444 (((
1445 Set Baud Rate:
1446 )))
1447
1448 (% class="box infomessage" %)
1449 (((
1450 (((
1451 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1452
1453 Set UART Parity
1454 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1455
1456 Set STOPBIT
1457
1458 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1459 )))
1460 )))
1461
1462
1463 * (((
1464 **Downlink Payload:**
1465 )))
1466
1467 (((
1468 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1469 )))
1470
1471 (((
1472 **Example:**
1473 )))
1474
1475 * (((
1476 A7 01 00 60   same as AT+BAUDR=9600
1477 )))
1478 * (((
1479 A7 01 04 80  same as AT+BAUDR=115200
1480 )))
1481
1482 (((
1483 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1484 )))
1485
1486 (((
1487 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1488 )))
1489
1490
1491
1492
1493 ==== **Control output power duration** ====
1494
1495 (((
1496 User can set the output power duration before each sampling.
1497 )))
1498
1499 * (((
1500 **AT Command:**
1501 )))
1502
1503 (((
1504 **Example:**
1505 )))
1506
1507 (((
1508 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1509 )))
1510
1511 (((
1512 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1513 )))
1514
1515 (((
1516
1517 )))
1518
1519 * (((
1520 **LoRaWAN Downlink Command:**
1521 )))
1522
1523 (((
1524 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1525 )))
1526
1527 (((
1528 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1529 )))
1530
1531
1532
1533 == 3.6 Buttons ==
1534
1535 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1536 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1537 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1538
1539 == 3.7 +3V3 Output ==
1540
1541 (((
1542 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1543 )))
1544
1545 (((
1546 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1547 )))
1548
1549 (((
1550 The +3V3 output time can be controlled by AT Command.
1551 )))
1552
1553 (((
1554
1555 )))
1556
1557 (((
1558 (% style="color:#037691" %)**AT+3V3T=1000**
1559 )))
1560
1561 (((
1562
1563 )))
1564
1565 (((
1566 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1567 )))
1568
1569 (((
1570 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1571 )))
1572
1573
1574 == 3.8 +5V Output ==
1575
1576 (((
1577 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1578 )))
1579
1580 (((
1581 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1582 )))
1583
1584 (((
1585 The 5V output time can be controlled by AT Command.
1586 )))
1587
1588 (((
1589
1590 )))
1591
1592 (((
1593 (% style="color:#037691" %)**AT+5VT=1000**
1594 )))
1595
1596 (((
1597
1598 )))
1599
1600 (((
1601 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1602 )))
1603
1604 (((
1605 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1606 )))
1607
1608
1609
1610 == 3.9 LEDs ==
1611
1612 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1613 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1614 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1615
1616 == 3.10 Switch Jumper ==
1617
1618 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1619 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1620 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1621 Flash position: Configure device, check running status.
1622 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1623 3.3v position: set to compatible with 3.3v I/O.,
1624
1625 (((
1626 **+3.3V**: is always ON
1627 )))
1628
1629 (((
1630 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1631 )))
1632
1633
1634 = 4. Case Study =
1635
1636 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1637
1638
1639 = 5. Use AT Command =
1640
1641 == 5.1 Access AT Command ==
1642
1643 (((
1644 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1645 )))
1646
1647 [[image:1654135840598-282.png]]
1648
1649
1650 (((
1651 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1652 )))
1653
1654 [[image:1654136105500-922.png]]
1655
1656
1657 (((
1658 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1659 )))
1660
1661
1662 == 5.2 Common AT Command Sequence ==
1663
1664 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1665
1666 If device has not joined network yet:
1667
1668 (% class="box infomessage" %)
1669 (((
1670 **AT+FDR**
1671 **AT+NJM=0**
1672 **ATZ**
1673 )))
1674
1675
1676 (((
1677 If device already joined network:
1678 )))
1679
1680 (% class="box infomessage" %)
1681 (((
1682 **AT+NJM=0**
1683 )))
1684
1685 (% class="box infomessage" %)
1686 (((
1687 **ATZ**
1688 )))
1689
1690
1691 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1692
1693
1694 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1695
1696 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1697
1698 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1699
1700 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1701
1702 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1703
1704 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1705
1706 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1707
1708 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1709
1710 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1711
1712 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1713
1714
1715 (% style="color:red" %)**Note:**
1716
1717 (((
1718 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1719 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1720 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1721 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1722 )))
1723
1724 [[image:1654136435598-589.png]]
1725
1726
1727 = 6. FAQ =
1728
1729 == 6.1 How to upgrade the image? ==
1730
1731 (((
1732 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1733 )))
1734
1735 * (((
1736 Support new features
1737 )))
1738 * (((
1739 For bug fix
1740 )))
1741 * (((
1742 Change LoRaWAN bands.
1743 )))
1744
1745 (((
1746 Below shows the hardware connection for how to upload an image to RS485-BL:
1747 )))
1748
1749 [[image:1654136646995-976.png]]
1750
1751 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1752
1753 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1754
1755 **Step3: **Open flashloader; choose the correct COM port to update.
1756
1757 [[image:image-20220602102605-1.png]]
1758
1759
1760 [[image:image-20220602102637-2.png]]
1761
1762
1763 [[image:image-20220602102715-3.png]]
1764
1765
1766
1767 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1768
1769 (((
1770 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1771 )))
1772
1773
1774
1775 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1776
1777 (((
1778 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1779 )))
1780
1781
1782
1783 = 7. Trouble Shooting =
1784
1785
1786 == 7.1 Downlink doesn’t work, how to solve it? ==
1787
1788 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1789
1790
1791 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1792
1793 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1794
1795
1796 = 8. Order Info =
1797
1798 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1799
1800 (% style="color:blue" %)**XXX:**
1801
1802 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1803 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1804 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1805 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1806 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1807 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1808 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1809 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1810 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1811 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1812
1813 = 9. Packing Info =
1814
1815 (((
1816 **Package Includes**:
1817 )))
1818
1819 * (((
1820 RS485-BL x 1
1821 )))
1822 * (((
1823 Stick Antenna for LoRa RF part x 1
1824 )))
1825 * (((
1826 Program cable x 1
1827 )))
1828
1829 (((
1830 **Dimension and weight**:
1831 )))
1832
1833 * (((
1834 Device Size: 13.5 x 7 x 3 cm
1835 )))
1836 * (((
1837 Device Weight: 105g
1838 )))
1839 * (((
1840 Package Size / pcs : 14.5 x 8 x 5 cm
1841 )))
1842 * (((
1843 Weight / pcs : 170g
1844
1845
1846 )))
1847
1848 = 10. Support =
1849
1850 * (((
1851 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1852 )))
1853 * (((
1854 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1855 )))