Version 41.2 by Xiaoling on 2022/06/06 10:54

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="385" width="385"]]
3
4
5
6
7 **RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19 = 1.Introduction =
20
21 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
22
23 (((
24
25 )))
26
27 (((
28 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
29 )))
30
31 (((
32 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
33 )))
34
35 (((
36 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
37 )))
38
39 (((
40 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
41 )))
42
43 (((
44 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
45 )))
46
47 (((
48 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
49 )))
50
51 (((
52 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
53 )))
54
55 [[image:1652953304999-717.png||height="424" width="733"]]
56
57
58
59 == 1.2 Specifications ==
60
61
62 **Hardware System:**
63
64 * STM32L072CZT6 MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption (exclude RS485 device):
67 ** Idle: 6uA@3.3v
68 ** 20dB Transmit: 130mA@3.3v
69
70 **Interface for Model:**
71
72 * 1 x RS485 Interface
73 * 1 x TTL Serial , 3.3v or 5v.
74 * 1 x I2C Interface, 3.3v or 5v.
75 * 1 x one wire interface
76 * 1 x Interrupt Interface
77 * 1 x Controllable 5V output, max
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * Programmable bit rate up to 300 kbps.
87 * High sensitivity: down to -148 dBm.
88 * Bullet-proof front end: IIP3 = -12.5 dBm.
89 * Excellent blocking immunity.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * LoRa modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
96
97 == 1.3 Features ==
98
99 * LoRaWAN Class A & Class C protocol (default Class A)
100 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
101 * AT Commands to change parameters
102 * Remote configure parameters via LoRaWAN Downlink
103 * Firmware upgradable via program port
104 * Support multiply RS485 devices by flexible rules
105 * Support Modbus protocol
106 * Support Interrupt uplink
107
108 == 1.4 Applications ==
109
110 * Smart Buildings & Home Automation
111 * Logistics and Supply Chain Management
112 * Smart Metering
113 * Smart Agriculture
114 * Smart Cities
115 * Smart Factory
116
117 == 1.5 Firmware Change log ==
118
119 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
120
121
122 == 1.6 Hardware Change log ==
123
124 (((
125
126
127 (((
128 v1.4
129 )))
130 )))
131
132 (((
133 (((
134 ~1. Change Power IC to TPS22916
135 )))
136 )))
137
138 (((
139
140 )))
141
142 (((
143 (((
144 v1.3
145 )))
146 )))
147
148 (((
149 (((
150 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
151 )))
152 )))
153
154 (((
155
156 )))
157
158 (((
159 (((
160 v1.2
161 )))
162 )))
163
164 (((
165 (((
166 Release version ​​​​​
167 )))
168
169
170 )))
171
172 = 2. Pin mapping and Power ON Device =
173
174 (((
175 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
176 )))
177
178 [[image:1652953055962-143.png||height="387" width="728"]]
179
180
181 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
182
183
184 = 3. Operation Mode =
185
186 == 3.1 How it works? ==
187
188 (((
189 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
190
191
192 )))
193
194 == 3.2 Example to join LoRaWAN network ==
195
196 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
197
198 [[image:1652953414711-647.png||height="337" width="723"]]
199
200 (((
201 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
202 )))
203
204 (((
205 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
206 )))
207
208 (((
209 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
210 )))
211
212 (((
213 Each RS485-BL is shipped with a sticker with unique device EUI:
214 )))
215
216 [[image:1652953462722-299.png]]
217
218 (((
219 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
220 )))
221
222 (((
223 Add APP EUI in the application.
224 )))
225
226
227 [[image:image-20220519174512-1.png]]
228
229 [[image:image-20220519174512-2.png||height="328" width="731"]]
230
231 [[image:image-20220519174512-3.png||height="556" width="724"]]
232
233 [[image:image-20220519174512-4.png]]
234
235 You can also choose to create the device manually.
236
237 [[image:1652953542269-423.png||height="710" width="723"]]
238
239 Add APP KEY and DEV EUI
240
241 [[image:1652953553383-907.png||height="514" width="724"]]
242
243
244 (((
245 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
246 )))
247
248 [[image:1652953568895-172.png||height="232" width="724"]]
249
250
251 == 3.3 Configure Commands to read data ==
252
253 (((
254 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
255
256
257 )))
258
259 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
260
261 (((
262 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
263 )))
264
265 (((
266 **~1. RS485-MODBUS mode:**
267 )))
268
269 (((
270 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
271 )))
272
273 (((
274 **2. TTL mode:**
275 )))
276
277 (((
278 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
279 )))
280
281 (((
282 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
283 )))
284
285 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
286 |=(% style="width: 120px;" %)(((
287 (((
288 **AT Commands**
289 )))
290 )))|=(% style="width: 190px;" %)(((
291 (((
292 **Description**
293 )))
294 )))|=(% style="width: 190px;" %)(((
295 (((
296 **Example**
297 )))
298 )))
299 |(% style="width:120px" %)(((
300 (((
301 AT+BAUDR
302 )))
303 )))|(% style="width:190px" %)(((
304 (((
305 Set the baud rate (for RS485 connection). Default Value is: 9600.
306 )))
307 )))|(% style="width:190px" %)(((
308 (((
309 (((
310 AT+BAUDR=9600
311 )))
312 )))
313
314 (((
315 (((
316 Options: (1200,2400,4800,14400,19200,115200)
317 )))
318 )))
319 )))
320 |(% style="width:120px" %)(((
321 (((
322 AT+PARITY
323 )))
324 )))|(% style="width:190px" %)(((
325 (((
326 (((
327 Set UART parity (for RS485 connection)
328 )))
329 )))
330
331 (((
332 (((
333 Default Value is: no parity.
334 )))
335 )))
336 )))|(% style="width:190px" %)(((
337 (((
338 (((
339 AT+PARITY=0
340 )))
341 )))
342
343 (((
344 (((
345 Option: 0: no parity, 1: odd parity, 2: even parity
346 )))
347 )))
348 )))
349 |(% style="width:120px" %)(((
350 (((
351 AT+STOPBIT
352 )))
353 )))|(% style="width:190px" %)(((
354 (((
355 (((
356 Set serial stopbit (for RS485 connection)
357 )))
358 )))
359
360 (((
361 (((
362 Default Value is: 1bit.
363 )))
364 )))
365 )))|(% style="width:190px" %)(((
366 (((
367 (((
368 AT+STOPBIT=0 for 1bit
369 )))
370 )))
371
372 (((
373 (((
374 AT+STOPBIT=1 for 1.5 bit
375 )))
376 )))
377
378 (((
379 (((
380 AT+STOPBIT=2 for 2 bits
381 )))
382 )))
383 )))
384
385
386
387 === 3.3.2 Configure sensors ===
388
389 (((
390 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
391 )))
392
393 (((
394 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
395 )))
396
397 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
398 |=(% style="width: 120px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
399 |AT+CFGDEV|(% style="width:120px" %)(((
400 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
401
402 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
403
404 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
405 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
406
407 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
408
409
410
411 === 3.3.3 Configure read commands for each sampling ===
412
413 (((
414 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
415 )))
416
417 (((
418 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
419 )))
420
421 (((
422 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
423 )))
424
425 (((
426 This section describes how to achieve above goals.
427 )))
428
429 (((
430 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
431 )))
432
433 (((
434 **Command from RS485-BL to Sensor:**
435 )))
436
437 (((
438 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
439 )))
440
441 (((
442 **Handle return from sensors to RS485-BL**:
443 )))
444
445 (((
446 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
447 )))
448
449 * (((
450 **AT+DATACUT**
451 )))
452
453 (((
454 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
455 )))
456
457 * (((
458 **AT+SEARCH**
459 )))
460
461 (((
462 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
463 )))
464
465 (((
466 **Define wait timeout:**
467 )))
468
469 (((
470 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
471 )))
472
473 (((
474 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
475 )))
476
477 (((
478 **Examples:**
479 )))
480
481 (((
482 Below are examples for the how above AT Commands works.
483 )))
484
485 (((
486 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
487 )))
488
489 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
490 |(% style="width:498px" %)(((
491 (((
492 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
493 )))
494
495 (((
496 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
497 )))
498
499 (((
500 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
501 )))
502 )))
503
504 (((
505 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
506 )))
507
508 (((
509 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
510 )))
511
512 (((
513 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
514 )))
515
516 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
517 |(% style="width:577px" %)(((
518 (((
519 **AT+SEARCHx=aa,xx xx xx xx xx**
520 )))
521
522 * (((
523 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
524 )))
525 * (((
526 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
527 )))
528 )))
529
530 (((
531 **Examples:**
532 )))
533
534 (((
535 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
536 )))
537
538 (((
539 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
540 )))
541
542 (((
543 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
544 )))
545
546 (((
547 [[image:1653271044481-711.png]]
548 )))
549
550 (((
551 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
552 )))
553
554 (((
555 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
556 )))
557
558 (((
559 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
560 )))
561
562 (((
563 [[image:1653271276735-972.png]]
564 )))
565
566 (((
567 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
568 )))
569
570 (% style="background-color:#4f81bd; color:white; width:510px" %)
571 |(% style="width:726px" %)(((
572 (((
573 **AT+DATACUTx=a,b,c**
574 )))
575
576 * (((
577 **a: length for the return of AT+COMMAND**
578 )))
579 * (((
580 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
581 )))
582 * (((
583 **c: define the position for valid value.  **
584 )))
585 )))
586
587 (((
588 **Examples:**
589 )))
590
591 * (((
592 Grab bytes:
593 )))
594
595 (((
596 [[image:1653271581490-837.png||height="313" width="722"]]
597 )))
598
599 (((
600
601 )))
602
603 * (((
604 Grab a section.
605 )))
606
607 (((
608 [[image:1653271648378-342.png||height="326" width="720"]]
609 )))
610
611 (((
612
613 )))
614
615 * (((
616 Grab different sections.
617 )))
618
619 (((
620 [[image:1653271657255-576.png||height="305" width="730"]]
621 )))
622
623 (((
624 (((
625 (% style="color:red" %)**Note:**
626 )))
627 )))
628
629 (((
630 (((
631 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
632 )))
633 )))
634
635 (((
636 (((
637 **Example:**
638 )))
639 )))
640
641 (((
642 (((
643 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
644 )))
645 )))
646
647 (((
648 (((
649 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
650 )))
651 )))
652
653 (((
654 (((
655 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
656 )))
657 )))
658
659 (((
660 (((
661 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
662 )))
663 )))
664
665 (((
666 (((
667 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
668 )))
669 )))
670
671 (((
672 (((
673 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
674 )))
675 )))
676
677 (((
678 [[image:1653271763403-806.png]]
679 )))
680
681
682 === 3.3.4 Compose the uplink payload ===
683
684 (((
685 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
686
687
688 )))
689
690 (((
691 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
692
693
694 )))
695
696 (((
697 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
698 )))
699
700 (((
701 Final Payload is
702 )))
703
704 (((
705 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
706 )))
707
708 (((
709 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
710 )))
711
712 [[image:1653272787040-634.png||height="515" width="719"]]
713
714
715
716 (((
717 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
718
719
720 )))
721
722 (((
723 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
724 )))
725
726 (((
727 Final Payload is
728 )))
729
730 (((
731 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
732 )))
733
734 1. (((
735 Battery Info (2 bytes): Battery voltage
736 )))
737 1. (((
738 PAYVER (1 byte): Defined by AT+PAYVER
739 )))
740 1. (((
741 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
742 )))
743 1. (((
744 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
745 )))
746 1. (((
747 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
748 )))
749
750 [[image:1653272817147-600.png||height="437" width="717"]]
751
752 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
753
754
755 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
756
757 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
758
759 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
760
761
762 Below are the uplink payloads:
763
764 [[image:1653272901032-107.png]]
765
766
767 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
768
769 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
770
771 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
772
773 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
774
775 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
776
777
778
779 === 3.3.5 Uplink on demand ===
780
781 (((
782 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
783 )))
784
785 (((
786 Downlink control command:
787 )))
788
789 (((
790 **0x08 command**: Poll an uplink with current command set in RS485-BL.
791 )))
792
793 (((
794 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
795
796
797 )))
798
799 === 3.3.6 Uplink on Interrupt ===
800
801 Put the interrupt sensor between 3.3v_out and GPIO ext.
802
803 [[image:1653273818896-432.png]]
804
805
806 (((
807 AT+INTMOD=0  Disable Interrupt
808 )))
809
810 (((
811 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
812 )))
813
814 (((
815 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
816 )))
817
818 (((
819 AT+INTMOD=3  Interrupt trigger by rising edge.
820
821
822 )))
823
824 == 3.4 Uplink Payload ==
825
826 [[image:image-20220606105412-1.png]]
827
828 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
829
830 (((
831 {{{function Decoder(bytes, port) {}}}
832 )))
833
834 (((
835 {{{//Payload Formats of RS485-BL Deceive}}}
836 )))
837
838 (((
839 {{{return {}}}
840 )))
841
842 (((
843 {{{ //Battery,units:V}}}
844 )))
845
846 (((
847 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
848 )))
849
850 (((
851 {{{ //GPIO_EXTI }}}
852 )))
853
854 (((
855 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
856 )))
857
858 (((
859 {{{ //payload of version}}}
860 )))
861
862 (((
863 {{{ Pay_ver:bytes[2],}}}
864 )))
865
866 (((
867 {{{ }; }}}
868 )))
869
870 (((
871 **}**
872
873
874 )))
875
876 (((
877 TTN V3 uplink screen shot.
878 )))
879
880 [[image:1653274001211-372.png||height="192" width="732"]]
881
882
883 == 3.5 Configure RS485-BL via AT or Downlink ==
884
885 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
886
887 There are two kinds of Commands:
888
889 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
890
891 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
892
893 === 3.5.1 Common Commands: ===
894
895 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
896
897
898 === 3.5.2 Sensor related commands: ===
899
900
901 ==== **Choose Device Type (RS485 or TTL)** ====
902
903 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
904
905 * **AT Command**
906
907 (% class="box infomessage" %)
908 (((
909 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
910 )))
911
912 (% class="box infomessage" %)
913 (((
914 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
915 )))
916
917
918 * **Downlink Payload**
919
920 **0A aa**  ~-~->  same as AT+MOD=aa
921
922
923
924 ==== **RS485 Debug Command (AT+CFGDEV)** ====
925
926 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
927
928 * **AT Command**
929
930 (% class="box infomessage" %)
931 (((
932 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
933 )))
934
935 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
936
937
938 * **Downlink Payload**
939
940 Format: A8 MM NN XX XX XX XX YY
941
942 Where:
943
944 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
945 * NN: The length of RS485 command
946 * XX XX XX XX: RS485 command total NN bytes
947 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
948
949 **Example 1:**
950
951 To connect a Modbus Alarm with below commands.
952
953 * The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
954
955 * The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
956
957 So if user want to use downlink command to control to RS485 Alarm, he can use:
958
959 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
960
961 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
962
963 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
964
965
966 **Example 2:**
967
968 Check TTL Sensor return:
969
970 [[image:1654132684752-193.png]]
971
972
973
974
975 ==== **Set Payload version** ====
976
977 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
978
979 * **AT Command:**
980
981 (% class="box infomessage" %)
982 (((
983 **AT+PAYVER: Set PAYVER field = 1**
984 )))
985
986
987 * **Downlink Payload:**
988
989 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
990
991 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
992
993
994
995 ==== **Set RS485 Sampling Commands** ====
996
997 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
998
999 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1000
1001
1002 * **AT Command:**
1003
1004 (% class="box infomessage" %)
1005 (((
1006 **AT+COMMANDx: Configure RS485 read command to sensor.**
1007 )))
1008
1009 (% class="box infomessage" %)
1010 (((
1011 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
1012 )))
1013
1014 (% class="box infomessage" %)
1015 (((
1016 **AT+SEARCHx: Configure search command**
1017 )))
1018
1019
1020 * **Downlink Payload:**
1021
1022 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1023
1024 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1025
1026 Format: AF MM NN LL XX XX XX XX YY
1027
1028 Where:
1029
1030 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1031 * NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1032 * LL:  The length of AT+COMMAND or AT+DATACUT command
1033 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
1034 * YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1035
1036 **Example:**
1037
1038 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1039
1040 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1041
1042 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1043
1044
1045 **0xAB** downlink command can be used for set AT+SEARCHx
1046
1047 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1048
1049 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1050 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1051
1052 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1053
1054
1055
1056 ==== **Fast command to handle MODBUS device** ====
1057
1058 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1059
1060 This command is valid since v1.3 firmware version
1061
1062
1063 **AT+MBFUN has only two value:**
1064
1065 * **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1066
1067 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1068
1069 * **AT+MBFUN=0**: Disable Modbus fast reading.
1070
1071 **Example:**
1072
1073 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1074 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1075 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1076
1077 [[image:1654133913295-597.png]]
1078
1079
1080 [[image:1654133954153-643.png]]
1081
1082
1083 * **Downlink Commands:**
1084
1085 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1086
1087
1088
1089 ==== **RS485 command timeout** ====
1090
1091 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1092
1093 Default value: 0, range:  0 ~~ 5 seconds
1094
1095
1096 * **AT Command:**
1097
1098 (% class="box infomessage" %)
1099 (((
1100 **AT+CMDDLaa=hex(bb cc)**
1101 )))
1102
1103 **Example:**
1104
1105 **AT+CMDDL1=1000** to send the open time to 1000ms
1106
1107
1108 * **Downlink Payload:**
1109
1110 0x AA aa bb cc
1111
1112 Same as: AT+CMDDLaa=hex(bb cc)
1113
1114 **Example:**
1115
1116 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1117
1118
1119
1120 ==== **Uplink payload mode** ====
1121
1122 Define to use one uplink or multiple uplinks for the sampling.
1123
1124 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1125
1126 * **AT Command:**
1127
1128 (% class="box infomessage" %)
1129 (((
1130 **AT+DATAUP=0**
1131 )))
1132
1133 (% class="box infomessage" %)
1134 (((
1135 **AT+DATAUP=1**
1136 )))
1137
1138
1139 * **Downlink Payload:**
1140
1141 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1142
1143 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1144
1145
1146
1147
1148 ==== **Manually trigger an Uplink** ====
1149
1150 Ask device to send an uplink immediately.
1151
1152 * **Downlink Payload:**
1153
1154 **0x08 FF**, RS485-BL will immediately send an uplink.
1155
1156
1157
1158
1159 ==== **Clear RS485 Command** ====
1160
1161 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1162
1163
1164 * **AT Command:**
1165
1166 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1167
1168 Example screen shot after clear all RS485 commands. 
1169
1170
1171 The uplink screen shot is:
1172
1173 [[image:1654134704555-320.png]]
1174
1175
1176 * **Downlink Payload:**
1177
1178 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1179
1180
1181
1182 ==== **Set Serial Communication Parameters** ====
1183
1184 Set the Rs485 serial communication parameters:
1185
1186 * **AT Command:**
1187
1188 Set Baud Rate:
1189
1190 (% class="box infomessage" %)
1191 (((
1192 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1193 )))
1194
1195 Set UART Parity
1196
1197 (% class="box infomessage" %)
1198 (((
1199 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1200 )))
1201
1202 Set STOPBIT
1203
1204 (% class="box infomessage" %)
1205 (((
1206 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1207 )))
1208
1209
1210 * **Downlink Payload:**
1211
1212 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1213
1214 **Example:**
1215
1216 * A7 01 00 60   same as AT+BAUDR=9600
1217 * A7 01 04 80  same as AT+BAUDR=115200
1218
1219 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1220
1221 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1222
1223
1224
1225 ==== **Control output power duration** ====
1226
1227 User can set the output power duration before each sampling.
1228
1229 * **AT Command:**
1230
1231 **Example:**
1232
1233 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1234
1235 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1236
1237
1238 * **LoRaWAN Downlink Command:**
1239
1240 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1241
1242 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1243
1244
1245
1246 == 3.6 Buttons ==
1247
1248 (% border="1" style="background-color:#ffffcc; color:green; width:233px" %)
1249 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1250 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1251
1252 == 3.7 +3V3 Output ==
1253
1254 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1255
1256 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1257
1258 The +3V3 output time can be controlled by AT Command.
1259
1260
1261 (% style="color:#037691" %)**AT+3V3T=1000**
1262
1263
1264 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1265
1266 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1267
1268
1269 == 3.8 +5V Output ==
1270
1271 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1272
1273 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1274
1275 The 5V output time can be controlled by AT Command.
1276
1277
1278 (% style="color:#037691" %)**AT+5VT=1000**
1279
1280
1281 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1282
1283 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1284
1285
1286 == 3.9 LEDs ==
1287
1288 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1289 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1290 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1291
1292 == 3.10 Switch Jumper ==
1293
1294 (% border="1" style="background-color:#ffffcc; color:green; width:515px" %)
1295 |=(% style="width: 124px;" %)**Switch Jumper**|=(% style="width: 388px;" %)**Feature**
1296 |(% style="width:124px" %)**SW1**|(% style="width:388px" %)(((
1297 ISP position: Upgrade firmware via UART
1298
1299 Flash position: Configure device, check running status.
1300 )))
1301 |(% style="width:124px" %)**SW2**|(% style="width:388px" %)(((
1302 5V position: set to compatible with 5v I/O.
1303
1304 3.3v position: set to compatible with 3.3v I/O.,
1305 )))
1306
1307 **+3.3V**: is always ON
1308
1309 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1310
1311
1312 = 4. Case Study =
1313
1314 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1315
1316
1317 = 5. Use AT Command =
1318
1319 == 5.1 Access AT Command ==
1320
1321 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1322
1323 [[image:1654135840598-282.png]]
1324
1325
1326 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1327
1328 [[image:1654136105500-922.png]]
1329
1330
1331 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1332
1333
1334 == 5.2 Common AT Command Sequence ==
1335
1336 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1337
1338 If device has not joined network yet:
1339
1340 (% class="box infomessage" %)
1341 (((
1342 **AT+FDR**
1343 )))
1344
1345 (% class="box infomessage" %)
1346 (((
1347 **AT+NJM=0**
1348 )))
1349
1350 (% class="box infomessage" %)
1351 (((
1352 **ATZ**
1353 )))
1354
1355
1356 If device already joined network:
1357
1358 (% class="box infomessage" %)
1359 (((
1360 **AT+NJM=0**
1361 )))
1362
1363 (% class="box infomessage" %)
1364 (((
1365 **ATZ**
1366 )))
1367
1368
1369 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1370
1371
1372 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1373
1374 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1375
1376 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1377
1378 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1379
1380 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1381
1382 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1383
1384 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1385
1386 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1387
1388 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1389
1390 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1391
1392
1393 (% style="color:red" %)**Note:**
1394
1395 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1396 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1397 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1398 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1399
1400 [[image:1654136435598-589.png]]
1401
1402
1403 = 6. FAQ =
1404
1405 == 6.1 How to upgrade the image? ==
1406
1407 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1408
1409 * Support new features
1410 * For bug fix
1411 * Change LoRaWAN bands.
1412
1413 Below shows the hardware connection for how to upload an image to RS485-BL:
1414
1415 [[image:1654136646995-976.png]]
1416
1417 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1418
1419 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1420
1421 **Step3: **Open flashloader; choose the correct COM port to update.
1422
1423 [[image:image-20220602102605-1.png]]
1424
1425
1426 [[image:image-20220602102637-2.png]]
1427
1428
1429 [[image:image-20220602102715-3.png]]
1430
1431
1432
1433 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1434
1435 (((
1436 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1437 )))
1438
1439
1440
1441 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1442
1443 (((
1444 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1445 )))
1446
1447
1448
1449 = 7. Trouble Shooting =
1450
1451
1452 == 7.1 Downlink doesn’t work, how to solve it? ==
1453
1454 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1455
1456
1457 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1458
1459 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1460
1461
1462 = 8. Order Info =
1463
1464 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1465
1466 (% style="color:blue" %)**XXX:**
1467
1468 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1469 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1470 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1471 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1472 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1473 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1474 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1475 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1476 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1477 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1478
1479 = 9. Packing Info =
1480
1481 (((
1482 **Package Includes**:
1483 )))
1484
1485 * (((
1486 RS485-BL x 1
1487 )))
1488 * (((
1489 Stick Antenna for LoRa RF part x 1
1490 )))
1491 * (((
1492 Program cable x 1
1493 )))
1494
1495 (((
1496 **Dimension and weight**:
1497 )))
1498
1499 * (((
1500 Device Size: 13.5 x 7 x 3 cm
1501 )))
1502 * (((
1503 Device Weight: 105g
1504 )))
1505 * (((
1506 Package Size / pcs : 14.5 x 8 x 5 cm
1507 )))
1508 * (((
1509 Weight / pcs : 170g
1510
1511
1512 )))
1513
1514 = 10. Support =
1515
1516 * (((
1517 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1518 )))
1519 * (((
1520 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1521 )))