Version 42.22 by Xiaoling on 2022/06/06 14:26

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="385" width="385"]]
3
4
5
6
7 **RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19 = 1.Introduction =
20
21 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
22
23 (((
24
25 )))
26
27 (((
28 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
29 )))
30
31 (((
32 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
33 )))
34
35 (((
36 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
37 )))
38
39 (((
40 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
41 )))
42
43 (((
44 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
45 )))
46
47 (((
48 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
49 )))
50
51 (((
52 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
53 )))
54
55 [[image:1652953304999-717.png||height="424" width="733"]]
56
57
58
59 == 1.2 Specifications ==
60
61
62 **Hardware System:**
63
64 * STM32L072CZT6 MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption (exclude RS485 device):
67 ** Idle: 6uA@3.3v
68 ** 20dB Transmit: 130mA@3.3v
69
70 **Interface for Model:**
71
72 * 1 x RS485 Interface
73 * 1 x TTL Serial , 3.3v or 5v.
74 * 1 x I2C Interface, 3.3v or 5v.
75 * 1 x one wire interface
76 * 1 x Interrupt Interface
77 * 1 x Controllable 5V output, max
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * Programmable bit rate up to 300 kbps.
87 * High sensitivity: down to -148 dBm.
88 * Bullet-proof front end: IIP3 = -12.5 dBm.
89 * Excellent blocking immunity.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * LoRa modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
96
97
98
99 == 1.3 Features ==
100
101 * LoRaWAN Class A & Class C protocol (default Class A)
102 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
103 * AT Commands to change parameters
104 * Remote configure parameters via LoRaWAN Downlink
105 * Firmware upgradable via program port
106 * Support multiply RS485 devices by flexible rules
107 * Support Modbus protocol
108 * Support Interrupt uplink
109
110
111
112 == 1.4 Applications ==
113
114 * Smart Buildings & Home Automation
115 * Logistics and Supply Chain Management
116 * Smart Metering
117 * Smart Agriculture
118 * Smart Cities
119 * Smart Factory
120
121
122
123 == 1.5 Firmware Change log ==
124
125 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
126
127
128 == 1.6 Hardware Change log ==
129
130 (((
131
132
133 (((
134 v1.4
135 )))
136 )))
137
138 (((
139 (((
140 ~1. Change Power IC to TPS22916
141 )))
142 )))
143
144 (((
145
146 )))
147
148 (((
149 (((
150 v1.3
151 )))
152 )))
153
154 (((
155 (((
156 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
157 )))
158 )))
159
160 (((
161
162 )))
163
164 (((
165 (((
166 v1.2
167 )))
168 )))
169
170 (((
171 (((
172 Release version ​​​​​
173 )))
174
175
176 )))
177
178 = 2. Pin mapping and Power ON Device =
179
180 (((
181 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
182 )))
183
184 [[image:1652953055962-143.png||height="387" width="728"]]
185
186
187 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
188
189
190 = 3. Operation Mode =
191
192 == 3.1 How it works? ==
193
194 (((
195 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
196
197
198 )))
199
200 == 3.2 Example to join LoRaWAN network ==
201
202 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
203
204 [[image:1652953414711-647.png||height="337" width="723"]]
205
206 (((
207 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
208 )))
209
210 (((
211 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
212 )))
213
214 (((
215 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
216 )))
217
218 (((
219 Each RS485-BL is shipped with a sticker with unique device EUI:
220 )))
221
222 [[image:1652953462722-299.png]]
223
224 (((
225 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
226 )))
227
228 (((
229 Add APP EUI in the application.
230 )))
231
232
233 [[image:image-20220519174512-1.png]]
234
235 [[image:image-20220519174512-2.png||height="328" width="731"]]
236
237 [[image:image-20220519174512-3.png||height="556" width="724"]]
238
239 [[image:image-20220519174512-4.png]]
240
241 You can also choose to create the device manually.
242
243 [[image:1652953542269-423.png||height="710" width="723"]]
244
245 Add APP KEY and DEV EUI
246
247 [[image:1652953553383-907.png||height="514" width="724"]]
248
249
250 (((
251 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
252 )))
253
254 [[image:1652953568895-172.png||height="232" width="724"]]
255
256
257 == 3.3 Configure Commands to read data ==
258
259 (((
260 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
261
262
263 )))
264
265 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
266
267 (((
268 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
269 )))
270
271 (((
272 **~1. RS485-MODBUS mode:**
273 )))
274
275 (((
276 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
277 )))
278
279 (((
280 **2. TTL mode:**
281 )))
282
283 (((
284 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
285 )))
286
287 (((
288 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
289 )))
290
291 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
292 |=(% style="width: 80px;" %)(((
293 (((
294 **AT Commands**
295 )))
296 )))|=(% style="width: 210px;" %)(((
297 (((
298 **Description**
299 )))
300 )))|=(% style="width: 210px;" %)(((
301 (((
302 **Example**
303 )))
304 )))
305 |(% style="width:80px" %)(((
306 (((
307 AT+BAUDR
308 )))
309 )))|(% style="width:210px" %)(((
310 (((
311 Set the baud rate (for RS485 connection). Default Value is: 9600.
312 )))
313 )))|(% style="width:210px" %)(((
314 (((
315 (((
316 AT+BAUDR=9600
317 )))
318 )))
319
320 (((
321 (((
322 Options: (1200,2400,4800,14400,19200,115200)
323 )))
324 )))
325 )))
326 |(% style="width:80px" %)(((
327 (((
328 AT+PARITY
329 )))
330 )))|(% style="width:210px" %)(((
331 (((
332 (((
333 Set UART parity (for RS485 connection)
334 )))
335 )))
336
337 (((
338 (((
339 Default Value is: no parity.
340 )))
341 )))
342 )))|(% style="width:210px" %)(((
343 (((
344 (((
345 AT+PARITY=0
346 )))
347 )))
348
349 (((
350 (((
351 Option: 0: no parity, 1: odd parity, 2: even parity
352 )))
353 )))
354 )))
355 |(% style="width:80px" %)(((
356 (((
357 AT+STOPBIT
358 )))
359 )))|(% style="width:210px" %)(((
360 (((
361 (((
362 Set serial stopbit (for RS485 connection)
363 )))
364 )))
365
366 (((
367 (((
368 Default Value is: 1bit.
369 )))
370 )))
371 )))|(% style="width:210px" %)(((
372 (((
373 (((
374 AT+STOPBIT=0 for 1bit
375 )))
376 )))
377
378 (((
379 (((
380 AT+STOPBIT=1 for 1.5 bit
381 )))
382 )))
383
384 (((
385 (((
386 AT+STOPBIT=2 for 2 bits
387 )))
388 )))
389 )))
390
391
392
393 === 3.3.2 Configure sensors ===
394
395 (((
396 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
397 )))
398
399 (((
400 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
401 )))
402
403 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
404 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
405 |AT+CFGDEV|(% style="width:80px" %)(((
406 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
407
408 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
409
410 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
411 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
412
413 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
414
415
416
417 === 3.3.3 Configure read commands for each sampling ===
418
419 (((
420 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
421 )))
422
423 (((
424 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
425 )))
426
427 (((
428 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
429 )))
430
431 (((
432 This section describes how to achieve above goals.
433 )))
434
435 (((
436 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
437 )))
438
439 (((
440 **Command from RS485-BL to Sensor:**
441 )))
442
443 (((
444 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
445 )))
446
447 (((
448 **Handle return from sensors to RS485-BL**:
449 )))
450
451 (((
452 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
453 )))
454
455 * (((
456 **AT+DATACUT**
457 )))
458
459 (((
460 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
461 )))
462
463 * (((
464 **AT+SEARCH**
465 )))
466
467 (((
468 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
469 )))
470
471 (((
472 **Define wait timeout:**
473 )))
474
475 (((
476 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
477 )))
478
479 (((
480 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
481 )))
482
483 (((
484 **Examples:**
485 )))
486
487 (((
488 Below are examples for the how above AT Commands works.
489 )))
490
491 (((
492 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
493 )))
494
495 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
496 |(% style="width:498px" %)(((
497 (((
498 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
499 )))
500
501 (((
502 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
503 )))
504
505 (((
506 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
507 )))
508 )))
509
510 (((
511 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
512 )))
513
514 (((
515 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
516 )))
517
518 (((
519
520 )))
521
522 (((
523 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
524 )))
525
526 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
527 |(% style="width:577px" %)(((
528 (((
529 **AT+SEARCHx=aa,xx xx xx xx xx**
530 )))
531
532 * (((
533 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
534 )))
535 * (((
536 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
537 )))
538 )))
539
540 (((
541 **Examples:**
542 )))
543
544 (((
545 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
546 )))
547
548 (((
549 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
550 )))
551
552 (((
553 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
554 )))
555
556 (((
557 [[image:1653271044481-711.png]]
558 )))
559
560 (((
561 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
562 )))
563
564 (((
565 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
566 )))
567
568 (((
569 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
570 )))
571
572 (((
573 [[image:1653271276735-972.png]]
574 )))
575
576 (((
577 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
578 )))
579
580 (% style="background-color:#4f81bd; color:white; width:510px" %)
581 |(% style="width:726px" %)(((
582 (((
583 **AT+DATACUTx=a,b,c**
584 )))
585
586 * (((
587 **a: length for the return of AT+COMMAND**
588 )))
589 * (((
590 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
591 )))
592 * (((
593 **c: define the position for valid value.  **
594 )))
595 )))
596
597 (((
598 **Examples:**
599 )))
600
601 * (((
602 Grab bytes:
603 )))
604
605 (((
606 [[image:1653271581490-837.png||height="313" width="722"]]
607 )))
608
609 (((
610
611 )))
612
613 * (((
614 Grab a section.
615 )))
616
617 (((
618 [[image:1653271648378-342.png||height="326" width="720"]]
619 )))
620
621 (((
622
623 )))
624
625 * (((
626 Grab different sections.
627 )))
628
629 (((
630 [[image:1653271657255-576.png||height="305" width="730"]]
631 )))
632
633 (((
634 (((
635 (% style="color:red" %)**Note:**
636 )))
637 )))
638
639 (((
640 (((
641 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
642 )))
643 )))
644
645 (((
646 (((
647 **Example:**
648 )))
649 )))
650
651 (((
652 (((
653 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
654 )))
655 )))
656
657 (((
658 (((
659 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
660 )))
661 )))
662
663 (((
664 (((
665 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
666 )))
667 )))
668
669 (((
670 (((
671 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
672 )))
673 )))
674
675 (((
676 (((
677 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
678 )))
679 )))
680
681 (((
682 (((
683 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
684 )))
685 )))
686
687 (((
688 [[image:1653271763403-806.png]]
689 )))
690
691
692 === 3.3.4 Compose the uplink payload ===
693
694 (((
695 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
696
697
698 )))
699
700 (((
701 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
702
703
704 )))
705
706 (((
707 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
708 )))
709
710 (((
711 Final Payload is
712 )))
713
714 (((
715 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
716 )))
717
718 (((
719 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
720 )))
721
722 [[image:1653272787040-634.png||height="515" width="719"]]
723
724
725
726 (((
727 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
728
729
730 )))
731
732 (((
733 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
734 )))
735
736 (((
737 Final Payload is
738 )))
739
740 (((
741 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
742 )))
743
744 1. (((
745 Battery Info (2 bytes): Battery voltage
746 )))
747 1. (((
748 PAYVER (1 byte): Defined by AT+PAYVER
749 )))
750 1. (((
751 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
752 )))
753 1. (((
754 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
755 )))
756 1. (((
757 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
758 )))
759
760 [[image:1653272817147-600.png||height="437" width="717"]]
761
762 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
763
764
765 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
766
767 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
768
769 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
770
771
772 Below are the uplink payloads:
773
774 [[image:1653272901032-107.png]]
775
776
777 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
778
779 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
780
781 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
782
783 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
784
785 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
786
787
788
789 === 3.3.5 Uplink on demand ===
790
791 (((
792 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
793 )))
794
795 (((
796 Downlink control command:
797 )))
798
799 (((
800 **0x08 command**: Poll an uplink with current command set in RS485-BL.
801 )))
802
803 (((
804 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
805
806
807 )))
808
809 === 3.3.6 Uplink on Interrupt ===
810
811 Put the interrupt sensor between 3.3v_out and GPIO ext.
812
813 [[image:1653273818896-432.png]]
814
815
816 (((
817 AT+INTMOD=0  Disable Interrupt
818 )))
819
820 (((
821 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
822 )))
823
824 (((
825 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
826 )))
827
828 (((
829 AT+INTMOD=3  Interrupt trigger by rising edge.
830
831
832 )))
833
834 == 3.4 Uplink Payload ==
835
836 [[image:image-20220606105412-1.png]]
837
838 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
839
840 (((
841 {{{function Decoder(bytes, port) {}}}
842 )))
843
844 (((
845 {{{//Payload Formats of RS485-BL Deceive}}}
846 )))
847
848 (((
849 {{{return {}}}
850 )))
851
852 (((
853 {{{ //Battery,units:V}}}
854 )))
855
856 (((
857 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
858 )))
859
860 (((
861 {{{ //GPIO_EXTI }}}
862 )))
863
864 (((
865 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
866 )))
867
868 (((
869 {{{ //payload of version}}}
870 )))
871
872 (((
873 {{{ Pay_ver:bytes[2],}}}
874 )))
875
876 (((
877 {{{ }; }}}
878 )))
879
880 (((
881 **}**
882
883
884 )))
885
886 (((
887 TTN V3 uplink screen shot.
888 )))
889
890 [[image:1653274001211-372.png||height="192" width="732"]]
891
892
893 == 3.5 Configure RS485-BL via AT or Downlink ==
894
895 (((
896 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
897 )))
898
899 (((
900 There are two kinds of Commands:
901 )))
902
903 * (((
904 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
905 )))
906
907 * (((
908 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
909 )))
910
911
912 === 3.5.1 Common Commands: ===
913
914 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
915
916
917 === 3.5.2 Sensor related commands: ===
918
919
920
921 ==== **Choose Device Type (RS485 or TTL)** ====
922
923 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
924
925 * **AT Command**
926
927 (% class="box infomessage" %)
928 (((
929 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
930 )))
931
932 (% class="box infomessage" %)
933 (((
934 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
935 )))
936
937
938 * **Downlink Payload**
939
940 **0A aa**  ~-~->  same as AT+MOD=aa
941
942
943
944
945 ==== **RS485 Debug Command (AT+CFGDEV)** ====
946
947 (((
948 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
949 )))
950
951 * (((
952 **AT Command**
953 )))
954
955 (% class="box infomessage" %)
956 (((
957 (((
958 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
959 )))
960 )))
961
962 (((
963 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
964 )))
965
966 (((
967
968 )))
969
970 * (((
971 **Downlink Payload**
972 )))
973
974 (((
975 Format: A8 MM NN XX XX XX XX YY
976 )))
977
978 (((
979 Where:
980 )))
981
982 * (((
983 MM: 1: add CRC-16/MODBUS ; 0: no CRC
984 )))
985 * (((
986 NN: The length of RS485 command
987 )))
988 * (((
989 XX XX XX XX: RS485 command total NN bytes
990 )))
991 * (((
992 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
993 )))
994
995 (((
996 **Example 1:**
997 )))
998
999 (((
1000 To connect a Modbus Alarm with below commands.
1001 )))
1002
1003 * (((
1004 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1005 )))
1006
1007 * (((
1008 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1009 )))
1010
1011 (((
1012 So if user want to use downlink command to control to RS485 Alarm, he can use:
1013 )))
1014
1015 (((
1016 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1017 )))
1018
1019 (((
1020 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1021 )))
1022
1023 (((
1024 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1025 )))
1026
1027 (((
1028
1029 )))
1030
1031 (((
1032 **Example 2:**
1033 )))
1034
1035 (((
1036 Check TTL Sensor return:
1037 )))
1038
1039 (((
1040 [[image:1654132684752-193.png]]
1041 )))
1042
1043
1044
1045
1046
1047 ==== **Set Payload version** ====
1048
1049 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1050
1051 * **AT Command:**
1052
1053 (% class="box infomessage" %)
1054 (((
1055 **AT+PAYVER: Set PAYVER field = 1**
1056 )))
1057
1058
1059 * **Downlink Payload:**
1060
1061 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1062
1063 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1064
1065
1066
1067
1068 ==== **Set RS485 Sampling Commands** ====
1069
1070 (((
1071 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1072 )))
1073
1074 (((
1075 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1076 )))
1077
1078 (((
1079
1080 )))
1081
1082 * (((
1083 **AT Command:**
1084 )))
1085
1086 (% class="box infomessage" %)
1087 (((
1088 (((
1089 **AT+COMMANDx: Configure RS485 read command to sensor.**
1090 )))
1091 )))
1092
1093 (% class="box infomessage" %)
1094 (((
1095 (((
1096 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
1097 )))
1098 )))
1099
1100 (% class="box infomessage" %)
1101 (((
1102 (((
1103 **AT+SEARCHx: Configure search command**
1104 )))
1105 )))
1106
1107 (((
1108
1109 )))
1110
1111 * (((
1112 **Downlink Payload:**
1113 )))
1114
1115 (((
1116 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1117 )))
1118
1119 (((
1120 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1121 )))
1122
1123 (((
1124 Format: AF MM NN LL XX XX XX XX YY
1125 )))
1126
1127 (((
1128 Where:
1129 )))
1130
1131 * (((
1132 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1133 )))
1134 * (((
1135 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1136 )))
1137 * (((
1138 LL:  The length of AT+COMMAND or AT+DATACUT command
1139 )))
1140 * (((
1141 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1142 )))
1143 * (((
1144 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1145 )))
1146
1147 (((
1148 **Example:**
1149 )))
1150
1151 (((
1152 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1153 )))
1154
1155 (((
1156 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1157 )))
1158
1159 (((
1160 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1161 )))
1162
1163 (((
1164
1165 )))
1166
1167 (((
1168 **0xAB** downlink command can be used for set AT+SEARCHx
1169 )))
1170
1171 (((
1172 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1173 )))
1174
1175 * (((
1176 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1177 )))
1178 * (((
1179 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1180 )))
1181
1182 (((
1183 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1184 )))
1185
1186
1187
1188
1189 ==== **Fast command to handle MODBUS device** ====
1190
1191 (((
1192 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1193 )))
1194
1195 (((
1196 This command is valid since v1.3 firmware version
1197 )))
1198
1199 (((
1200
1201 )))
1202
1203 (((
1204 **AT+MBFUN has only two value:**
1205 )))
1206
1207 * (((
1208 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1209 )))
1210
1211 (((
1212 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1213 )))
1214
1215 * (((
1216 **AT+MBFUN=0**: Disable Modbus fast reading.
1217 )))
1218
1219 (((
1220 **Example:**
1221 )))
1222
1223 * (((
1224 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1225 )))
1226 * (((
1227 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1228 )))
1229 * (((
1230 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1231 )))
1232
1233 [[image:1654133913295-597.png]]
1234
1235
1236 [[image:1654133954153-643.png]]
1237
1238
1239 * (((
1240 **Downlink Commands:**
1241 )))
1242
1243 (((
1244 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1245 )))
1246
1247
1248
1249
1250 ==== **RS485 command timeout** ====
1251
1252 (((
1253 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1254 )))
1255
1256 (((
1257 Default value: 0, range:  0 ~~ 5 seconds
1258 )))
1259
1260 (((
1261
1262 )))
1263
1264 * (((
1265 **AT Command:**
1266 )))
1267
1268 (% class="box infomessage" %)
1269 (((
1270 (((
1271 **AT+CMDDLaa=hex(bb cc)**
1272 )))
1273 )))
1274
1275 (((
1276 **Example:**
1277 )))
1278
1279 (((
1280 **AT+CMDDL1=1000** to send the open time to 1000ms
1281 )))
1282
1283 (((
1284
1285 )))
1286
1287 * (((
1288 **Downlink Payload:**
1289 )))
1290
1291 (((
1292 0x AA aa bb cc
1293 )))
1294
1295 (((
1296 Same as: AT+CMDDLaa=hex(bb cc)
1297 )))
1298
1299 (((
1300 **Example:**
1301 )))
1302
1303 (((
1304 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1305 )))
1306
1307
1308
1309
1310 ==== **Uplink payload mode** ====
1311
1312 (((
1313 Define to use one uplink or multiple uplinks for the sampling.
1314 )))
1315
1316 (((
1317 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1318 )))
1319
1320 * (((
1321 **AT Command:**
1322 )))
1323
1324 (% class="box infomessage" %)
1325 (((
1326 (((
1327 **AT+DATAUP=0**
1328 )))
1329 )))
1330
1331 (% class="box infomessage" %)
1332 (((
1333 (((
1334 **AT+DATAUP=1**
1335 )))
1336 )))
1337
1338 (((
1339
1340 )))
1341
1342 * (((
1343 **Downlink Payload:**
1344 )))
1345
1346 (((
1347 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1348 )))
1349
1350 (((
1351 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1352 )))
1353
1354
1355
1356
1357 ==== **Manually trigger an Uplink** ====
1358
1359 Ask device to send an uplink immediately.
1360
1361 * **Downlink Payload:**
1362
1363 **0x08 FF**, RS485-BL will immediately send an uplink.
1364
1365
1366
1367
1368 ==== **Clear RS485 Command** ====
1369
1370 (((
1371 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1372 )))
1373
1374 (((
1375
1376 )))
1377
1378 * (((
1379 **AT Command:**
1380 )))
1381
1382 (((
1383 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1384 )))
1385
1386 (((
1387 Example screen shot after clear all RS485 commands. 
1388 )))
1389
1390 (((
1391
1392 )))
1393
1394 (((
1395 The uplink screen shot is:
1396 )))
1397
1398 (((
1399 [[image:1654134704555-320.png]]
1400 )))
1401
1402 (((
1403
1404 )))
1405
1406 * (((
1407 **Downlink Payload:**
1408 )))
1409
1410 (((
1411 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1412 )))
1413
1414
1415
1416
1417 ==== **Set Serial Communication Parameters** ====
1418
1419 (((
1420 Set the Rs485 serial communication parameters:
1421 )))
1422
1423 * (((
1424 **AT Command:**
1425 )))
1426
1427 (((
1428 Set Baud Rate:
1429 )))
1430
1431 (% class="box infomessage" %)
1432 (((
1433 (((
1434 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1435 )))
1436 )))
1437
1438 (((
1439 Set UART Parity
1440 )))
1441
1442 (% class="box infomessage" %)
1443 (((
1444 (((
1445 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1446 )))
1447 )))
1448
1449 (((
1450 Set STOPBIT
1451 )))
1452
1453 (% class="box infomessage" %)
1454 (((
1455 (((
1456 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1457 )))
1458 )))
1459
1460 (((
1461
1462 )))
1463
1464 * (((
1465 **Downlink Payload:**
1466 )))
1467
1468 (((
1469 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1470 )))
1471
1472 (((
1473 **Example:**
1474 )))
1475
1476 * (((
1477 A7 01 00 60   same as AT+BAUDR=9600
1478 )))
1479 * (((
1480 A7 01 04 80  same as AT+BAUDR=115200
1481 )))
1482
1483 (((
1484 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1485 )))
1486
1487 (((
1488 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1489 )))
1490
1491
1492
1493
1494 ==== **Control output power duration** ====
1495
1496 (((
1497 User can set the output power duration before each sampling.
1498 )))
1499
1500 * (((
1501 **AT Command:**
1502 )))
1503
1504 (((
1505 **Example:**
1506 )))
1507
1508 (((
1509 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1510 )))
1511
1512 (((
1513 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1514 )))
1515
1516 (((
1517
1518 )))
1519
1520 * (((
1521 **LoRaWAN Downlink Command:**
1522 )))
1523
1524 (((
1525 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1526 )))
1527
1528 (((
1529 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1530 )))
1531
1532
1533
1534 == 3.6 Buttons ==
1535
1536 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1537 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1538 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1539
1540
1541 == 3.7 +3V3 Output ==
1542
1543 (((
1544 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1545 )))
1546
1547 (((
1548 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1549 )))
1550
1551 (((
1552 The +3V3 output time can be controlled by AT Command.
1553 )))
1554
1555 (((
1556
1557 )))
1558
1559 (((
1560 (% style="color:#037691" %)**AT+3V3T=1000**
1561 )))
1562
1563 (((
1564
1565 )))
1566
1567 (((
1568 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1569 )))
1570
1571 (((
1572 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1573 )))
1574
1575
1576 == 3.8 +5V Output ==
1577
1578 (((
1579 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1580 )))
1581
1582 (((
1583 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1584 )))
1585
1586 (((
1587 The 5V output time can be controlled by AT Command.
1588 )))
1589
1590 (((
1591
1592 )))
1593
1594 (((
1595 (% style="color:#037691" %)**AT+5VT=1000**
1596 )))
1597
1598 (((
1599
1600 )))
1601
1602 (((
1603 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1604 )))
1605
1606 (((
1607 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1608 )))
1609
1610
1611
1612 == 3.9 LEDs ==
1613
1614 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1615 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1616 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1617
1618
1619 == 3.10 Switch Jumper ==
1620
1621 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:400px" %)
1622 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 277px;" %)**Feature**
1623 |(% style="width:123px" %)**SW1**|(% style="width:277px" %)ISP position: Upgrade firmware via UART
1624 Flash position: Configure device, check running status.
1625 |(% style="width:123px" %)**SW2**|(% style="width:277px" %)5V position: set to compatible with 5v I/O.
1626 3.3v position: set to compatible with 3.3v I/O.,
1627
1628 (((
1629 **+3.3V**: is always ON
1630 )))
1631
1632 (((
1633 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1634 )))
1635
1636
1637 = 4. Case Study =
1638
1639 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1640
1641
1642 = 5. Use AT Command =
1643
1644 == 5.1 Access AT Command ==
1645
1646 (((
1647 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1648 )))
1649
1650 [[image:1654135840598-282.png]]
1651
1652
1653 (((
1654 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1655 )))
1656
1657 [[image:1654136105500-922.png]]
1658
1659
1660 (((
1661 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1662 )))
1663
1664
1665 == 5.2 Common AT Command Sequence ==
1666
1667 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1668
1669 If device has not joined network yet:
1670
1671 (% class="box infomessage" %)
1672 (((
1673 **AT+FDR**
1674 )))
1675
1676 (% class="box infomessage" %)
1677 (((
1678 **AT+NJM=0**
1679 )))
1680
1681 (% class="box infomessage" %)
1682 (((
1683 **ATZ**
1684 )))
1685
1686
1687 (((
1688 If device already joined network:
1689 )))
1690
1691 (% class="box infomessage" %)
1692 (((
1693 **AT+NJM=0**
1694 )))
1695
1696 (% class="box infomessage" %)
1697 (((
1698 **ATZ**
1699 )))
1700
1701
1702 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1703
1704
1705 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1706
1707 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1708
1709 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1710
1711 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1712
1713 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1714
1715 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1716
1717 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1718
1719 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1720
1721 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1722
1723 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1724
1725
1726 (% style="color:red" %)**Note:**
1727
1728 (((
1729 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1730 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1731 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1732 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1733 )))
1734
1735 [[image:1654136435598-589.png]]
1736
1737
1738 = 6. FAQ =
1739
1740 == 6.1 How to upgrade the image? ==
1741
1742 (((
1743 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1744 )))
1745
1746 * (((
1747 Support new features
1748 )))
1749 * (((
1750 For bug fix
1751 )))
1752 * (((
1753 Change LoRaWAN bands.
1754 )))
1755
1756 (((
1757 Below shows the hardware connection for how to upload an image to RS485-BL:
1758 )))
1759
1760 [[image:1654136646995-976.png]]
1761
1762 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1763
1764 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1765
1766 **Step3: **Open flashloader; choose the correct COM port to update.
1767
1768 [[image:image-20220602102605-1.png]]
1769
1770
1771 [[image:image-20220602102637-2.png]]
1772
1773
1774 [[image:image-20220602102715-3.png]]
1775
1776
1777
1778 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1779
1780 (((
1781 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1782 )))
1783
1784
1785
1786 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1787
1788 (((
1789 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1790 )))
1791
1792
1793
1794 = 7. Trouble Shooting =
1795
1796
1797 == 7.1 Downlink doesn’t work, how to solve it? ==
1798
1799 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1800
1801
1802 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1803
1804 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1805
1806
1807 = 8. Order Info =
1808
1809 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1810
1811 (% style="color:blue" %)**XXX:**
1812
1813 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1814 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1815 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1816 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1817 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1818 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1819 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1820 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1821 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1822 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1823
1824
1825 = 9. Packing Info =
1826
1827 (((
1828 **Package Includes**:
1829 )))
1830
1831 * (((
1832 RS485-BL x 1
1833 )))
1834 * (((
1835 Stick Antenna for LoRa RF part x 1
1836 )))
1837 * (((
1838 Program cable x 1
1839 )))
1840
1841 (((
1842 **Dimension and weight**:
1843 )))
1844
1845 * (((
1846 Device Size: 13.5 x 7 x 3 cm
1847 )))
1848 * (((
1849 Device Weight: 105g
1850 )))
1851 * (((
1852 Package Size / pcs : 14.5 x 8 x 5 cm
1853 )))
1854 * (((
1855 Weight / pcs : 170g
1856
1857
1858 )))
1859
1860 = 10. Support =
1861
1862 * (((
1863 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1864 )))
1865 * (((
1866 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1867 )))