Version 44.10 by Xiaoling on 2022/06/14 10:05

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18
19 (((
20
21 )))
22
23 (((
24 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
25 )))
26
27 (((
28 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
29 )))
30
31 (((
32 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
33 )))
34
35 (((
36 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
37 )))
38
39 (((
40 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42
43 (((
44 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
45 )))
46
47 (((
48 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
49 )))
50
51 [[image:1652953304999-717.png||height="424" width="733"]]
52
53
54
55 == 1.2 Specifications ==
56
57
58 **Hardware System:**
59
60 * STM32L072CZT6 MCU
61 * SX1276/78 Wireless Chip 
62 * Power Consumption (exclude RS485 device):
63 ** Idle: 6uA@3.3v
64 ** 20dB Transmit: 130mA@3.3v
65
66
67 **Interface for Model:**
68
69 * 1 x RS485 Interface
70 * 1 x TTL Serial , 3.3v or 5v.
71 * 1 x I2C Interface, 3.3v or 5v.
72 * 1 x one wire interface
73 * 1 x Interrupt Interface
74 * 1 x Controllable 5V output, max
75
76
77 **LoRa Spec:**
78
79 * Frequency Range:
80 ** Band 1 (HF): 862 ~~ 1020 Mhz
81 ** Band 2 (LF): 410 ~~ 528 Mhz
82 * 168 dB maximum link budget.
83 * +20 dBm - 100 mW constant RF output vs.
84 * Programmable bit rate up to 300 kbps.
85 * High sensitivity: down to -148 dBm.
86 * Bullet-proof front end: IIP3 = -12.5 dBm.
87 * Excellent blocking immunity.
88 * Fully integrated synthesizer with a resolution of 61 Hz.
89 * LoRa modulation.
90 * Built-in bit synchronizer for clock recovery.
91 * Preamble detection.
92 * 127 dB Dynamic Range RSSI.
93 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
94
95
96
97
98 == 1.3 Features ==
99
100 * LoRaWAN Class A & Class C protocol (default Class A)
101 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
102 * AT Commands to change parameters
103 * Remote configure parameters via LoRaWAN Downlink
104 * Firmware upgradable via program port
105 * Support multiply RS485 devices by flexible rules
106 * Support Modbus protocol
107 * Support Interrupt uplink
108
109
110
111
112 == 1.4 Applications ==
113
114 * Smart Buildings & Home Automation
115 * Logistics and Supply Chain Management
116 * Smart Metering
117 * Smart Agriculture
118 * Smart Cities
119 * Smart Factory
120
121
122
123
124 == 1.5 Firmware Change log ==
125
126 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
127
128
129 == 1.6 Hardware Change log ==
130
131 (((
132
133
134 (((
135 v1.4
136 )))
137 )))
138
139 (((
140 (((
141 ~1. Change Power IC to TPS22916
142 )))
143 )))
144
145 (((
146
147 )))
148
149 (((
150 (((
151 v1.3
152 )))
153 )))
154
155 (((
156 (((
157 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
158 )))
159 )))
160
161 (((
162
163 )))
164
165 (((
166 (((
167 v1.2
168 )))
169 )))
170
171 (((
172 (((
173 Release version ​​​​​
174 )))
175
176
177 )))
178
179 = 2. Pin mapping and Power ON Device =
180
181 (((
182 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
183 )))
184
185 [[image:1652953055962-143.png||height="387" width="728"]]
186
187
188 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
189
190
191 = 3. Operation Mode =
192
193 == 3.1 How it works? ==
194
195 (((
196 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
197
198
199 )))
200
201 == 3.2 Example to join LoRaWAN network ==
202
203 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
204
205 [[image:1652953414711-647.png||height="337" width="723"]]
206
207
208 (((
209 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
210 )))
211
212 (((
213 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
214 )))
215
216 (((
217 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
218 )))
219
220 (((
221 Each RS485-BL is shipped with a sticker with unique device EUI:
222 )))
223
224 [[image:1652953462722-299.png]]
225
226
227 (((
228 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
229 )))
230
231 (((
232 **Add APP EUI in the application.**
233 )))
234
235
236 [[image:image-20220519174512-1.png]]
237
238 [[image:image-20220519174512-2.png||height="328" width="731"]]
239
240 [[image:image-20220519174512-3.png||height="556" width="724"]]
241
242 [[image:image-20220519174512-4.png]]
243
244
245 You can also choose to create the device manually.
246
247 [[image:1652953542269-423.png||height="710" width="723"]]
248
249
250 Add APP KEY and DEV EUI
251
252 [[image:1652953553383-907.png||height="514" width="724"]]
253
254
255
256 (((
257 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
258 )))
259
260 [[image:1652953568895-172.png||height="232" width="724"]]
261
262
263 == 3.3 Configure Commands to read data ==
264
265 (((
266 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
267
268
269 )))
270
271 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
272
273 (((
274 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
275 )))
276
277 (((
278 **~1. RS485-MODBUS mode:**
279 )))
280
281 (((
282 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
283 )))
284
285 (((
286 **2. TTL mode:**
287 )))
288
289 (((
290 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
291 )))
292
293 (((
294 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
295 )))
296
297 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
298 |=(% style="width: 80px;" %)(((
299 (((
300 **AT Commands**
301 )))
302 )))|=(% style="width: 210px;" %)(((
303 (((
304 **Description**
305 )))
306 )))|=(% style="width: 210px;" %)(((
307 (((
308 **Example**
309 )))
310 )))
311 |(% style="width:80px" %)(((
312 (((
313 AT+BAUDR
314 )))
315 )))|(% style="width:210px" %)(((
316 (((
317 Set the baud rate (for RS485 connection). Default Value is: 9600.
318 )))
319 )))|(% style="width:210px" %)(((
320 (((
321 (((
322 AT+BAUDR=9600
323 )))
324 )))
325
326 (((
327 (((
328 Options: (1200,2400,4800,14400,19200,115200)
329 )))
330 )))
331 )))
332 |(% style="width:80px" %)(((
333 (((
334 AT+PARITY
335 )))
336 )))|(% style="width:210px" %)(((
337 (((
338 (((
339 Set UART parity (for RS485 connection)
340 )))
341 )))
342
343 (((
344 (((
345 Default Value is: no parity.
346 )))
347 )))
348 )))|(% style="width:210px" %)(((
349 (((
350 (((
351 AT+PARITY=0
352 )))
353 )))
354
355 (((
356 (((
357 Option: 0: no parity, 1: odd parity, 2: even parity
358 )))
359 )))
360 )))
361 |(% style="width:80px" %)(((
362 (((
363 AT+STOPBIT
364 )))
365 )))|(% style="width:210px" %)(((
366 (((
367 (((
368 Set serial stopbit (for RS485 connection)
369 )))
370 )))
371
372 (((
373 (((
374 Default Value is: 1bit.
375 )))
376 )))
377 )))|(% style="width:210px" %)(((
378 (((
379 (((
380 AT+STOPBIT=0 for 1bit
381 )))
382 )))
383
384 (((
385 (((
386 AT+STOPBIT=1 for 1.5 bit
387 )))
388 )))
389
390 (((
391 (((
392 AT+STOPBIT=2 for 2 bits
393 )))
394 )))
395 )))
396
397 === 3.3.2 Configure sensors ===
398
399 (((
400 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
401 )))
402
403 (((
404 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
405 )))
406
407 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
408 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
409 |AT+CFGDEV|(% style="width:80px" %)(((
410 (((
411 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
412 )))
413
414 (((
415 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
416 )))
417
418 (((
419 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
420 )))
421 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
422
423 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
424
425
426
427 === 3.3.3 Configure read commands for each sampling ===
428
429 (((
430 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
431 )))
432
433 (((
434 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
435 )))
436
437 (((
438 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
439 )))
440
441 (((
442 This section describes how to achieve above goals.
443 )))
444
445 (((
446 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
447 )))
448
449 (((
450 **Command from RS485-BL to Sensor:**
451 )))
452
453 (((
454 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
455 )))
456
457 (((
458 **Handle return from sensors to RS485-BL**:
459 )))
460
461 (((
462 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
463 )))
464
465 * (((
466 **AT+DATACUT**
467 )))
468
469 (((
470 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
471 )))
472
473 * (((
474 **AT+SEARCH**
475 )))
476
477 (((
478 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
479 )))
480
481 (((
482 **Define wait timeout:**
483 )))
484
485 (((
486 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
487 )))
488
489 (((
490 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
491 )))
492
493 (((
494 **Examples:**
495 )))
496
497 (((
498 Below are examples for the how above AT Commands works.
499 )))
500
501 (((
502 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
503 )))
504
505 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
506 |(% style="width:498px" %)(((
507 (((
508 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
509 )))
510
511 (((
512 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
513 )))
514
515 (((
516 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
517 )))
518 )))
519
520 (((
521 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
522 )))
523
524 (((
525 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
526 )))
527
528 (((
529
530 )))
531
532 (((
533 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
534 )))
535
536 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
537 |(% style="width:577px" %)(((
538 (((
539 **AT+SEARCHx=aa,xx xx xx xx xx**
540 )))
541
542 * (((
543 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
544 )))
545 * (((
546 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
547 )))
548 )))
549
550 (((
551 **Examples:**
552 )))
553
554 (((
555 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
556 )))
557
558 (((
559 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
560 )))
561
562 (((
563 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
564 )))
565
566 (((
567 [[image:1653271044481-711.png]]
568 )))
569
570 (((
571 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
572 )))
573
574 (((
575 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
576 )))
577
578 (((
579 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
580 )))
581
582 (((
583 [[image:1653271276735-972.png]]
584 )))
585
586 (((
587 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
588 )))
589
590 (% style="background-color:#4f81bd; color:white; width:510px" %)
591 |(% style="width:726px" %)(((
592 (((
593 **AT+DATACUTx=a,b,c**
594 )))
595
596 * (((
597 **a: length for the return of AT+COMMAND**
598 )))
599 * (((
600 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
601 )))
602 * (((
603 **c: define the position for valid value.  **
604 )))
605 )))
606
607 (((
608 **Examples:**
609 )))
610
611 * (((
612 Grab bytes:
613 )))
614
615 (((
616 [[image:1653271581490-837.png||height="313" width="722"]]
617 )))
618
619 (((
620
621 )))
622
623 * (((
624 Grab a section.
625 )))
626
627 (((
628 [[image:1653271648378-342.png||height="326" width="720"]]
629 )))
630
631 (((
632
633 )))
634
635 * (((
636 Grab different sections.
637 )))
638
639 (((
640 [[image:1653271657255-576.png||height="305" width="730"]]
641 )))
642
643 (((
644 (((
645 (% style="color:red" %)**Note:**
646 )))
647 )))
648
649 (((
650 (((
651 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
652 )))
653 )))
654
655 (((
656 (((
657 **Example:**
658 )))
659 )))
660
661 (((
662 (((
663 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
664 )))
665 )))
666
667 (((
668 (((
669 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
670 )))
671 )))
672
673 (((
674 (((
675 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
676 )))
677 )))
678
679 (((
680 (((
681 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
682 )))
683 )))
684
685 (((
686 (((
687 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
688 )))
689 )))
690
691 (((
692 (((
693 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
694 )))
695 )))
696
697 (((
698 [[image:1653271763403-806.png]]
699 )))
700
701
702 === 3.3.4 Compose the uplink payload ===
703
704 (((
705 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
706
707
708 )))
709
710 (((
711 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
712
713
714 )))
715
716 (((
717 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
718 )))
719
720 (((
721 Final Payload is
722 )))
723
724 (((
725 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
726 )))
727
728 (((
729 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
730 )))
731
732 [[image:1653272787040-634.png||height="515" width="719"]]
733
734
735
736 (((
737 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
738
739
740 )))
741
742 (((
743 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
744 )))
745
746 (((
747 Final Payload is
748 )))
749
750 (((
751 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
752 )))
753
754 1. (((
755 Battery Info (2 bytes): Battery voltage
756 )))
757 1. (((
758 PAYVER (1 byte): Defined by AT+PAYVER
759 )))
760 1. (((
761 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
762 )))
763 1. (((
764 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
765 )))
766 1. (((
767 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
768 )))
769
770 [[image:1653272817147-600.png||height="437" width="717"]]
771
772 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
773
774
775 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
776
777 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
778
779 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
780
781
782 Below are the uplink payloads:
783
784 [[image:1653272901032-107.png]]
785
786
787 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
788
789 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
790
791 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
792
793 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
794
795 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
796
797
798
799 === 3.3.5 Uplink on demand ===
800
801 (((
802 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
803 )))
804
805 (((
806 Downlink control command:
807 )))
808
809 (((
810 **0x08 command**: Poll an uplink with current command set in RS485-BL.
811 )))
812
813 (((
814 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
815
816
817 )))
818
819 === 3.3.6 Uplink on Interrupt ===
820
821 Put the interrupt sensor between 3.3v_out and GPIO ext.
822
823 [[image:1653273818896-432.png]]
824
825
826 (((
827 AT+INTMOD=0  Disable Interrupt
828 )))
829
830 (((
831 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
832 )))
833
834 (((
835 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
836 )))
837
838 (((
839 AT+INTMOD=3  Interrupt trigger by rising edge.
840
841
842 )))
843
844 == 3.4 Uplink Payload ==
845
846 [[image:image-20220606105412-1.png]]
847
848 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
849
850 (((
851 {{{function Decoder(bytes, port) {}}}
852 )))
853
854 (((
855 {{{//Payload Formats of RS485-BL Deceive}}}
856 )))
857
858 (((
859 {{{return {}}}
860 )))
861
862 (((
863 {{{ //Battery,units:V}}}
864 )))
865
866 (((
867 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
868 )))
869
870 (((
871 {{{ //GPIO_EXTI }}}
872 )))
873
874 (((
875 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
876 )))
877
878 (((
879 {{{ //payload of version}}}
880 )))
881
882 (((
883 {{{ Pay_ver:bytes[2],}}}
884 )))
885
886 (((
887 {{{ }; }}}
888 )))
889
890 (((
891 **}**
892
893
894 )))
895
896 (((
897 TTN V3 uplink screen shot.
898 )))
899
900 [[image:1653274001211-372.png||height="192" width="732"]]
901
902
903 == 3.5 Configure RS485-BL via AT or Downlink ==
904
905 (((
906 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
907 )))
908
909 (((
910 There are two kinds of Commands:
911 )))
912
913 * (((
914 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
915 )))
916
917 * (((
918 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
919 )))
920
921 === 3.5.1 Common Commands: ===
922
923 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
924
925
926 === 3.5.2 Sensor related commands: ===
927
928
929
930 ==== **Choose Device Type (RS485 or TTL)** ====
931
932 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
933
934 * **AT Command**
935
936 (% class="box infomessage" %)
937 (((
938 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
939 )))
940
941 (% class="box infomessage" %)
942 (((
943 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
944 )))
945
946
947 * **Downlink Payload**
948
949 **0A aa**  ~-~->  same as AT+MOD=aa
950
951
952
953
954 ==== **RS485 Debug Command (AT+CFGDEV)** ====
955
956 (((
957 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
958 )))
959
960 * (((
961 **AT Command**
962 )))
963
964 (% class="box infomessage" %)
965 (((
966 (((
967 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
968 )))
969 )))
970
971 (((
972 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
973 )))
974
975 (((
976
977 )))
978
979 * (((
980 **Downlink Payload**
981 )))
982
983 (((
984 Format: A8 MM NN XX XX XX XX YY
985 )))
986
987 (((
988 Where:
989 )))
990
991 * (((
992 MM: 1: add CRC-16/MODBUS ; 0: no CRC
993 )))
994 * (((
995 NN: The length of RS485 command
996 )))
997 * (((
998 XX XX XX XX: RS485 command total NN bytes
999 )))
1000 * (((
1001 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1002 )))
1003
1004 (((
1005 **Example 1:**
1006 )))
1007
1008 (((
1009 To connect a Modbus Alarm with below commands.
1010 )))
1011
1012 * (((
1013 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1014 )))
1015
1016 * (((
1017 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1018 )))
1019
1020 (((
1021 So if user want to use downlink command to control to RS485 Alarm, he can use:
1022 )))
1023
1024 (((
1025 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1026 )))
1027
1028 (((
1029 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1030 )))
1031
1032 (((
1033 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1034 )))
1035
1036 (((
1037
1038 )))
1039
1040 (((
1041 **Example 2:**
1042 )))
1043
1044 (((
1045 Check TTL Sensor return:
1046 )))
1047
1048 (((
1049 [[image:1654132684752-193.png]]
1050 )))
1051
1052
1053
1054
1055
1056 ==== **Set Payload version** ====
1057
1058 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1059
1060 * **AT Command:**
1061
1062 (% class="box infomessage" %)
1063 (((
1064 **AT+PAYVER: Set PAYVER field = 1**
1065 )))
1066
1067
1068 * **Downlink Payload:**
1069
1070 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1071
1072 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1073
1074
1075
1076
1077 ==== **Set RS485 Sampling Commands** ====
1078
1079 (((
1080 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1081 )))
1082
1083 (((
1084 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1085 )))
1086
1087 (((
1088
1089 )))
1090
1091 * (((
1092 **AT Command:**
1093 )))
1094
1095 (% class="box infomessage" %)
1096 (((
1097 (((
1098 **AT+COMMANDx: Configure RS485 read command to sensor.**
1099 )))
1100 )))
1101
1102 (% class="box infomessage" %)
1103 (((
1104 (((
1105 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
1106 )))
1107 )))
1108
1109 (% class="box infomessage" %)
1110 (((
1111 (((
1112 **AT+SEARCHx: Configure search command**
1113 )))
1114 )))
1115
1116 (((
1117
1118 )))
1119
1120 * (((
1121 **Downlink Payload:**
1122 )))
1123
1124 (((
1125 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1126 )))
1127
1128 (((
1129 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1130 )))
1131
1132 (((
1133 Format: AF MM NN LL XX XX XX XX YY
1134 )))
1135
1136 (((
1137 Where:
1138 )))
1139
1140 * (((
1141 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1142 )))
1143 * (((
1144 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1145 )))
1146 * (((
1147 LL:  The length of AT+COMMAND or AT+DATACUT command
1148 )))
1149 * (((
1150 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1151 )))
1152 * (((
1153 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1154 )))
1155
1156 (((
1157 **Example:**
1158 )))
1159
1160 (((
1161 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1162 )))
1163
1164 (((
1165 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1166 )))
1167
1168 (((
1169 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1170 )))
1171
1172 (((
1173
1174 )))
1175
1176 (((
1177 **0xAB** downlink command can be used for set AT+SEARCHx
1178 )))
1179
1180 (((
1181 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1182 )))
1183
1184 * (((
1185 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1186 )))
1187 * (((
1188 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1189 )))
1190
1191 (((
1192 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1193 )))
1194
1195
1196
1197
1198 ==== **Fast command to handle MODBUS device** ====
1199
1200 (((
1201 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1202 )))
1203
1204 (((
1205 This command is valid since v1.3 firmware version
1206 )))
1207
1208 (((
1209
1210 )))
1211
1212 (((
1213 **AT+MBFUN has only two value:**
1214 )))
1215
1216 * (((
1217 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1218 )))
1219
1220 (((
1221 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1222 )))
1223
1224 * (((
1225 **AT+MBFUN=0**: Disable Modbus fast reading.
1226 )))
1227
1228 (((
1229 **Example:**
1230 )))
1231
1232 * (((
1233 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1234 )))
1235 * (((
1236 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1237 )))
1238 * (((
1239 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1240 )))
1241
1242 [[image:1654133913295-597.png]]
1243
1244
1245 [[image:1654133954153-643.png]]
1246
1247
1248 * (((
1249 **Downlink Commands:**
1250 )))
1251
1252 (((
1253 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1254 )))
1255
1256
1257
1258
1259 ==== **RS485 command timeout** ====
1260
1261 (((
1262 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1263 )))
1264
1265 (((
1266 Default value: 0, range:  0 ~~ 5 seconds
1267 )))
1268
1269 (((
1270
1271 )))
1272
1273 * (((
1274 **AT Command:**
1275 )))
1276
1277 (% class="box infomessage" %)
1278 (((
1279 (((
1280 **AT+CMDDLaa=hex(bb cc)**
1281 )))
1282 )))
1283
1284 (((
1285 **Example:**
1286 )))
1287
1288 (((
1289 **AT+CMDDL1=1000** to send the open time to 1000ms
1290 )))
1291
1292 (((
1293
1294 )))
1295
1296 * (((
1297 **Downlink Payload:**
1298 )))
1299
1300 (((
1301 0x AA aa bb cc
1302 )))
1303
1304 (((
1305 Same as: AT+CMDDLaa=hex(bb cc)
1306 )))
1307
1308 (((
1309 **Example:**
1310 )))
1311
1312 (((
1313 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1314 )))
1315
1316
1317
1318
1319 ==== **Uplink payload mode** ====
1320
1321 (((
1322 Define to use one uplink or multiple uplinks for the sampling.
1323 )))
1324
1325 (((
1326 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1327 )))
1328
1329 * (((
1330 **AT Command:**
1331 )))
1332
1333 (% class="box infomessage" %)
1334 (((
1335 (((
1336 **AT+DATAUP=0**
1337 )))
1338 )))
1339
1340 (% class="box infomessage" %)
1341 (((
1342 (((
1343 **AT+DATAUP=1**
1344 )))
1345 )))
1346
1347 (((
1348
1349 )))
1350
1351 * (((
1352 **Downlink Payload:**
1353 )))
1354
1355 (((
1356 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1357 )))
1358
1359 (((
1360 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1361 )))
1362
1363
1364
1365
1366 ==== **Manually trigger an Uplink** ====
1367
1368 Ask device to send an uplink immediately.
1369
1370 * **Downlink Payload:**
1371
1372 **0x08 FF**, RS485-BL will immediately send an uplink.
1373
1374
1375
1376
1377 ==== **Clear RS485 Command** ====
1378
1379 (((
1380 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1381 )))
1382
1383 (((
1384
1385 )))
1386
1387 * (((
1388 **AT Command:**
1389 )))
1390
1391 (((
1392 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1393 )))
1394
1395 (((
1396 Example screen shot after clear all RS485 commands. 
1397 )))
1398
1399 (((
1400
1401 )))
1402
1403 (((
1404 The uplink screen shot is:
1405 )))
1406
1407 (((
1408 [[image:1654134704555-320.png]]
1409 )))
1410
1411 (((
1412
1413 )))
1414
1415 * (((
1416 **Downlink Payload:**
1417 )))
1418
1419 (((
1420 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1421 )))
1422
1423
1424
1425
1426 ==== **Set Serial Communication Parameters** ====
1427
1428 (((
1429 Set the Rs485 serial communication parameters:
1430 )))
1431
1432 * (((
1433 **AT Command:**
1434 )))
1435
1436 (((
1437 Set Baud Rate:
1438 )))
1439
1440 (% class="box infomessage" %)
1441 (((
1442 (((
1443 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1444
1445 Set UART Parity
1446 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1447
1448 Set STOPBIT
1449
1450 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1451 )))
1452 )))
1453
1454
1455 * (((
1456 **Downlink Payload:**
1457 )))
1458
1459 (((
1460 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1461 )))
1462
1463 (((
1464 **Example:**
1465 )))
1466
1467 * (((
1468 A7 01 00 60   same as AT+BAUDR=9600
1469 )))
1470 * (((
1471 A7 01 04 80  same as AT+BAUDR=115200
1472 )))
1473
1474 (((
1475 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1476 )))
1477
1478 (((
1479 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1480 )))
1481
1482
1483
1484
1485 ==== **Control output power duration** ====
1486
1487 (((
1488 User can set the output power duration before each sampling.
1489 )))
1490
1491 * (((
1492 **AT Command:**
1493 )))
1494
1495 (((
1496 **Example:**
1497 )))
1498
1499 (((
1500 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1501 )))
1502
1503 (((
1504 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1505 )))
1506
1507 (((
1508
1509 )))
1510
1511 * (((
1512 **LoRaWAN Downlink Command:**
1513 )))
1514
1515 (((
1516 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1517 )))
1518
1519 (((
1520 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1521 )))
1522
1523
1524
1525 == 3.6 Buttons ==
1526
1527 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1528 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1529 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1530
1531 == 3.7 +3V3 Output ==
1532
1533 (((
1534 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1535 )))
1536
1537 (((
1538 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1539 )))
1540
1541 (((
1542 The +3V3 output time can be controlled by AT Command.
1543 )))
1544
1545 (((
1546
1547 )))
1548
1549 (((
1550 (% style="color:#037691" %)**AT+3V3T=1000**
1551 )))
1552
1553 (((
1554
1555 )))
1556
1557 (((
1558 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1559 )))
1560
1561 (((
1562 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1563 )))
1564
1565
1566 == 3.8 +5V Output ==
1567
1568 (((
1569 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1570 )))
1571
1572 (((
1573 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1574 )))
1575
1576 (((
1577 The 5V output time can be controlled by AT Command.
1578 )))
1579
1580 (((
1581
1582 )))
1583
1584 (((
1585 (% style="color:#037691" %)**AT+5VT=1000**
1586 )))
1587
1588 (((
1589
1590 )))
1591
1592 (((
1593 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1594 )))
1595
1596 (((
1597 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1598 )))
1599
1600
1601
1602 == 3.9 LEDs ==
1603
1604 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1605 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1606 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1607
1608 == 3.10 Switch Jumper ==
1609
1610 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1611 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1612 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1613 Flash position: Configure device, check running status.
1614 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1615 3.3v position: set to compatible with 3.3v I/O.,
1616
1617 (((
1618 **+3.3V**: is always ON
1619 )))
1620
1621 (((
1622 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1623 )))
1624
1625
1626 = 4. Case Study =
1627
1628 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1629
1630
1631 = 5. Use AT Command =
1632
1633 == 5.1 Access AT Command ==
1634
1635 (((
1636 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1637 )))
1638
1639 [[image:1654135840598-282.png]]
1640
1641
1642 (((
1643 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1644 )))
1645
1646 [[image:1654136105500-922.png]]
1647
1648
1649 (((
1650 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1651 )))
1652
1653
1654 == 5.2 Common AT Command Sequence ==
1655
1656 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1657
1658 If device has not joined network yet:
1659
1660 (% class="box infomessage" %)
1661 (((
1662 **AT+FDR**
1663 **AT+NJM=0**
1664 **ATZ**
1665 )))
1666
1667
1668 (((
1669 If device already joined network:
1670 )))
1671
1672 (% class="box infomessage" %)
1673 (((
1674 **AT+NJM=0**
1675 )))
1676
1677 (% class="box infomessage" %)
1678 (((
1679 **ATZ**
1680 )))
1681
1682
1683 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1684
1685
1686 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1687
1688 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1689
1690 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1691
1692 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1693
1694 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1695
1696 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1697
1698 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1699
1700 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1701
1702 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1703
1704 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1705
1706
1707 (% style="color:red" %)**Note:**
1708
1709 (((
1710 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1711 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1712 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1713 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1714 )))
1715
1716 [[image:1654136435598-589.png]]
1717
1718
1719 = 6. FAQ =
1720
1721 == 6.1 How to upgrade the image? ==
1722
1723 (((
1724 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1725 )))
1726
1727 * (((
1728 Support new features
1729 )))
1730 * (((
1731 For bug fix
1732 )))
1733 * (((
1734 Change LoRaWAN bands.
1735 )))
1736
1737 (((
1738 Below shows the hardware connection for how to upload an image to RS485-BL:
1739 )))
1740
1741 [[image:1654136646995-976.png]]
1742
1743 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1744
1745 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1746
1747 **Step3: **Open flashloader; choose the correct COM port to update.
1748
1749 [[image:image-20220602102605-1.png]]
1750
1751
1752 [[image:image-20220602102637-2.png]]
1753
1754
1755 [[image:image-20220602102715-3.png]]
1756
1757
1758
1759 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1760
1761 (((
1762 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1763 )))
1764
1765
1766
1767 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1768
1769 (((
1770 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1771 )))
1772
1773
1774
1775 = 7. Trouble Shooting =
1776
1777
1778 == 7.1 Downlink doesn’t work, how to solve it? ==
1779
1780 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1781
1782
1783 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1784
1785 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1786
1787
1788 = 8. Order Info =
1789
1790 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1791
1792 (% style="color:blue" %)**XXX:**
1793
1794 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1795 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1796 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1797 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1798 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1799 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1800 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1801 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1802 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1803 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1804
1805 = 9. Packing Info =
1806
1807 (((
1808 **Package Includes**:
1809 )))
1810
1811 * (((
1812 RS485-BL x 1
1813 )))
1814 * (((
1815 Stick Antenna for LoRa RF part x 1
1816 )))
1817 * (((
1818 Program cable x 1
1819 )))
1820
1821 (((
1822 **Dimension and weight**:
1823 )))
1824
1825 * (((
1826 Device Size: 13.5 x 7 x 3 cm
1827 )))
1828 * (((
1829 Device Weight: 105g
1830 )))
1831 * (((
1832 Package Size / pcs : 14.5 x 8 x 5 cm
1833 )))
1834 * (((
1835 Weight / pcs : 170g
1836
1837
1838 )))
1839
1840 = 10. Support =
1841
1842 * (((
1843 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1844 )))
1845 * (((
1846 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1847 )))