Version 44.17 by Xiaoling on 2022/06/14 10:11

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18
19 (((
20
21 )))
22
23 (((
24 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
25 )))
26
27 (((
28 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
29 )))
30
31 (((
32 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
33 )))
34
35 (((
36 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
37 )))
38
39 (((
40 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42
43 (((
44 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
45 )))
46
47 (((
48 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
49 )))
50
51 [[image:1652953304999-717.png||height="424" width="733"]]
52
53
54
55 == 1.2 Specifications ==
56
57
58 **Hardware System:**
59
60 * STM32L072CZT6 MCU
61 * SX1276/78 Wireless Chip 
62 * Power Consumption (exclude RS485 device):
63 ** Idle: 6uA@3.3v
64 ** 20dB Transmit: 130mA@3.3v
65
66 **Interface for Model:**
67
68 * 1 x RS485 Interface
69 * 1 x TTL Serial , 3.3v or 5v.
70 * 1 x I2C Interface, 3.3v or 5v.
71 * 1 x one wire interface
72 * 1 x Interrupt Interface
73 * 1 x Controllable 5V output, max
74
75 **LoRa Spec:**
76
77 * Frequency Range:
78 ** Band 1 (HF): 862 ~~ 1020 Mhz
79 ** Band 2 (LF): 410 ~~ 528 Mhz
80 * 168 dB maximum link budget.
81 * +20 dBm - 100 mW constant RF output vs.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Fully integrated synthesizer with a resolution of 61 Hz.
87 * LoRa modulation.
88 * Built-in bit synchronizer for clock recovery.
89 * Preamble detection.
90 * 127 dB Dynamic Range RSSI.
91 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
92
93
94 == 1.3 Features ==
95
96 * LoRaWAN Class A & Class C protocol (default Class A)
97 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
98 * AT Commands to change parameters
99 * Remote configure parameters via LoRaWAN Downlink
100 * Firmware upgradable via program port
101 * Support multiply RS485 devices by flexible rules
102 * Support Modbus protocol
103 * Support Interrupt uplink
104
105
106 == 1.4 Applications ==
107
108 * Smart Buildings & Home Automation
109 * Logistics and Supply Chain Management
110 * Smart Metering
111 * Smart Agriculture
112 * Smart Cities
113 * Smart Factory
114
115
116 == 1.5 Firmware Change log ==
117
118 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
119
120
121 == 1.6 Hardware Change log ==
122
123 (((
124
125
126 (((
127 v1.4
128 )))
129 )))
130
131 (((
132 (((
133 ~1. Change Power IC to TPS22916
134 )))
135 )))
136
137 (((
138
139 )))
140
141 (((
142 (((
143 v1.3
144 )))
145 )))
146
147 (((
148 (((
149 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
150 )))
151 )))
152
153 (((
154
155 )))
156
157 (((
158 (((
159 v1.2
160 )))
161 )))
162
163 (((
164 (((
165 Release version ​​​​​
166 )))
167
168
169 )))
170
171 = 2. Pin mapping and Power ON Device =
172
173 (((
174 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
175 )))
176
177 [[image:1652953055962-143.png||height="387" width="728"]]
178
179
180 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
181
182
183 = 3. Operation Mode =
184
185 == 3.1 How it works? ==
186
187 (((
188 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
189
190
191 )))
192
193 == 3.2 Example to join LoRaWAN network ==
194
195 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
196
197 [[image:1652953414711-647.png||height="337" width="723"]]
198
199
200 (((
201 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
202 )))
203
204 (((
205 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
206 )))
207
208 (((
209 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
210 )))
211
212 (((
213 Each RS485-BL is shipped with a sticker with unique device EUI:
214 )))
215
216 [[image:1652953462722-299.png]]
217
218
219 (((
220 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
221 )))
222
223 (((
224 **Add APP EUI in the application.**
225 )))
226
227
228 [[image:image-20220519174512-1.png]]
229
230 [[image:image-20220519174512-2.png||height="328" width="731"]]
231
232 [[image:image-20220519174512-3.png||height="556" width="724"]]
233
234 [[image:image-20220519174512-4.png]]
235
236
237 You can also choose to create the device manually.
238
239 [[image:1652953542269-423.png||height="710" width="723"]]
240
241
242 Add APP KEY and DEV EUI
243
244 [[image:1652953553383-907.png||height="514" width="724"]]
245
246
247
248 (((
249 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
250 )))
251
252 [[image:1652953568895-172.png||height="232" width="724"]]
253
254
255 == 3.3 Configure Commands to read data ==
256
257 (((
258 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
259
260
261 )))
262
263 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
264
265 (((
266 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
267 )))
268
269 (((
270 **~1. RS485-MODBUS mode:**
271 )))
272
273 (((
274 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
275 )))
276
277 (((
278 **2. TTL mode:**
279 )))
280
281 (((
282 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
283 )))
284
285 (((
286 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
287 )))
288
289 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 |=(% style="width: 80px;" %)(((
291 (((
292 **AT Commands**
293 )))
294 )))|=(% style="width: 210px;" %)(((
295 (((
296 **Description**
297 )))
298 )))|=(% style="width: 210px;" %)(((
299 (((
300 **Example**
301 )))
302 )))
303 |(% style="width:80px" %)(((
304 (((
305 AT+BAUDR
306 )))
307 )))|(% style="width:210px" %)(((
308 (((
309 Set the baud rate (for RS485 connection). Default Value is: 9600.
310 )))
311 )))|(% style="width:210px" %)(((
312 (((
313 (((
314 AT+BAUDR=9600
315 )))
316 )))
317
318 (((
319 (((
320 Options: (1200,2400,4800,14400,19200,115200)
321 )))
322 )))
323 )))
324 |(% style="width:80px" %)(((
325 (((
326 AT+PARITY
327 )))
328 )))|(% style="width:210px" %)(((
329 (((
330 (((
331 Set UART parity (for RS485 connection)
332 )))
333 )))
334
335 (((
336 (((
337 Default Value is: no parity.
338 )))
339 )))
340 )))|(% style="width:210px" %)(((
341 (((
342 (((
343 AT+PARITY=0
344 )))
345 )))
346
347 (((
348 (((
349 Option: 0: no parity, 1: odd parity, 2: even parity
350 )))
351 )))
352 )))
353 |(% style="width:80px" %)(((
354 (((
355 AT+STOPBIT
356 )))
357 )))|(% style="width:210px" %)(((
358 (((
359 (((
360 Set serial stopbit (for RS485 connection)
361 )))
362 )))
363
364 (((
365 (((
366 Default Value is: 1bit.
367 )))
368 )))
369 )))|(% style="width:210px" %)(((
370 (((
371 (((
372 AT+STOPBIT=0 for 1bit
373 )))
374 )))
375
376 (((
377 (((
378 AT+STOPBIT=1 for 1.5 bit
379 )))
380 )))
381
382 (((
383 (((
384 AT+STOPBIT=2 for 2 bits
385 )))
386 )))
387 )))
388
389
390
391 === 3.3.2 Configure sensors ===
392
393 (((
394 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
395 )))
396
397 (((
398 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
399 )))
400
401 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
402 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
403 |AT+CFGDEV|(% style="width:80px" %)(((
404 (((
405 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
406 )))
407
408 (((
409 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
410 )))
411
412 (((
413 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
414 )))
415 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
416
417 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
418
419
420
421 === 3.3.3 Configure read commands for each sampling ===
422
423 (((
424 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
425 )))
426
427 (((
428 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
429 )))
430
431 (((
432 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
433 )))
434
435 (((
436 This section describes how to achieve above goals.
437 )))
438
439 (((
440 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
441
442
443 )))
444
445 (((
446 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
447 )))
448
449 (((
450 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
451
452
453 )))
454
455 (((
456 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
457 )))
458
459 (((
460 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
461 )))
462
463 * (((
464 (% style="color:blue" %)**AT+DATACUT**
465 )))
466
467 (((
468 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
469
470
471 )))
472
473 * (((
474 (% style="color:blue" %)**AT+SEARCH**
475 )))
476
477 (((
478 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
479 )))
480
481 (((
482
483
484 (% style="color:blue" %)**Define wait timeout:**
485 )))
486
487 (((
488 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
489 )))
490
491 (((
492 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
493 )))
494
495 (((
496
497
498 **Examples:**
499 )))
500
501 (((
502 Below are examples for the how above AT Commands works.
503 )))
504
505 (((
506 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
507 )))
508
509 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
510 |(% style="width:498px" %)(((
511 (((
512 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
513 )))
514
515 (((
516 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
517 )))
518
519 (((
520 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
521 )))
522 )))
523
524 (((
525 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
526 )))
527
528 (((
529 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
530 )))
531
532 (((
533
534 )))
535
536 (((
537 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
538 )))
539
540 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
541 |(% style="width:577px" %)(((
542 (((
543 **AT+SEARCHx=aa,xx xx xx xx xx**
544 )))
545
546 * (((
547 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
548 )))
549 * (((
550 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
551 )))
552 )))
553
554 (((
555
556
557 **Examples:**
558 )))
559
560 (((
561 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
562 )))
563
564 (((
565 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
566 )))
567
568 (((
569 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
570 )))
571
572 (((
573 [[image:1653271044481-711.png]]
574
575
576 )))
577
578 (((
579 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
580 )))
581
582 (((
583 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
584 )))
585
586 (((
587 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
588 )))
589
590 (((
591 [[image:1653271276735-972.png]]
592 )))
593
594 (((
595 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
596 )))
597
598 (% style="background-color:#4f81bd; color:white; width:510px" %)
599 |(% style="width:726px" %)(((
600 (((
601 **AT+DATACUTx=a,b,c**
602 )))
603
604 * (((
605 **a: length for the return of AT+COMMAND**
606 )))
607 * (((
608 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
609 )))
610 * (((
611 **c: define the position for valid value.  **
612 )))
613 )))
614
615 (((
616
617
618 **Examples:**
619 )))
620
621 * (((
622 Grab bytes:
623 )))
624
625 (((
626 [[image:1653271581490-837.png||height="313" width="722"]]
627 )))
628
629 (((
630
631 )))
632
633 * (((
634 Grab a section.
635 )))
636
637 (((
638 [[image:1653271648378-342.png||height="326" width="720"]]
639 )))
640
641 (((
642
643 )))
644
645 * (((
646 Grab different sections.
647 )))
648
649 (((
650 [[image:1653271657255-576.png||height="305" width="730"]]
651 )))
652
653 (((
654 (((
655 (% style="color:red" %)**Note:**
656 )))
657 )))
658
659 (((
660 (((
661 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
662 )))
663 )))
664
665 (((
666 (((
667 **Example:**
668 )))
669 )))
670
671 (((
672 (((
673 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
674 )))
675 )))
676
677 (((
678 (((
679 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
680 )))
681 )))
682
683 (((
684 (((
685 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
686 )))
687 )))
688
689 (((
690 (((
691 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
692 )))
693 )))
694
695 (((
696 (((
697 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
698 )))
699 )))
700
701 (((
702 (((
703 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
704 )))
705 )))
706
707 (((
708 [[image:1653271763403-806.png]]
709 )))
710
711
712 === 3.3.4 Compose the uplink payload ===
713
714 (((
715 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
716
717
718 )))
719
720 (((
721 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
722
723
724 )))
725
726 (((
727 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
728 )))
729
730 (((
731 Final Payload is
732 )))
733
734 (((
735 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
736 )))
737
738 (((
739 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
740 )))
741
742 [[image:1653272787040-634.png||height="515" width="719"]]
743
744
745
746 (((
747 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
748
749
750 )))
751
752 (((
753 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
754 )))
755
756 (((
757 Final Payload is
758 )))
759
760 (((
761 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
762 )))
763
764 1. (((
765 Battery Info (2 bytes): Battery voltage
766 )))
767 1. (((
768 PAYVER (1 byte): Defined by AT+PAYVER
769 )))
770 1. (((
771 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
772 )))
773 1. (((
774 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
775 )))
776 1. (((
777 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
778 )))
779
780 [[image:1653272817147-600.png||height="437" width="717"]]
781
782 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
783
784
785 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
786
787 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
788
789 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
790
791
792 Below are the uplink payloads:
793
794 [[image:1653272901032-107.png]]
795
796
797 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
798
799 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
800
801 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
802
803 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
804
805 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
806
807
808
809 === 3.3.5 Uplink on demand ===
810
811 (((
812 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
813 )))
814
815 (((
816 Downlink control command:
817 )))
818
819 (((
820 **0x08 command**: Poll an uplink with current command set in RS485-BL.
821 )))
822
823 (((
824 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
825
826
827 )))
828
829 === 3.3.6 Uplink on Interrupt ===
830
831 Put the interrupt sensor between 3.3v_out and GPIO ext.
832
833 [[image:1653273818896-432.png]]
834
835
836 (((
837 AT+INTMOD=0  Disable Interrupt
838 )))
839
840 (((
841 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
842 )))
843
844 (((
845 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
846 )))
847
848 (((
849 AT+INTMOD=3  Interrupt trigger by rising edge.
850
851
852 )))
853
854 == 3.4 Uplink Payload ==
855
856 [[image:image-20220606105412-1.png]]
857
858 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
859
860 (((
861 {{{function Decoder(bytes, port) {}}}
862 )))
863
864 (((
865 {{{//Payload Formats of RS485-BL Deceive}}}
866 )))
867
868 (((
869 {{{return {}}}
870 )))
871
872 (((
873 {{{ //Battery,units:V}}}
874 )))
875
876 (((
877 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
878 )))
879
880 (((
881 {{{ //GPIO_EXTI }}}
882 )))
883
884 (((
885 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
886 )))
887
888 (((
889 {{{ //payload of version}}}
890 )))
891
892 (((
893 {{{ Pay_ver:bytes[2],}}}
894 )))
895
896 (((
897 {{{ }; }}}
898 )))
899
900 (((
901 **}**
902
903
904 )))
905
906 (((
907 TTN V3 uplink screen shot.
908 )))
909
910 [[image:1653274001211-372.png||height="192" width="732"]]
911
912
913 == 3.5 Configure RS485-BL via AT or Downlink ==
914
915 (((
916 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
917 )))
918
919 (((
920 There are two kinds of Commands:
921 )))
922
923 * (((
924 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
925 )))
926
927 * (((
928 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
929 )))
930
931 === 3.5.1 Common Commands: ===
932
933 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
934
935
936 === 3.5.2 Sensor related commands: ===
937
938
939
940 ==== **Choose Device Type (RS485 or TTL)** ====
941
942 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
943
944 * **AT Command**
945
946 (% class="box infomessage" %)
947 (((
948 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
949 )))
950
951 (% class="box infomessage" %)
952 (((
953 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
954 )))
955
956
957 * **Downlink Payload**
958
959 **0A aa**  ~-~->  same as AT+MOD=aa
960
961
962
963
964 ==== **RS485 Debug Command (AT+CFGDEV)** ====
965
966 (((
967 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
968 )))
969
970 * (((
971 **AT Command**
972 )))
973
974 (% class="box infomessage" %)
975 (((
976 (((
977 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
978 )))
979 )))
980
981 (((
982 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
983 )))
984
985 (((
986
987 )))
988
989 * (((
990 **Downlink Payload**
991 )))
992
993 (((
994 Format: A8 MM NN XX XX XX XX YY
995 )))
996
997 (((
998 Where:
999 )))
1000
1001 * (((
1002 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1003 )))
1004 * (((
1005 NN: The length of RS485 command
1006 )))
1007 * (((
1008 XX XX XX XX: RS485 command total NN bytes
1009 )))
1010 * (((
1011 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1012 )))
1013
1014 (((
1015 **Example 1:**
1016 )))
1017
1018 (((
1019 To connect a Modbus Alarm with below commands.
1020 )))
1021
1022 * (((
1023 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1024 )))
1025
1026 * (((
1027 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1028 )))
1029
1030 (((
1031 So if user want to use downlink command to control to RS485 Alarm, he can use:
1032 )))
1033
1034 (((
1035 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1036 )))
1037
1038 (((
1039 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1040 )))
1041
1042 (((
1043 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1044 )))
1045
1046 (((
1047
1048 )))
1049
1050 (((
1051 **Example 2:**
1052 )))
1053
1054 (((
1055 Check TTL Sensor return:
1056 )))
1057
1058 (((
1059 [[image:1654132684752-193.png]]
1060 )))
1061
1062
1063
1064
1065
1066 ==== **Set Payload version** ====
1067
1068 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1069
1070 * **AT Command:**
1071
1072 (% class="box infomessage" %)
1073 (((
1074 **AT+PAYVER: Set PAYVER field = 1**
1075 )))
1076
1077
1078 * **Downlink Payload:**
1079
1080 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1081
1082 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1083
1084
1085
1086
1087 ==== **Set RS485 Sampling Commands** ====
1088
1089 (((
1090 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1091 )))
1092
1093 (((
1094 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1095 )))
1096
1097 (((
1098
1099 )))
1100
1101 * (((
1102 **AT Command:**
1103 )))
1104
1105 (% class="box infomessage" %)
1106 (((
1107 (((
1108 **AT+COMMANDx: Configure RS485 read command to sensor.**
1109 )))
1110 )))
1111
1112 (% class="box infomessage" %)
1113 (((
1114 (((
1115 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
1116 )))
1117 )))
1118
1119 (% class="box infomessage" %)
1120 (((
1121 (((
1122 **AT+SEARCHx: Configure search command**
1123 )))
1124 )))
1125
1126 (((
1127
1128 )))
1129
1130 * (((
1131 **Downlink Payload:**
1132 )))
1133
1134 (((
1135 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1136 )))
1137
1138 (((
1139 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1140 )))
1141
1142 (((
1143 Format: AF MM NN LL XX XX XX XX YY
1144 )))
1145
1146 (((
1147 Where:
1148 )))
1149
1150 * (((
1151 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1152 )))
1153 * (((
1154 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1155 )))
1156 * (((
1157 LL:  The length of AT+COMMAND or AT+DATACUT command
1158 )))
1159 * (((
1160 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1161 )))
1162 * (((
1163 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1164 )))
1165
1166 (((
1167 **Example:**
1168 )))
1169
1170 (((
1171 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1172 )))
1173
1174 (((
1175 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1176 )))
1177
1178 (((
1179 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1180 )))
1181
1182 (((
1183
1184 )))
1185
1186 (((
1187 **0xAB** downlink command can be used for set AT+SEARCHx
1188 )))
1189
1190 (((
1191 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1192 )))
1193
1194 * (((
1195 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1196 )))
1197 * (((
1198 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1199 )))
1200
1201 (((
1202 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1203 )))
1204
1205
1206
1207
1208 ==== **Fast command to handle MODBUS device** ====
1209
1210 (((
1211 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1212 )))
1213
1214 (((
1215 This command is valid since v1.3 firmware version
1216 )))
1217
1218 (((
1219
1220 )))
1221
1222 (((
1223 **AT+MBFUN has only two value:**
1224 )))
1225
1226 * (((
1227 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1228 )))
1229
1230 (((
1231 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1232 )))
1233
1234 * (((
1235 **AT+MBFUN=0**: Disable Modbus fast reading.
1236 )))
1237
1238 (((
1239 **Example:**
1240 )))
1241
1242 * (((
1243 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1244 )))
1245 * (((
1246 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1247 )))
1248 * (((
1249 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1250 )))
1251
1252 [[image:1654133913295-597.png]]
1253
1254
1255 [[image:1654133954153-643.png]]
1256
1257
1258 * (((
1259 **Downlink Commands:**
1260 )))
1261
1262 (((
1263 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1264 )))
1265
1266
1267
1268
1269 ==== **RS485 command timeout** ====
1270
1271 (((
1272 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1273 )))
1274
1275 (((
1276 Default value: 0, range:  0 ~~ 5 seconds
1277 )))
1278
1279 (((
1280
1281 )))
1282
1283 * (((
1284 **AT Command:**
1285 )))
1286
1287 (% class="box infomessage" %)
1288 (((
1289 (((
1290 **AT+CMDDLaa=hex(bb cc)**
1291 )))
1292 )))
1293
1294 (((
1295 **Example:**
1296 )))
1297
1298 (((
1299 **AT+CMDDL1=1000** to send the open time to 1000ms
1300 )))
1301
1302 (((
1303
1304 )))
1305
1306 * (((
1307 **Downlink Payload:**
1308 )))
1309
1310 (((
1311 0x AA aa bb cc
1312 )))
1313
1314 (((
1315 Same as: AT+CMDDLaa=hex(bb cc)
1316 )))
1317
1318 (((
1319 **Example:**
1320 )))
1321
1322 (((
1323 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1324 )))
1325
1326
1327
1328
1329 ==== **Uplink payload mode** ====
1330
1331 (((
1332 Define to use one uplink or multiple uplinks for the sampling.
1333 )))
1334
1335 (((
1336 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1337 )))
1338
1339 * (((
1340 **AT Command:**
1341 )))
1342
1343 (% class="box infomessage" %)
1344 (((
1345 (((
1346 **AT+DATAUP=0**
1347 )))
1348 )))
1349
1350 (% class="box infomessage" %)
1351 (((
1352 (((
1353 **AT+DATAUP=1**
1354 )))
1355 )))
1356
1357 (((
1358
1359 )))
1360
1361 * (((
1362 **Downlink Payload:**
1363 )))
1364
1365 (((
1366 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1367 )))
1368
1369 (((
1370 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1371 )))
1372
1373
1374
1375
1376 ==== **Manually trigger an Uplink** ====
1377
1378 Ask device to send an uplink immediately.
1379
1380 * **Downlink Payload:**
1381
1382 **0x08 FF**, RS485-BL will immediately send an uplink.
1383
1384
1385
1386
1387 ==== **Clear RS485 Command** ====
1388
1389 (((
1390 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1391 )))
1392
1393 (((
1394
1395 )))
1396
1397 * (((
1398 **AT Command:**
1399 )))
1400
1401 (((
1402 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1403 )))
1404
1405 (((
1406 Example screen shot after clear all RS485 commands. 
1407 )))
1408
1409 (((
1410
1411 )))
1412
1413 (((
1414 The uplink screen shot is:
1415 )))
1416
1417 (((
1418 [[image:1654134704555-320.png]]
1419 )))
1420
1421 (((
1422
1423 )))
1424
1425 * (((
1426 **Downlink Payload:**
1427 )))
1428
1429 (((
1430 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1431 )))
1432
1433
1434
1435
1436 ==== **Set Serial Communication Parameters** ====
1437
1438 (((
1439 Set the Rs485 serial communication parameters:
1440 )))
1441
1442 * (((
1443 **AT Command:**
1444 )))
1445
1446 (((
1447 Set Baud Rate:
1448 )))
1449
1450 (% class="box infomessage" %)
1451 (((
1452 (((
1453 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1454
1455 Set UART Parity
1456 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1457
1458 Set STOPBIT
1459
1460 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1461 )))
1462 )))
1463
1464
1465 * (((
1466 **Downlink Payload:**
1467 )))
1468
1469 (((
1470 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1471 )))
1472
1473 (((
1474 **Example:**
1475 )))
1476
1477 * (((
1478 A7 01 00 60   same as AT+BAUDR=9600
1479 )))
1480 * (((
1481 A7 01 04 80  same as AT+BAUDR=115200
1482 )))
1483
1484 (((
1485 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1486 )))
1487
1488 (((
1489 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1490 )))
1491
1492
1493
1494
1495 ==== **Control output power duration** ====
1496
1497 (((
1498 User can set the output power duration before each sampling.
1499 )))
1500
1501 * (((
1502 **AT Command:**
1503 )))
1504
1505 (((
1506 **Example:**
1507 )))
1508
1509 (((
1510 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1511 )))
1512
1513 (((
1514 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1515 )))
1516
1517 (((
1518
1519 )))
1520
1521 * (((
1522 **LoRaWAN Downlink Command:**
1523 )))
1524
1525 (((
1526 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1527 )))
1528
1529 (((
1530 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1531 )))
1532
1533
1534
1535 == 3.6 Buttons ==
1536
1537 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1538 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1539 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1540
1541 == 3.7 +3V3 Output ==
1542
1543 (((
1544 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1545 )))
1546
1547 (((
1548 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1549 )))
1550
1551 (((
1552 The +3V3 output time can be controlled by AT Command.
1553 )))
1554
1555 (((
1556
1557 )))
1558
1559 (((
1560 (% style="color:#037691" %)**AT+3V3T=1000**
1561 )))
1562
1563 (((
1564
1565 )))
1566
1567 (((
1568 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1569 )))
1570
1571 (((
1572 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1573 )))
1574
1575
1576 == 3.8 +5V Output ==
1577
1578 (((
1579 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1580 )))
1581
1582 (((
1583 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1584 )))
1585
1586 (((
1587 The 5V output time can be controlled by AT Command.
1588 )))
1589
1590 (((
1591
1592 )))
1593
1594 (((
1595 (% style="color:#037691" %)**AT+5VT=1000**
1596 )))
1597
1598 (((
1599
1600 )))
1601
1602 (((
1603 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1604 )))
1605
1606 (((
1607 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1608 )))
1609
1610
1611
1612 == 3.9 LEDs ==
1613
1614 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1615 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1616 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1617
1618 == 3.10 Switch Jumper ==
1619
1620 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1621 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1622 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1623 Flash position: Configure device, check running status.
1624 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1625 3.3v position: set to compatible with 3.3v I/O.,
1626
1627 (((
1628 **+3.3V**: is always ON
1629 )))
1630
1631 (((
1632 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1633 )))
1634
1635
1636 = 4. Case Study =
1637
1638 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1639
1640
1641 = 5. Use AT Command =
1642
1643 == 5.1 Access AT Command ==
1644
1645 (((
1646 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1647 )))
1648
1649 [[image:1654135840598-282.png]]
1650
1651
1652 (((
1653 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1654 )))
1655
1656 [[image:1654136105500-922.png]]
1657
1658
1659 (((
1660 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1661 )))
1662
1663
1664 == 5.2 Common AT Command Sequence ==
1665
1666 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1667
1668 If device has not joined network yet:
1669
1670 (% class="box infomessage" %)
1671 (((
1672 **AT+FDR**
1673 **AT+NJM=0**
1674 **ATZ**
1675 )))
1676
1677
1678 (((
1679 If device already joined network:
1680 )))
1681
1682 (% class="box infomessage" %)
1683 (((
1684 **AT+NJM=0**
1685 )))
1686
1687 (% class="box infomessage" %)
1688 (((
1689 **ATZ**
1690 )))
1691
1692
1693 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1694
1695
1696 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1697
1698 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1699
1700 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1701
1702 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1703
1704 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1705
1706 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1707
1708 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1709
1710 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1711
1712 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1713
1714 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1715
1716
1717 (% style="color:red" %)**Note:**
1718
1719 (((
1720 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1721 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1722 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1723 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1724 )))
1725
1726 [[image:1654136435598-589.png]]
1727
1728
1729 = 6. FAQ =
1730
1731 == 6.1 How to upgrade the image? ==
1732
1733 (((
1734 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1735 )))
1736
1737 * (((
1738 Support new features
1739 )))
1740 * (((
1741 For bug fix
1742 )))
1743 * (((
1744 Change LoRaWAN bands.
1745 )))
1746
1747 (((
1748 Below shows the hardware connection for how to upload an image to RS485-BL:
1749 )))
1750
1751 [[image:1654136646995-976.png]]
1752
1753 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1754
1755 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1756
1757 **Step3: **Open flashloader; choose the correct COM port to update.
1758
1759 [[image:image-20220602102605-1.png]]
1760
1761
1762 [[image:image-20220602102637-2.png]]
1763
1764
1765 [[image:image-20220602102715-3.png]]
1766
1767
1768
1769 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1770
1771 (((
1772 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1773 )))
1774
1775
1776
1777 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1778
1779 (((
1780 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1781 )))
1782
1783
1784
1785 = 7. Trouble Shooting =
1786
1787
1788 == 7.1 Downlink doesn’t work, how to solve it? ==
1789
1790 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1791
1792
1793 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1794
1795 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1796
1797
1798 = 8. Order Info =
1799
1800 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1801
1802 (% style="color:blue" %)**XXX:**
1803
1804 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1805 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1806 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1807 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1808 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1809 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1810 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1811 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1812 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1813 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1814
1815 = 9. Packing Info =
1816
1817 (((
1818 **Package Includes**:
1819 )))
1820
1821 * (((
1822 RS485-BL x 1
1823 )))
1824 * (((
1825 Stick Antenna for LoRa RF part x 1
1826 )))
1827 * (((
1828 Program cable x 1
1829 )))
1830
1831 (((
1832 **Dimension and weight**:
1833 )))
1834
1835 * (((
1836 Device Size: 13.5 x 7 x 3 cm
1837 )))
1838 * (((
1839 Device Weight: 105g
1840 )))
1841 * (((
1842 Package Size / pcs : 14.5 x 8 x 5 cm
1843 )))
1844 * (((
1845 Weight / pcs : 170g
1846
1847
1848 )))
1849
1850 = 10. Support =
1851
1852 * (((
1853 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1854 )))
1855 * (((
1856 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1857 )))