Version 40.53 by Xiaoling on 2022/06/06 10:50

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="385" width="385"]]
3
4
5
6
7 **RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19 = 1.Introduction =
20
21 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
22
23 (((
24
25 )))
26
27 (((
28 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
29 )))
30
31 (((
32 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
33 )))
34
35 (((
36 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
37 )))
38
39 (((
40 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
41 )))
42
43 (((
44 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
45 )))
46
47 (((
48 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
49 )))
50
51 (((
52 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
53 )))
54
55 [[image:1652953304999-717.png||height="424" width="733"]]
56
57
58
59 == 1.2 Specifications ==
60
61
62 **Hardware System:**
63
64 * STM32L072CZT6 MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption (exclude RS485 device):
67 ** Idle: 6uA@3.3v
68 ** 20dB Transmit: 130mA@3.3v
69
70 **Interface for Model:**
71
72 * 1 x RS485 Interface
73 * 1 x TTL Serial , 3.3v or 5v.
74 * 1 x I2C Interface, 3.3v or 5v.
75 * 1 x one wire interface
76 * 1 x Interrupt Interface
77 * 1 x Controllable 5V output, max
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * Programmable bit rate up to 300 kbps.
87 * High sensitivity: down to -148 dBm.
88 * Bullet-proof front end: IIP3 = -12.5 dBm.
89 * Excellent blocking immunity.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * LoRa modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
96
97 == 1.3 Features ==
98
99 * LoRaWAN Class A & Class C protocol (default Class A)
100 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
101 * AT Commands to change parameters
102 * Remote configure parameters via LoRaWAN Downlink
103 * Firmware upgradable via program port
104 * Support multiply RS485 devices by flexible rules
105 * Support Modbus protocol
106 * Support Interrupt uplink
107
108 == 1.4 Applications ==
109
110 * Smart Buildings & Home Automation
111 * Logistics and Supply Chain Management
112 * Smart Metering
113 * Smart Agriculture
114 * Smart Cities
115 * Smart Factory
116
117 == 1.5 Firmware Change log ==
118
119 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
120
121
122 == 1.6 Hardware Change log ==
123
124 (((
125
126
127 (((
128 v1.4
129 )))
130 )))
131
132 (((
133 (((
134 ~1. Change Power IC to TPS22916
135 )))
136 )))
137
138 (((
139
140 )))
141
142 (((
143 (((
144 v1.3
145 )))
146 )))
147
148 (((
149 (((
150 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
151 )))
152 )))
153
154 (((
155
156 )))
157
158 (((
159 (((
160 v1.2
161 )))
162 )))
163
164 (((
165 (((
166 Release version ​​​​​
167 )))
168
169
170 )))
171
172 = 2. Pin mapping and Power ON Device =
173
174 (((
175 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
176 )))
177
178 [[image:1652953055962-143.png||height="387" width="728"]]
179
180
181 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
182
183
184 = 3. Operation Mode =
185
186 == 3.1 How it works? ==
187
188 (((
189 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
190
191
192 )))
193
194 == 3.2 Example to join LoRaWAN network ==
195
196 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
197
198 [[image:1652953414711-647.png||height="337" width="723"]]
199
200 (((
201 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
202 )))
203
204 (((
205 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
206 )))
207
208 (((
209 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
210 )))
211
212 (((
213 Each RS485-BL is shipped with a sticker with unique device EUI:
214 )))
215
216 [[image:1652953462722-299.png]]
217
218 (((
219 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
220 )))
221
222 (((
223 Add APP EUI in the application.
224 )))
225
226
227 [[image:image-20220519174512-1.png]]
228
229 [[image:image-20220519174512-2.png||height="328" width="731"]]
230
231 [[image:image-20220519174512-3.png||height="556" width="724"]]
232
233 [[image:image-20220519174512-4.png]]
234
235 You can also choose to create the device manually.
236
237 [[image:1652953542269-423.png||height="710" width="723"]]
238
239 Add APP KEY and DEV EUI
240
241 [[image:1652953553383-907.png||height="514" width="724"]]
242
243
244 (((
245 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
246 )))
247
248 [[image:1652953568895-172.png||height="232" width="724"]]
249
250
251 == 3.3 Configure Commands to read data ==
252
253 (((
254 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
255
256
257 )))
258
259 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
260
261 (((
262 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
263 )))
264
265 (((
266 **~1. RS485-MODBUS mode:**
267 )))
268
269 (((
270 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
271 )))
272
273 (((
274 **2. TTL mode:**
275 )))
276
277 (((
278 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
279 )))
280
281 (((
282 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
283 )))
284
285 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
286 |=(% style="width: 120px;" %)(((
287 (((
288 **AT Commands**
289 )))
290 )))|=(% style="width: 190px;" %)(((
291 (((
292 **Description**
293 )))
294 )))|=(% style="width: 190px;" %)(((
295 (((
296 **Example**
297 )))
298 )))
299 |(% style="width:120px" %)(((
300 (((
301 AT+BAUDR
302 )))
303 )))|(% style="width:190px" %)(((
304 (((
305 Set the baud rate (for RS485 connection). Default Value is: 9600.
306 )))
307 )))|(% style="width:190px" %)(((
308 (((
309 (((
310 AT+BAUDR=9600
311 )))
312 )))
313
314 (((
315 (((
316 Options: (1200,2400,4800,14400,19200,115200)
317 )))
318 )))
319 )))
320 |(% style="width:120px" %)(((
321 (((
322 AT+PARITY
323 )))
324 )))|(% style="width:190px" %)(((
325 (((
326 (((
327 Set UART parity (for RS485 connection)
328 )))
329 )))
330
331 (((
332 (((
333 Default Value is: no parity.
334 )))
335 )))
336 )))|(% style="width:190px" %)(((
337 (((
338 (((
339 AT+PARITY=0
340 )))
341 )))
342
343 (((
344 (((
345 Option: 0: no parity, 1: odd parity, 2: even parity
346 )))
347 )))
348 )))
349 |(% style="width:120px" %)(((
350 (((
351 AT+STOPBIT
352 )))
353 )))|(% style="width:190px" %)(((
354 (((
355 (((
356 Set serial stopbit (for RS485 connection)
357 )))
358 )))
359
360 (((
361 (((
362 Default Value is: 1bit.
363 )))
364 )))
365 )))|(% style="width:190px" %)(((
366 (((
367 (((
368 AT+STOPBIT=0 for 1bit
369 )))
370 )))
371
372 (((
373 (((
374 AT+STOPBIT=1 for 1.5 bit
375 )))
376 )))
377
378 (((
379 (((
380 AT+STOPBIT=2 for 2 bits
381 )))
382 )))
383 )))
384
385
386
387 === 3.3.2 Configure sensors ===
388
389 (((
390 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
391 )))
392
393 (((
394 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
395 )))
396
397 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
398 |=(% style="width: 120px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
399 |AT+CFGDEV|(% style="width:120px" %)(((
400 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
401
402 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
403
404 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
405 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
406
407 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
408
409
410
411 === 3.3.3 Configure read commands for each sampling ===
412
413 (((
414 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
415 )))
416
417 (((
418 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
419 )))
420
421 (((
422 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
423 )))
424
425 (((
426 This section describes how to achieve above goals.
427 )))
428
429 (((
430 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
431 )))
432
433 (((
434 **Command from RS485-BL to Sensor:**
435 )))
436
437 (((
438 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
439 )))
440
441 (((
442 **Handle return from sensors to RS485-BL**:
443 )))
444
445 (((
446 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
447 )))
448
449 * (((
450 **AT+DATACUT**
451 )))
452
453 (((
454 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
455 )))
456
457 * (((
458 **AT+SEARCH**
459 )))
460
461 (((
462 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
463 )))
464
465 (((
466 **Define wait timeout:**
467 )))
468
469 (((
470 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
471 )))
472
473 (((
474 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
475 )))
476
477 **Examples:**
478
479 Below are examples for the how above AT Commands works.
480
481 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
482
483 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
484 |(% style="width:498px" %)(((
485 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
486
487 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
488
489 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
490 )))
491
492 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
493
494 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
495
496 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
497
498 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
499 |(% style="width:577px" %)(((
500 **AT+SEARCHx=aa,xx xx xx xx xx**
501
502 * **aa: 1: prefix match mode; 2: prefix and suffix match mode**
503 * **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
504 )))
505
506 **Examples:**
507
508 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
509
510 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
511
512 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
513
514 [[image:1653271044481-711.png]]
515
516 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
517
518 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
519
520 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
521
522 [[image:1653271276735-972.png]]
523
524 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
525
526 (% style="background-color:#4f81bd; color:white; width:510px" %)
527 |(% style="width:726px" %)(((
528 **AT+DATACUTx=a,b,c**
529
530 * **a: length for the return of AT+COMMAND**
531 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
532 * **c: define the position for valid value.  **
533 )))
534
535 **Examples:**
536
537 * Grab bytes:
538
539 [[image:1653271581490-837.png||height="313" width="722"]]
540
541
542 * Grab a section.
543
544 [[image:1653271648378-342.png||height="326" width="720"]]
545
546
547 * Grab different sections.
548
549 [[image:1653271657255-576.png||height="305" width="730"]]
550
551 (((
552 (% style="color:red" %)**Note:**
553 )))
554
555 (((
556 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
557 )))
558
559 (((
560 **Example:**
561 )))
562
563 (((
564 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
565 )))
566
567 (((
568 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
569 )))
570
571 (((
572 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
573 )))
574
575 (((
576 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
577 )))
578
579 (((
580 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
581 )))
582
583 (((
584 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
585 )))
586
587 [[image:1653271763403-806.png]]
588
589
590 === 3.3.4 Compose the uplink payload ===
591
592 (((
593 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
594
595
596 )))
597
598 (((
599 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
600
601
602 )))
603
604 (((
605 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
606 )))
607
608 (((
609 Final Payload is
610 )))
611
612 (((
613 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
614 )))
615
616 (((
617 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
618 )))
619
620 [[image:1653272787040-634.png||height="515" width="719"]]
621
622
623
624 (((
625 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
626
627
628 )))
629
630 (((
631 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
632 )))
633
634 (((
635 Final Payload is
636 )))
637
638 (((
639 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
640 )))
641
642 1. (((
643 Battery Info (2 bytes): Battery voltage
644 )))
645 1. (((
646 PAYVER (1 byte): Defined by AT+PAYVER
647 )))
648 1. (((
649 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
650 )))
651 1. (((
652 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
653 )))
654 1. (((
655 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
656 )))
657
658 [[image:1653272817147-600.png||height="437" width="717"]]
659
660 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
661
662
663 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
664
665 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
666
667 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
668
669
670 Below are the uplink payloads:
671
672 [[image:1653272901032-107.png]]
673
674
675 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
676
677 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
678
679 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
680
681 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
682
683 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
684
685
686
687 === 3.3.5 Uplink on demand ===
688
689 (((
690 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
691 )))
692
693 (((
694 Downlink control command:
695 )))
696
697 (((
698 **0x08 command**: Poll an uplink with current command set in RS485-BL.
699 )))
700
701 (((
702 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
703
704
705 )))
706
707 === 3.3.6 Uplink on Interrupt ===
708
709 Put the interrupt sensor between 3.3v_out and GPIO ext.
710
711 [[image:1653273818896-432.png]]
712
713
714 (((
715 AT+INTMOD=0  Disable Interrupt
716 )))
717
718 (((
719 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
720 )))
721
722 (((
723 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
724 )))
725
726 (((
727 AT+INTMOD=3  Interrupt trigger by rising edge.
728
729
730 )))
731
732 == 3.4 Uplink Payload ==
733
734 (% border="1" style="background-color:#4f81bd; color:white; width:850px" %)
735 |**Size(bytes)**|(% style="width:130px" %)**2**|(% style="width:93px" %)**1**|(% style="width:509px" %)**Length depends on the return from the commands**
736 |Value|(% style="width:130px" %)(((
737 (((
738 Battery(mV)
739 )))
740
741 (((
742 &
743 )))
744
745 (((
746 Interrupt _Flag
747 )))
748 )))|(% style="width:93px" %)(((
749 PAYLOAD_VER
750
751
752 )))|(% style="width:509px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
753
754 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
755
756 (((
757 {{{function Decoder(bytes, port) {}}}
758 )))
759
760 (((
761 {{{//Payload Formats of RS485-BL Deceive}}}
762 )))
763
764 (((
765 {{{return {}}}
766 )))
767
768 (((
769 {{{ //Battery,units:V}}}
770 )))
771
772 (((
773 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
774 )))
775
776 (((
777 {{{ //GPIO_EXTI }}}
778 )))
779
780 (((
781 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
782 )))
783
784 (((
785 {{{ //payload of version}}}
786 )))
787
788 (((
789 {{{ Pay_ver:bytes[2],}}}
790 )))
791
792 (((
793 {{{ }; }}}
794 )))
795
796 (((
797 **}**
798
799
800 )))
801
802 (((
803 TTN V3 uplink screen shot.
804 )))
805
806 [[image:1653274001211-372.png||height="192" width="732"]]
807
808
809 == 3.5 Configure RS485-BL via AT or Downlink ==
810
811 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
812
813 There are two kinds of Commands:
814
815 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
816
817 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
818
819 === 3.5.1 Common Commands: ===
820
821 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
822
823
824 === 3.5.2 Sensor related commands: ===
825
826
827 ==== **Choose Device Type (RS485 or TTL)** ====
828
829 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
830
831 * **AT Command**
832
833 (% class="box infomessage" %)
834 (((
835 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
836 )))
837
838 (% class="box infomessage" %)
839 (((
840 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
841 )))
842
843
844 * **Downlink Payload**
845
846 **0A aa**  ~-~->  same as AT+MOD=aa
847
848
849
850 ==== **RS485 Debug Command (AT+CFGDEV)** ====
851
852 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
853
854 * **AT Command**
855
856 (% class="box infomessage" %)
857 (((
858 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
859 )))
860
861 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
862
863
864 * **Downlink Payload**
865
866 Format: A8 MM NN XX XX XX XX YY
867
868 Where:
869
870 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
871 * NN: The length of RS485 command
872 * XX XX XX XX: RS485 command total NN bytes
873 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
874
875 **Example 1:**
876
877 To connect a Modbus Alarm with below commands.
878
879 * The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
880
881 * The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
882
883 So if user want to use downlink command to control to RS485 Alarm, he can use:
884
885 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
886
887 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
888
889 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
890
891
892 **Example 2:**
893
894 Check TTL Sensor return:
895
896 [[image:1654132684752-193.png]]
897
898
899
900
901 ==== **Set Payload version** ====
902
903 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
904
905 * **AT Command:**
906
907 (% class="box infomessage" %)
908 (((
909 **AT+PAYVER: Set PAYVER field = 1**
910 )))
911
912
913 * **Downlink Payload:**
914
915 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
916
917 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
918
919
920
921 ==== **Set RS485 Sampling Commands** ====
922
923 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
924
925 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
926
927
928 * **AT Command:**
929
930 (% class="box infomessage" %)
931 (((
932 **AT+COMMANDx: Configure RS485 read command to sensor.**
933 )))
934
935 (% class="box infomessage" %)
936 (((
937 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
938 )))
939
940 (% class="box infomessage" %)
941 (((
942 **AT+SEARCHx: Configure search command**
943 )))
944
945
946 * **Downlink Payload:**
947
948 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
949
950 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
951
952 Format: AF MM NN LL XX XX XX XX YY
953
954 Where:
955
956 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
957 * NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
958 * LL:  The length of AT+COMMAND or AT+DATACUT command
959 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
960 * YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
961
962 **Example:**
963
964 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
965
966 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
967
968 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
969
970
971 **0xAB** downlink command can be used for set AT+SEARCHx
972
973 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
974
975 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
976 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
977
978 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
979
980
981
982 ==== **Fast command to handle MODBUS device** ====
983
984 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
985
986 This command is valid since v1.3 firmware version
987
988
989 **AT+MBFUN has only two value:**
990
991 * **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
992
993 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
994
995 * **AT+MBFUN=0**: Disable Modbus fast reading.
996
997 **Example:**
998
999 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1000 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1001 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1002
1003 [[image:1654133913295-597.png]]
1004
1005
1006 [[image:1654133954153-643.png]]
1007
1008
1009 * **Downlink Commands:**
1010
1011 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1012
1013
1014
1015 ==== **RS485 command timeout** ====
1016
1017 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1018
1019 Default value: 0, range:  0 ~~ 5 seconds
1020
1021
1022 * **AT Command:**
1023
1024 (% class="box infomessage" %)
1025 (((
1026 **AT+CMDDLaa=hex(bb cc)**
1027 )))
1028
1029 **Example:**
1030
1031 **AT+CMDDL1=1000** to send the open time to 1000ms
1032
1033
1034 * **Downlink Payload:**
1035
1036 0x AA aa bb cc
1037
1038 Same as: AT+CMDDLaa=hex(bb cc)
1039
1040 **Example:**
1041
1042 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1043
1044
1045
1046 ==== **Uplink payload mode** ====
1047
1048 Define to use one uplink or multiple uplinks for the sampling.
1049
1050 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1051
1052 * **AT Command:**
1053
1054 (% class="box infomessage" %)
1055 (((
1056 **AT+DATAUP=0**
1057 )))
1058
1059 (% class="box infomessage" %)
1060 (((
1061 **AT+DATAUP=1**
1062 )))
1063
1064
1065 * **Downlink Payload:**
1066
1067 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1068
1069 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1070
1071
1072
1073
1074 ==== **Manually trigger an Uplink** ====
1075
1076 Ask device to send an uplink immediately.
1077
1078 * **Downlink Payload:**
1079
1080 **0x08 FF**, RS485-BL will immediately send an uplink.
1081
1082
1083
1084
1085 ==== **Clear RS485 Command** ====
1086
1087 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1088
1089
1090 * **AT Command:**
1091
1092 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1093
1094 Example screen shot after clear all RS485 commands. 
1095
1096
1097 The uplink screen shot is:
1098
1099 [[image:1654134704555-320.png]]
1100
1101
1102 * **Downlink Payload:**
1103
1104 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1105
1106
1107
1108 ==== **Set Serial Communication Parameters** ====
1109
1110 Set the Rs485 serial communication parameters:
1111
1112 * **AT Command:**
1113
1114 Set Baud Rate:
1115
1116 (% class="box infomessage" %)
1117 (((
1118 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1119 )))
1120
1121 Set UART Parity
1122
1123 (% class="box infomessage" %)
1124 (((
1125 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1126 )))
1127
1128 Set STOPBIT
1129
1130 (% class="box infomessage" %)
1131 (((
1132 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1133 )))
1134
1135
1136 * **Downlink Payload:**
1137
1138 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1139
1140 **Example:**
1141
1142 * A7 01 00 60   same as AT+BAUDR=9600
1143 * A7 01 04 80  same as AT+BAUDR=115200
1144
1145 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1146
1147 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1148
1149
1150
1151 ==== **Control output power duration** ====
1152
1153 User can set the output power duration before each sampling.
1154
1155 * **AT Command:**
1156
1157 **Example:**
1158
1159 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1160
1161 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1162
1163
1164 * **LoRaWAN Downlink Command:**
1165
1166 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1167
1168 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1169
1170
1171
1172 == 3.6 Buttons ==
1173
1174 (% border="1" style="background-color:#ffffcc; color:green; width:233px" %)
1175 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1176 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1177
1178 == 3.7 +3V3 Output ==
1179
1180 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1181
1182 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1183
1184 The +3V3 output time can be controlled by AT Command.
1185
1186
1187 (% style="color:#037691" %)**AT+3V3T=1000**
1188
1189
1190 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1191
1192 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1193
1194
1195 == 3.8 +5V Output ==
1196
1197 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1198
1199 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1200
1201 The 5V output time can be controlled by AT Command.
1202
1203
1204 (% style="color:#037691" %)**AT+5VT=1000**
1205
1206
1207 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1208
1209 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1210
1211
1212 == 3.9 LEDs ==
1213
1214 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1215 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1216 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1217
1218 == 3.10 Switch Jumper ==
1219
1220 (% border="1" style="background-color:#ffffcc; color:green; width:515px" %)
1221 |=(% style="width: 124px;" %)**Switch Jumper**|=(% style="width: 388px;" %)**Feature**
1222 |(% style="width:124px" %)**SW1**|(% style="width:388px" %)(((
1223 ISP position: Upgrade firmware via UART
1224
1225 Flash position: Configure device, check running status.
1226 )))
1227 |(% style="width:124px" %)**SW2**|(% style="width:388px" %)(((
1228 5V position: set to compatible with 5v I/O.
1229
1230 3.3v position: set to compatible with 3.3v I/O.,
1231 )))
1232
1233 **+3.3V**: is always ON
1234
1235 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1236
1237
1238 = 4. Case Study =
1239
1240 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1241
1242
1243 = 5. Use AT Command =
1244
1245 == 5.1 Access AT Command ==
1246
1247 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1248
1249 [[image:1654135840598-282.png]]
1250
1251
1252 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1253
1254 [[image:1654136105500-922.png]]
1255
1256
1257 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1258
1259
1260 == 5.2 Common AT Command Sequence ==
1261
1262 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1263
1264 If device has not joined network yet:
1265
1266 (% class="box infomessage" %)
1267 (((
1268 **AT+FDR**
1269 )))
1270
1271 (% class="box infomessage" %)
1272 (((
1273 **AT+NJM=0**
1274 )))
1275
1276 (% class="box infomessage" %)
1277 (((
1278 **ATZ**
1279 )))
1280
1281
1282 If device already joined network:
1283
1284 (% class="box infomessage" %)
1285 (((
1286 **AT+NJM=0**
1287 )))
1288
1289 (% class="box infomessage" %)
1290 (((
1291 **ATZ**
1292 )))
1293
1294
1295 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1296
1297
1298 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1299
1300 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1301
1302 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1303
1304 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1305
1306 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1307
1308 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1309
1310 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1311
1312 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1313
1314 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1315
1316 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1317
1318
1319 (% style="color:red" %)**Note:**
1320
1321 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1322 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1323 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1324 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1325
1326 [[image:1654136435598-589.png]]
1327
1328
1329 = 6. FAQ =
1330
1331 == 6.1 How to upgrade the image? ==
1332
1333 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1334
1335 * Support new features
1336 * For bug fix
1337 * Change LoRaWAN bands.
1338
1339 Below shows the hardware connection for how to upload an image to RS485-BL:
1340
1341 [[image:1654136646995-976.png]]
1342
1343 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1344
1345 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1346
1347 **Step3: **Open flashloader; choose the correct COM port to update.
1348
1349 [[image:image-20220602102605-1.png]]
1350
1351
1352 [[image:image-20220602102637-2.png]]
1353
1354
1355 [[image:image-20220602102715-3.png]]
1356
1357
1358
1359 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1360
1361 (((
1362 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1363 )))
1364
1365
1366
1367 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1368
1369 (((
1370 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1371 )))
1372
1373
1374
1375 = 7. Trouble Shooting =
1376
1377
1378 == 7.1 Downlink doesn’t work, how to solve it? ==
1379
1380 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1381
1382
1383 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1384
1385 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1386
1387
1388 = 8. Order Info =
1389
1390 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1391
1392 (% style="color:blue" %)**XXX:**
1393
1394 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1395 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1396 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1397 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1398 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1399 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1400 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1401 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1402 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1403 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1404
1405 = 9. Packing Info =
1406
1407 (((
1408 **Package Includes**:
1409 )))
1410
1411 * (((
1412 RS485-BL x 1
1413 )))
1414 * (((
1415 Stick Antenna for LoRa RF part x 1
1416 )))
1417 * (((
1418 Program cable x 1
1419 )))
1420
1421 (((
1422 **Dimension and weight**:
1423 )))
1424
1425 * (((
1426 Device Size: 13.5 x 7 x 3 cm
1427 )))
1428 * (((
1429 Device Weight: 105g
1430 )))
1431 * (((
1432 Package Size / pcs : 14.5 x 8 x 5 cm
1433 )))
1434 * (((
1435 Weight / pcs : 170g
1436
1437
1438 )))
1439
1440 = 10. Support =
1441
1442 * (((
1443 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1444 )))
1445 * (((
1446 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1447 )))