Version 40.47 by Xiaoling on 2022/06/06 10:32

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="385" width="385"]]
3
4
5
6
7 **RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19 = 1.Introduction =
20
21 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
22
23 (((
24
25 )))
26
27 (((
28 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
29 )))
30
31 (((
32 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
33 )))
34
35 (((
36 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
37 )))
38
39 (((
40 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
41 )))
42
43 (((
44 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
45 )))
46
47 (((
48 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
49 )))
50
51 (((
52 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
53 )))
54
55 [[image:1652953304999-717.png||height="424" width="733"]]
56
57
58
59 == 1.2 Specifications ==
60
61
62 **Hardware System:**
63
64 * STM32L072CZT6 MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption (exclude RS485 device):
67 ** Idle: 6uA@3.3v
68 ** 20dB Transmit: 130mA@3.3v
69
70 **Interface for Model:**
71
72 * 1 x RS485 Interface
73 * 1 x TTL Serial , 3.3v or 5v.
74 * 1 x I2C Interface, 3.3v or 5v.
75 * 1 x one wire interface
76 * 1 x Interrupt Interface
77 * 1 x Controllable 5V output, max
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * Programmable bit rate up to 300 kbps.
87 * High sensitivity: down to -148 dBm.
88 * Bullet-proof front end: IIP3 = -12.5 dBm.
89 * Excellent blocking immunity.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * LoRa modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
96
97 == 1.3 Features ==
98
99 * LoRaWAN Class A & Class C protocol (default Class A)
100 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
101 * AT Commands to change parameters
102 * Remote configure parameters via LoRaWAN Downlink
103 * Firmware upgradable via program port
104 * Support multiply RS485 devices by flexible rules
105 * Support Modbus protocol
106 * Support Interrupt uplink
107
108 == 1.4 Applications ==
109
110 * Smart Buildings & Home Automation
111 * Logistics and Supply Chain Management
112 * Smart Metering
113 * Smart Agriculture
114 * Smart Cities
115 * Smart Factory
116
117 == 1.5 Firmware Change log ==
118
119 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
120
121
122 == 1.6 Hardware Change log ==
123
124 (((
125
126
127 (((
128 v1.4
129 )))
130 )))
131
132 (((
133 (((
134 ~1. Change Power IC to TPS22916
135 )))
136 )))
137
138 (((
139
140 )))
141
142 (((
143 (((
144 v1.3
145 )))
146 )))
147
148 (((
149 (((
150 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
151 )))
152 )))
153
154 (((
155
156 )))
157
158 (((
159 (((
160 v1.2
161 )))
162 )))
163
164 (((
165 (((
166 Release version ​​​​​
167 )))
168
169
170 )))
171
172 = 2. Pin mapping and Power ON Device =
173
174 (((
175 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
176 )))
177
178 [[image:1652953055962-143.png||height="387" width="728"]]
179
180
181 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
182
183
184 = 3. Operation Mode =
185
186 == 3.1 How it works? ==
187
188 (((
189 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
190
191
192 )))
193
194 == 3.2 Example to join LoRaWAN network ==
195
196 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
197
198 [[image:1652953414711-647.png||height="337" width="723"]]
199
200 (((
201 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
202 )))
203
204 (((
205 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
206 )))
207
208 (((
209 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
210 )))
211
212 (((
213 Each RS485-BL is shipped with a sticker with unique device EUI:
214 )))
215
216 [[image:1652953462722-299.png]]
217
218 (((
219 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
220 )))
221
222 (((
223 Add APP EUI in the application.
224 )))
225
226
227 [[image:image-20220519174512-1.png]]
228
229 [[image:image-20220519174512-2.png||height="328" width="731"]]
230
231 [[image:image-20220519174512-3.png||height="556" width="724"]]
232
233 [[image:image-20220519174512-4.png]]
234
235 You can also choose to create the device manually.
236
237 [[image:1652953542269-423.png||height="710" width="723"]]
238
239 Add APP KEY and DEV EUI
240
241 [[image:1652953553383-907.png||height="514" width="724"]]
242
243
244 (((
245 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
246 )))
247
248 [[image:1652953568895-172.png||height="232" width="724"]]
249
250
251 == 3.3 Configure Commands to read data ==
252
253 (((
254 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
255
256
257 )))
258
259 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
260
261 (((
262 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
263 )))
264
265 (((
266 **~1. RS485-MODBUS mode:**
267 )))
268
269 (((
270 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
271 )))
272
273 (((
274 **2. TTL mode:**
275 )))
276
277 (((
278 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
279 )))
280
281 (((
282 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
283 )))
284
285 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
286 |=(% style="width: 120px;" %)(((
287 (((
288 **AT Commands**
289 )))
290 )))|=(% style="width: 190px;" %)(((
291 (((
292 **Description**
293 )))
294 )))|=(% style="width: 190px;" %)(((
295 (((
296 **Example**
297 )))
298 )))
299 |(% style="width:120px" %)(((
300 (((
301 AT+BAUDR
302 )))
303 )))|(% style="width:190px" %)(((
304 (((
305 Set the baud rate (for RS485 connection). Default Value is: 9600.
306 )))
307 )))|(% style="width:190px" %)(((
308 (((
309 (((
310 AT+BAUDR=9600
311 )))
312 )))
313
314 (((
315 (((
316 Options: (1200,2400,4800,14400,19200,115200)
317 )))
318 )))
319 )))
320 |(% style="width:120px" %)(((
321 (((
322 AT+PARITY
323 )))
324 )))|(% style="width:190px" %)(((
325 (((
326 (((
327 Set UART parity (for RS485 connection)
328 )))
329 )))
330
331 (((
332 (((
333 Default Value is: no parity.
334 )))
335 )))
336 )))|(% style="width:190px" %)(((
337 (((
338 (((
339 AT+PARITY=0
340 )))
341 )))
342
343 (((
344 (((
345 Option: 0: no parity, 1: odd parity, 2: even parity
346 )))
347 )))
348 )))
349 |(% style="width:120px" %)(((
350 (((
351 AT+STOPBIT
352 )))
353 )))|(% style="width:190px" %)(((
354 (((
355 (((
356 Set serial stopbit (for RS485 connection)
357 )))
358 )))
359
360 (((
361 (((
362 Default Value is: 1bit.
363 )))
364 )))
365 )))|(% style="width:190px" %)(((
366 (((
367 (((
368 AT+STOPBIT=0 for 1bit
369 )))
370 )))
371
372 (((
373 (((
374 AT+STOPBIT=1 for 1.5 bit
375 )))
376 )))
377
378 (((
379 (((
380 AT+STOPBIT=2 for 2 bits
381 )))
382 )))
383 )))
384
385
386
387 === 3.3.2 Configure sensors ===
388
389 (((
390 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
391 )))
392
393 (((
394 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
395 )))
396
397 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
398 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
399 |AT+CFGDEV|(% style="width:418px" %)(((
400 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
401
402 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
403
404 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
405 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
406
407 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
408
409
410 === 3.3.3 Configure read commands for each sampling ===
411
412 (((
413 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
414 )))
415
416 (((
417 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
418 )))
419
420 (((
421 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
422 )))
423
424 (((
425 This section describes how to achieve above goals.
426 )))
427
428 (((
429 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
430 )))
431
432 (((
433 **Command from RS485-BL to Sensor:**
434 )))
435
436 (((
437 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
438 )))
439
440 (((
441 **Handle return from sensors to RS485-BL**:
442 )))
443
444 (((
445 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
446 )))
447
448 * (((
449 **AT+DATACUT**
450 )))
451
452 (((
453 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
454 )))
455
456 * (((
457 **AT+SEARCH**
458 )))
459
460 (((
461 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
462 )))
463
464 (((
465 **Define wait timeout:**
466 )))
467
468 (((
469 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
470 )))
471
472 (((
473 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
474 )))
475
476 **Examples:**
477
478 Below are examples for the how above AT Commands works.
479
480 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
481
482 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:501px" %)
483 |(% style="width:498px" %)(((
484 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
485
486 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
487
488 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
489 )))
490
491 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
492
493 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
494
495 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
496
497 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:580px" %)
498 |(% style="width:577px" %)(((
499 **AT+SEARCHx=aa,xx xx xx xx xx**
500
501 * **aa: 1: prefix match mode; 2: prefix and suffix match mode**
502 * **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
503 )))
504
505 **Examples:**
506
507 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
508
509 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
510
511 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
512
513 [[image:1653271044481-711.png]]
514
515 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
516
517 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
518
519 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
520
521 [[image:1653271276735-972.png]]
522
523 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
524
525 (% style="background-color:#4f81bd; color:white; width:729px" %)
526 |(% style="width:726px" %)(((
527 **AT+DATACUTx=a,b,c**
528
529 * **a: length for the return of AT+COMMAND**
530 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
531 * **c: define the position for valid value.  **
532 )))
533
534 **Examples:**
535
536 * Grab bytes:
537
538 [[image:1653271581490-837.png||height="313" width="722"]]
539
540
541 * Grab a section.
542
543 [[image:1653271648378-342.png||height="326" width="720"]]
544
545
546 * Grab different sections.
547
548 [[image:1653271657255-576.png||height="305" width="730"]]
549
550 (((
551 (% style="color:red" %)**Note:**
552 )))
553
554 (((
555 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
556 )))
557
558 (((
559 **Example:**
560 )))
561
562 (((
563 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
564 )))
565
566 (((
567 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
568 )))
569
570 (((
571 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
572 )))
573
574 (((
575 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
576 )))
577
578 (((
579 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
580 )))
581
582 (((
583 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
584 )))
585
586 [[image:1653271763403-806.png]]
587
588
589 === 3.3.4 Compose the uplink payload ===
590
591 (((
592 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
593 )))
594
595 (((
596 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
597 )))
598
599 (((
600 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
601 )))
602
603 (((
604 Final Payload is
605 )))
606
607 (((
608 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
609 )))
610
611 (((
612 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
613 )))
614
615 [[image:1653272787040-634.png||height="515" width="719"]]
616
617
618
619 (((
620 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
621
622
623 )))
624
625 (((
626 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
627 )))
628
629 (((
630 Final Payload is
631 )))
632
633 (((
634 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
635 )))
636
637 1. (((
638 Battery Info (2 bytes): Battery voltage
639 )))
640 1. (((
641 PAYVER (1 byte): Defined by AT+PAYVER
642 )))
643 1. (((
644 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
645 )))
646 1. (((
647 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
648 )))
649 1. (((
650 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
651 )))
652
653 [[image:1653272817147-600.png||height="437" width="717"]]
654
655 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
656
657
658 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
659
660 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
661
662 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
663
664
665 Below are the uplink payloads:
666
667 [[image:1653272901032-107.png]]
668
669
670 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
671
672 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
673
674 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
675
676 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
677
678 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
679
680
681
682 === 3.3.5 Uplink on demand ===
683
684 (((
685 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
686 )))
687
688 (((
689 Downlink control command:
690 )))
691
692 (((
693 **0x08 command**: Poll an uplink with current command set in RS485-BL.
694 )))
695
696 (((
697 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
698
699
700 )))
701
702 === 3.3.6 Uplink on Interrupt ===
703
704 Put the interrupt sensor between 3.3v_out and GPIO ext.
705
706 [[image:1653273818896-432.png]]
707
708
709 (((
710 AT+INTMOD=0  Disable Interrupt
711 )))
712
713 (((
714 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
715 )))
716
717 (((
718 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
719 )))
720
721 (((
722 AT+INTMOD=3  Interrupt trigger by rising edge.
723
724
725 )))
726
727 == 3.4 Uplink Payload ==
728
729 (% border="1" style="background-color:#4f81bd; color:white; width:850px" %)
730 |**Size(bytes)**|(% style="width:130px" %)**2**|(% style="width:93px" %)**1**|(% style="width:509px" %)**Length depends on the return from the commands**
731 |Value|(% style="width:130px" %)(((
732 (((
733 Battery(mV)
734 )))
735
736 (((
737 &
738 )))
739
740 (((
741 Interrupt _Flag
742 )))
743 )))|(% style="width:93px" %)(((
744 PAYLOAD_VER
745
746
747 )))|(% style="width:509px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
748
749 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
750
751 (((
752 {{{function Decoder(bytes, port) {}}}
753 )))
754
755 (((
756 {{{//Payload Formats of RS485-BL Deceive}}}
757 )))
758
759 (((
760 {{{return {}}}
761 )))
762
763 (((
764 {{{ //Battery,units:V}}}
765 )))
766
767 (((
768 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
769 )))
770
771 (((
772 {{{ //GPIO_EXTI }}}
773 )))
774
775 (((
776 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
777 )))
778
779 (((
780 {{{ //payload of version}}}
781 )))
782
783 (((
784 {{{ Pay_ver:bytes[2],}}}
785 )))
786
787 (((
788 {{{ }; }}}
789 )))
790
791 (((
792 **}**
793
794
795 )))
796
797 (((
798 TTN V3 uplink screen shot.
799 )))
800
801 [[image:1653274001211-372.png||height="192" width="732"]]
802
803
804 == 3.5 Configure RS485-BL via AT or Downlink ==
805
806 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
807
808 There are two kinds of Commands:
809
810 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
811
812 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
813
814 === 3.5.1 Common Commands: ===
815
816 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
817
818
819 === 3.5.2 Sensor related commands: ===
820
821
822 ==== **Choose Device Type (RS485 or TTL)** ====
823
824 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
825
826 * **AT Command**
827
828 (% class="box infomessage" %)
829 (((
830 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
831 )))
832
833 (% class="box infomessage" %)
834 (((
835 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
836 )))
837
838
839 * **Downlink Payload**
840
841 **0A aa**  ~-~->  same as AT+MOD=aa
842
843
844
845 ==== **RS485 Debug Command (AT+CFGDEV)** ====
846
847 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
848
849 * **AT Command**
850
851 (% class="box infomessage" %)
852 (((
853 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
854 )))
855
856 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
857
858
859 * **Downlink Payload**
860
861 Format: A8 MM NN XX XX XX XX YY
862
863 Where:
864
865 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
866 * NN: The length of RS485 command
867 * XX XX XX XX: RS485 command total NN bytes
868 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
869
870 **Example 1:**
871
872 To connect a Modbus Alarm with below commands.
873
874 * The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
875
876 * The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
877
878 So if user want to use downlink command to control to RS485 Alarm, he can use:
879
880 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
881
882 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
883
884 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
885
886
887 **Example 2:**
888
889 Check TTL Sensor return:
890
891 [[image:1654132684752-193.png]]
892
893
894
895
896 ==== **Set Payload version** ====
897
898 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
899
900 * **AT Command:**
901
902 (% class="box infomessage" %)
903 (((
904 **AT+PAYVER: Set PAYVER field = 1**
905 )))
906
907
908 * **Downlink Payload:**
909
910 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
911
912 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
913
914
915
916 ==== **Set RS485 Sampling Commands** ====
917
918 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
919
920 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
921
922
923 * **AT Command:**
924
925 (% class="box infomessage" %)
926 (((
927 **AT+COMMANDx: Configure RS485 read command to sensor.**
928 )))
929
930 (% class="box infomessage" %)
931 (((
932 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
933 )))
934
935 (% class="box infomessage" %)
936 (((
937 **AT+SEARCHx: Configure search command**
938 )))
939
940
941 * **Downlink Payload:**
942
943 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
944
945 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
946
947 Format: AF MM NN LL XX XX XX XX YY
948
949 Where:
950
951 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
952 * NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
953 * LL:  The length of AT+COMMAND or AT+DATACUT command
954 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
955 * YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
956
957 **Example:**
958
959 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
960
961 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
962
963 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
964
965
966 **0xAB** downlink command can be used for set AT+SEARCHx
967
968 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
969
970 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
971 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
972
973 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
974
975
976
977 ==== **Fast command to handle MODBUS device** ====
978
979 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
980
981 This command is valid since v1.3 firmware version
982
983
984 **AT+MBFUN has only two value:**
985
986 * **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
987
988 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
989
990 * **AT+MBFUN=0**: Disable Modbus fast reading.
991
992 **Example:**
993
994 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
995 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
996 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
997
998 [[image:1654133913295-597.png]]
999
1000
1001 [[image:1654133954153-643.png]]
1002
1003
1004 * **Downlink Commands:**
1005
1006 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1007
1008
1009
1010 ==== **RS485 command timeout** ====
1011
1012 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1013
1014 Default value: 0, range:  0 ~~ 5 seconds
1015
1016
1017 * **AT Command:**
1018
1019 (% class="box infomessage" %)
1020 (((
1021 **AT+CMDDLaa=hex(bb cc)**
1022 )))
1023
1024 **Example:**
1025
1026 **AT+CMDDL1=1000** to send the open time to 1000ms
1027
1028
1029 * **Downlink Payload:**
1030
1031 0x AA aa bb cc
1032
1033 Same as: AT+CMDDLaa=hex(bb cc)
1034
1035 **Example:**
1036
1037 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1038
1039
1040
1041 ==== **Uplink payload mode** ====
1042
1043 Define to use one uplink or multiple uplinks for the sampling.
1044
1045 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1046
1047 * **AT Command:**
1048
1049 (% class="box infomessage" %)
1050 (((
1051 **AT+DATAUP=0**
1052 )))
1053
1054 (% class="box infomessage" %)
1055 (((
1056 **AT+DATAUP=1**
1057 )))
1058
1059
1060 * **Downlink Payload:**
1061
1062 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1063
1064 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1065
1066
1067
1068
1069 ==== **Manually trigger an Uplink** ====
1070
1071 Ask device to send an uplink immediately.
1072
1073 * **Downlink Payload:**
1074
1075 **0x08 FF**, RS485-BL will immediately send an uplink.
1076
1077
1078
1079
1080 ==== **Clear RS485 Command** ====
1081
1082 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1083
1084
1085 * **AT Command:**
1086
1087 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1088
1089 Example screen shot after clear all RS485 commands. 
1090
1091
1092 The uplink screen shot is:
1093
1094 [[image:1654134704555-320.png]]
1095
1096
1097 * **Downlink Payload:**
1098
1099 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1100
1101
1102
1103 ==== **Set Serial Communication Parameters** ====
1104
1105 Set the Rs485 serial communication parameters:
1106
1107 * **AT Command:**
1108
1109 Set Baud Rate:
1110
1111 (% class="box infomessage" %)
1112 (((
1113 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1114 )))
1115
1116 Set UART Parity
1117
1118 (% class="box infomessage" %)
1119 (((
1120 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1121 )))
1122
1123 Set STOPBIT
1124
1125 (% class="box infomessage" %)
1126 (((
1127 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1128 )))
1129
1130
1131 * **Downlink Payload:**
1132
1133 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1134
1135 **Example:**
1136
1137 * A7 01 00 60   same as AT+BAUDR=9600
1138 * A7 01 04 80  same as AT+BAUDR=115200
1139
1140 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1141
1142 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1143
1144
1145
1146 ==== **Control output power duration** ====
1147
1148 User can set the output power duration before each sampling.
1149
1150 * **AT Command:**
1151
1152 **Example:**
1153
1154 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1155
1156 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1157
1158
1159 * **LoRaWAN Downlink Command:**
1160
1161 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1162
1163 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1164
1165
1166
1167 == 3.6 Buttons ==
1168
1169 (% border="1" style="background-color:#ffffcc; color:green; width:233px" %)
1170 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1171 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1172
1173 == 3.7 +3V3 Output ==
1174
1175 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1176
1177 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1178
1179 The +3V3 output time can be controlled by AT Command.
1180
1181
1182 (% style="color:#037691" %)**AT+3V3T=1000**
1183
1184
1185 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1186
1187 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1188
1189
1190 == 3.8 +5V Output ==
1191
1192 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1193
1194 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1195
1196 The 5V output time can be controlled by AT Command.
1197
1198
1199 (% style="color:#037691" %)**AT+5VT=1000**
1200
1201
1202 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1203
1204 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1205
1206
1207 == 3.9 LEDs ==
1208
1209 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1210 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1211 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1212
1213 == 3.10 Switch Jumper ==
1214
1215 (% border="1" style="background-color:#ffffcc; color:green; width:515px" %)
1216 |=(% style="width: 124px;" %)**Switch Jumper**|=(% style="width: 388px;" %)**Feature**
1217 |(% style="width:124px" %)**SW1**|(% style="width:388px" %)(((
1218 ISP position: Upgrade firmware via UART
1219
1220 Flash position: Configure device, check running status.
1221 )))
1222 |(% style="width:124px" %)**SW2**|(% style="width:388px" %)(((
1223 5V position: set to compatible with 5v I/O.
1224
1225 3.3v position: set to compatible with 3.3v I/O.,
1226 )))
1227
1228 **+3.3V**: is always ON
1229
1230 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1231
1232
1233 = 4. Case Study =
1234
1235 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1236
1237
1238 = 5. Use AT Command =
1239
1240 == 5.1 Access AT Command ==
1241
1242 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1243
1244 [[image:1654135840598-282.png]]
1245
1246
1247 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1248
1249 [[image:1654136105500-922.png]]
1250
1251
1252 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1253
1254
1255 == 5.2 Common AT Command Sequence ==
1256
1257 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1258
1259 If device has not joined network yet:
1260
1261 (% class="box infomessage" %)
1262 (((
1263 **AT+FDR**
1264 )))
1265
1266 (% class="box infomessage" %)
1267 (((
1268 **AT+NJM=0**
1269 )))
1270
1271 (% class="box infomessage" %)
1272 (((
1273 **ATZ**
1274 )))
1275
1276
1277 If device already joined network:
1278
1279 (% class="box infomessage" %)
1280 (((
1281 **AT+NJM=0**
1282 )))
1283
1284 (% class="box infomessage" %)
1285 (((
1286 **ATZ**
1287 )))
1288
1289
1290 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1291
1292
1293 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1294
1295 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1296
1297 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1298
1299 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1300
1301 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1302
1303 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1304
1305 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1306
1307 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1308
1309 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1310
1311 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1312
1313
1314 (% style="color:red" %)**Note:**
1315
1316 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1317 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1318 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1319 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1320
1321 [[image:1654136435598-589.png]]
1322
1323
1324 = 6. FAQ =
1325
1326 == 6.1 How to upgrade the image? ==
1327
1328 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1329
1330 * Support new features
1331 * For bug fix
1332 * Change LoRaWAN bands.
1333
1334 Below shows the hardware connection for how to upload an image to RS485-BL:
1335
1336 [[image:1654136646995-976.png]]
1337
1338 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1339
1340 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1341
1342 **Step3: **Open flashloader; choose the correct COM port to update.
1343
1344 [[image:image-20220602102605-1.png]]
1345
1346
1347 [[image:image-20220602102637-2.png]]
1348
1349
1350 [[image:image-20220602102715-3.png]]
1351
1352
1353
1354 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1355
1356 (((
1357 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1358 )))
1359
1360
1361
1362 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1363
1364 (((
1365 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1366 )))
1367
1368
1369
1370 = 7. Trouble Shooting =
1371
1372
1373 == 7.1 Downlink doesn’t work, how to solve it? ==
1374
1375 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1376
1377
1378 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1379
1380 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1381
1382
1383 = 8. Order Info =
1384
1385 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1386
1387 (% style="color:blue" %)**XXX:**
1388
1389 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1390 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1391 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1392 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1393 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1394 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1395 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1396 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1397 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1398 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1399
1400 = 9. Packing Info =
1401
1402 (((
1403 **Package Includes**:
1404 )))
1405
1406 * (((
1407 RS485-BL x 1
1408 )))
1409 * (((
1410 Stick Antenna for LoRa RF part x 1
1411 )))
1412 * (((
1413 Program cable x 1
1414 )))
1415
1416 (((
1417 **Dimension and weight**:
1418 )))
1419
1420 * (((
1421 Device Size: 13.5 x 7 x 3 cm
1422 )))
1423 * (((
1424 Device Weight: 105g
1425 )))
1426 * (((
1427 Package Size / pcs : 14.5 x 8 x 5 cm
1428 )))
1429 * (((
1430 Weight / pcs : 170g
1431
1432
1433 )))
1434
1435 = 10. Support =
1436
1437 * (((
1438 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1439 )))
1440 * (((
1441 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1442 )))