Version 40.45 by Xiaoling on 2022/06/06 10:28

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="385" width="385"]]
3
4
5
6
7 **RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19 = 1.Introduction =
20
21 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
22
23 (((
24
25 )))
26
27 (((
28 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
29 )))
30
31 (((
32 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
33 )))
34
35 (((
36 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
37 )))
38
39 (((
40 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
41 )))
42
43 (((
44 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
45 )))
46
47 (((
48 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
49 )))
50
51 (((
52 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
53 )))
54
55 [[image:1652953304999-717.png||height="424" width="733"]]
56
57
58
59 == 1.2 Specifications ==
60
61
62 **Hardware System:**
63
64 * STM32L072CZT6 MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption (exclude RS485 device):
67 ** Idle: 6uA@3.3v
68 ** 20dB Transmit: 130mA@3.3v
69
70 **Interface for Model:**
71
72 * 1 x RS485 Interface
73 * 1 x TTL Serial , 3.3v or 5v.
74 * 1 x I2C Interface, 3.3v or 5v.
75 * 1 x one wire interface
76 * 1 x Interrupt Interface
77 * 1 x Controllable 5V output, max
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * Programmable bit rate up to 300 kbps.
87 * High sensitivity: down to -148 dBm.
88 * Bullet-proof front end: IIP3 = -12.5 dBm.
89 * Excellent blocking immunity.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * LoRa modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
96
97 == 1.3 Features ==
98
99 * LoRaWAN Class A & Class C protocol (default Class A)
100 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
101 * AT Commands to change parameters
102 * Remote configure parameters via LoRaWAN Downlink
103 * Firmware upgradable via program port
104 * Support multiply RS485 devices by flexible rules
105 * Support Modbus protocol
106 * Support Interrupt uplink
107
108 == 1.4 Applications ==
109
110 * Smart Buildings & Home Automation
111 * Logistics and Supply Chain Management
112 * Smart Metering
113 * Smart Agriculture
114 * Smart Cities
115 * Smart Factory
116
117 == 1.5 Firmware Change log ==
118
119 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
120
121
122 == 1.6 Hardware Change log ==
123
124 (((
125
126
127 (((
128 v1.4
129 )))
130 )))
131
132 (((
133 (((
134 ~1. Change Power IC to TPS22916
135 )))
136 )))
137
138 (((
139
140 )))
141
142 (((
143 (((
144 v1.3
145 )))
146 )))
147
148 (((
149 (((
150 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
151 )))
152 )))
153
154 (((
155
156 )))
157
158 (((
159 (((
160 v1.2
161 )))
162 )))
163
164 (((
165 (((
166 Release version ​​​​​
167 )))
168
169
170 )))
171
172 = 2. Pin mapping and Power ON Device =
173
174 (((
175 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
176 )))
177
178 [[image:1652953055962-143.png||height="387" width="728"]]
179
180
181 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
182
183
184 = 3. Operation Mode =
185
186 == 3.1 How it works? ==
187
188 (((
189 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
190
191
192 )))
193
194 == 3.2 Example to join LoRaWAN network ==
195
196 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
197
198 [[image:1652953414711-647.png||height="337" width="723"]]
199
200 (((
201 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
202 )))
203
204 (((
205 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
206 )))
207
208 (((
209 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
210 )))
211
212 (((
213 Each RS485-BL is shipped with a sticker with unique device EUI:
214 )))
215
216 [[image:1652953462722-299.png]]
217
218 (((
219 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
220 )))
221
222 (((
223 Add APP EUI in the application.
224 )))
225
226
227 [[image:image-20220519174512-1.png]]
228
229 [[image:image-20220519174512-2.png||height="328" width="731"]]
230
231 [[image:image-20220519174512-3.png||height="556" width="724"]]
232
233 [[image:image-20220519174512-4.png]]
234
235 You can also choose to create the device manually.
236
237 [[image:1652953542269-423.png||height="710" width="723"]]
238
239 Add APP KEY and DEV EUI
240
241 [[image:1652953553383-907.png||height="514" width="724"]]
242
243
244 (((
245 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
246 )))
247
248 [[image:1652953568895-172.png||height="232" width="724"]]
249
250
251 == 3.3 Configure Commands to read data ==
252
253 (((
254 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
255
256
257 )))
258
259 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
260
261 (((
262 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
263 )))
264
265 (((
266 **~1. RS485-MODBUS mode:**
267 )))
268
269 (((
270 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
271 )))
272
273 (((
274 **2. TTL mode:**
275 )))
276
277 (((
278 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
279 )))
280
281 (((
282 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
283 )))
284
285 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
286 |=(% style="width: 125px;" %)(((
287 (((
288 **AT Commands**
289 )))
290 )))|=(% style="width: 190px;" %)(((
291 (((
292 **Description**
293 )))
294 )))|=(% style="width: 190px;" %)(((
295 (((
296 **Example**
297 )))
298 )))
299 |(% style="width:125px" %)(((
300 (((
301 AT+BAUDR
302 )))
303 )))|(% style="width:190px" %)(((
304 (((
305 Set the baud rate (for RS485 connection). Default Value is: 9600.
306 )))
307 )))|(% style="width:190px" %)(((
308 (((
309 (((
310 AT+BAUDR=9600
311 )))
312 )))
313
314 (((
315 (((
316 Options: (1200,2400,4800,14400,19200,115200)
317 )))
318 )))
319 )))
320 |(% style="width:125px" %)(((
321 (((
322 AT+PARITY
323 )))
324 )))|(% style="width:190px" %)(((
325 (((
326 (((
327 Set UART parity (for RS485 connection)
328 )))
329 )))
330
331 (((
332 (((
333 Default Value is: no parity.
334 )))
335 )))
336 )))|(% style="width:190px" %)(((
337 (((
338 (((
339 AT+PARITY=0
340 )))
341 )))
342
343 (((
344 (((
345 Option: 0: no parity, 1: odd parity, 2: even parity
346 )))
347 )))
348 )))
349 |(% style="width:125px" %)(((
350 (((
351 AT+STOPBIT
352 )))
353 )))|(% style="width:190px" %)(((
354 (((
355 (((
356 Set serial stopbit (for RS485 connection)
357 )))
358 )))
359
360 (((
361 (((
362 Default Value is: 1bit.
363 )))
364 )))
365 )))|(% style="width:190px" %)(((
366 (((
367 (((
368 AT+STOPBIT=0 for 1bit
369 )))
370 )))
371
372 (((
373 (((
374 AT+STOPBIT=1 for 1.5 bit
375 )))
376 )))
377
378 (((
379 (((
380 AT+STOPBIT=2 for 2 bits
381 )))
382 )))
383 )))
384
385 === 3.3.2 Configure sensors ===
386
387 (((
388 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
389 )))
390
391 (((
392 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
393 )))
394
395 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
396 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
397 |AT+CFGDEV|(% style="width:418px" %)(((
398 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
399
400 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
401
402 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
403 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
404
405 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
406
407
408 === 3.3.3 Configure read commands for each sampling ===
409
410 (((
411 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
412 )))
413
414 (((
415 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
416 )))
417
418 (((
419 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
420 )))
421
422 (((
423 This section describes how to achieve above goals.
424 )))
425
426 (((
427 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
428 )))
429
430 (((
431 **Command from RS485-BL to Sensor:**
432 )))
433
434 (((
435 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
436 )))
437
438 (((
439 **Handle return from sensors to RS485-BL**:
440 )))
441
442 (((
443 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
444 )))
445
446 * (((
447 **AT+DATACUT**
448 )))
449
450 (((
451 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
452 )))
453
454 * (((
455 **AT+SEARCH**
456 )))
457
458 (((
459 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
460 )))
461
462 (((
463 **Define wait timeout:**
464 )))
465
466 (((
467 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
468 )))
469
470 (((
471 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
472 )))
473
474 **Examples:**
475
476 Below are examples for the how above AT Commands works.
477
478 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
479
480 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:501px" %)
481 |(% style="width:498px" %)(((
482 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
483
484 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
485
486 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
487 )))
488
489 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
490
491 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
492
493 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
494
495 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:580px" %)
496 |(% style="width:577px" %)(((
497 **AT+SEARCHx=aa,xx xx xx xx xx**
498
499 * **aa: 1: prefix match mode; 2: prefix and suffix match mode**
500 * **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
501 )))
502
503 **Examples:**
504
505 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
506
507 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
508
509 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
510
511 [[image:1653271044481-711.png]]
512
513 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
514
515 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
516
517 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
518
519 [[image:1653271276735-972.png]]
520
521 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
522
523 (% style="background-color:#4f81bd; color:white; width:729px" %)
524 |(% style="width:726px" %)(((
525 **AT+DATACUTx=a,b,c**
526
527 * **a: length for the return of AT+COMMAND**
528 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
529 * **c: define the position for valid value.  **
530 )))
531
532 **Examples:**
533
534 * Grab bytes:
535
536 [[image:1653271581490-837.png||height="313" width="722"]]
537
538
539 * Grab a section.
540
541 [[image:1653271648378-342.png||height="326" width="720"]]
542
543
544 * Grab different sections.
545
546 [[image:1653271657255-576.png||height="305" width="730"]]
547
548 (((
549 (% style="color:red" %)**Note:**
550 )))
551
552 (((
553 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
554 )))
555
556 (((
557 **Example:**
558 )))
559
560 (((
561 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
562 )))
563
564 (((
565 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
566 )))
567
568 (((
569 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
570 )))
571
572 (((
573 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
574 )))
575
576 (((
577 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
578 )))
579
580 (((
581 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
582 )))
583
584 [[image:1653271763403-806.png]]
585
586
587 === 3.3.4 Compose the uplink payload ===
588
589 (((
590 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
591 )))
592
593 (((
594 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
595 )))
596
597 (((
598 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
599 )))
600
601 (((
602 Final Payload is
603 )))
604
605 (((
606 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
607 )))
608
609 (((
610 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
611 )))
612
613 [[image:1653272787040-634.png||height="515" width="719"]]
614
615
616
617 (((
618 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
619
620
621 )))
622
623 (((
624 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
625 )))
626
627 (((
628 Final Payload is
629 )))
630
631 (((
632 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
633 )))
634
635 1. (((
636 Battery Info (2 bytes): Battery voltage
637 )))
638 1. (((
639 PAYVER (1 byte): Defined by AT+PAYVER
640 )))
641 1. (((
642 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
643 )))
644 1. (((
645 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
646 )))
647 1. (((
648 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
649 )))
650
651 [[image:1653272817147-600.png||height="437" width="717"]]
652
653 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
654
655
656 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
657
658 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
659
660 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
661
662
663 Below are the uplink payloads:
664
665 [[image:1653272901032-107.png]]
666
667
668 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
669
670 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
671
672 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
673
674 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
675
676 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
677
678
679
680 === 3.3.5 Uplink on demand ===
681
682 (((
683 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
684 )))
685
686 (((
687 Downlink control command:
688 )))
689
690 (((
691 **0x08 command**: Poll an uplink with current command set in RS485-BL.
692 )))
693
694 (((
695 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
696
697
698 )))
699
700 === 3.3.6 Uplink on Interrupt ===
701
702 Put the interrupt sensor between 3.3v_out and GPIO ext.
703
704 [[image:1653273818896-432.png]]
705
706
707 (((
708 AT+INTMOD=0  Disable Interrupt
709 )))
710
711 (((
712 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
713 )))
714
715 (((
716 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
717 )))
718
719 (((
720 AT+INTMOD=3  Interrupt trigger by rising edge.
721
722
723 )))
724
725 == 3.4 Uplink Payload ==
726
727 (% border="1" style="background-color:#4f81bd; color:white; width:850px" %)
728 |**Size(bytes)**|(% style="width:130px" %)**2**|(% style="width:93px" %)**1**|(% style="width:509px" %)**Length depends on the return from the commands**
729 |Value|(% style="width:130px" %)(((
730 (((
731 Battery(mV)
732 )))
733
734 (((
735 &
736 )))
737
738 (((
739 Interrupt _Flag
740 )))
741 )))|(% style="width:93px" %)(((
742 PAYLOAD_VER
743
744
745 )))|(% style="width:509px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
746
747 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
748
749 (((
750 {{{function Decoder(bytes, port) {}}}
751 )))
752
753 (((
754 {{{//Payload Formats of RS485-BL Deceive}}}
755 )))
756
757 (((
758 {{{return {}}}
759 )))
760
761 (((
762 {{{ //Battery,units:V}}}
763 )))
764
765 (((
766 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
767 )))
768
769 (((
770 {{{ //GPIO_EXTI }}}
771 )))
772
773 (((
774 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
775 )))
776
777 (((
778 {{{ //payload of version}}}
779 )))
780
781 (((
782 {{{ Pay_ver:bytes[2],}}}
783 )))
784
785 (((
786 {{{ }; }}}
787 )))
788
789 (((
790 **}**
791
792
793 )))
794
795 (((
796 TTN V3 uplink screen shot.
797 )))
798
799 [[image:1653274001211-372.png||height="192" width="732"]]
800
801
802 == 3.5 Configure RS485-BL via AT or Downlink ==
803
804 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
805
806 There are two kinds of Commands:
807
808 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
809
810 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
811
812 === 3.5.1 Common Commands: ===
813
814 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
815
816
817 === 3.5.2 Sensor related commands: ===
818
819
820 ==== **Choose Device Type (RS485 or TTL)** ====
821
822 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
823
824 * **AT Command**
825
826 (% class="box infomessage" %)
827 (((
828 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
829 )))
830
831 (% class="box infomessage" %)
832 (((
833 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
834 )))
835
836
837 * **Downlink Payload**
838
839 **0A aa**  ~-~->  same as AT+MOD=aa
840
841
842
843 ==== **RS485 Debug Command (AT+CFGDEV)** ====
844
845 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
846
847 * **AT Command**
848
849 (% class="box infomessage" %)
850 (((
851 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
852 )))
853
854 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
855
856
857 * **Downlink Payload**
858
859 Format: A8 MM NN XX XX XX XX YY
860
861 Where:
862
863 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
864 * NN: The length of RS485 command
865 * XX XX XX XX: RS485 command total NN bytes
866 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
867
868 **Example 1:**
869
870 To connect a Modbus Alarm with below commands.
871
872 * The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
873
874 * The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
875
876 So if user want to use downlink command to control to RS485 Alarm, he can use:
877
878 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
879
880 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
881
882 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
883
884
885 **Example 2:**
886
887 Check TTL Sensor return:
888
889 [[image:1654132684752-193.png]]
890
891
892
893
894 ==== **Set Payload version** ====
895
896 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
897
898 * **AT Command:**
899
900 (% class="box infomessage" %)
901 (((
902 **AT+PAYVER: Set PAYVER field = 1**
903 )))
904
905
906 * **Downlink Payload:**
907
908 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
909
910 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
911
912
913
914 ==== **Set RS485 Sampling Commands** ====
915
916 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
917
918 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
919
920
921 * **AT Command:**
922
923 (% class="box infomessage" %)
924 (((
925 **AT+COMMANDx: Configure RS485 read command to sensor.**
926 )))
927
928 (% class="box infomessage" %)
929 (((
930 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
931 )))
932
933 (% class="box infomessage" %)
934 (((
935 **AT+SEARCHx: Configure search command**
936 )))
937
938
939 * **Downlink Payload:**
940
941 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
942
943 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
944
945 Format: AF MM NN LL XX XX XX XX YY
946
947 Where:
948
949 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
950 * NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
951 * LL:  The length of AT+COMMAND or AT+DATACUT command
952 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
953 * YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
954
955 **Example:**
956
957 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
958
959 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
960
961 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
962
963
964 **0xAB** downlink command can be used for set AT+SEARCHx
965
966 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
967
968 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
969 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
970
971 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
972
973
974
975 ==== **Fast command to handle MODBUS device** ====
976
977 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
978
979 This command is valid since v1.3 firmware version
980
981
982 **AT+MBFUN has only two value:**
983
984 * **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
985
986 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
987
988 * **AT+MBFUN=0**: Disable Modbus fast reading.
989
990 **Example:**
991
992 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
993 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
994 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
995
996 [[image:1654133913295-597.png]]
997
998
999 [[image:1654133954153-643.png]]
1000
1001
1002 * **Downlink Commands:**
1003
1004 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1005
1006
1007
1008 ==== **RS485 command timeout** ====
1009
1010 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1011
1012 Default value: 0, range:  0 ~~ 5 seconds
1013
1014
1015 * **AT Command:**
1016
1017 (% class="box infomessage" %)
1018 (((
1019 **AT+CMDDLaa=hex(bb cc)**
1020 )))
1021
1022 **Example:**
1023
1024 **AT+CMDDL1=1000** to send the open time to 1000ms
1025
1026
1027 * **Downlink Payload:**
1028
1029 0x AA aa bb cc
1030
1031 Same as: AT+CMDDLaa=hex(bb cc)
1032
1033 **Example:**
1034
1035 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1036
1037
1038
1039 ==== **Uplink payload mode** ====
1040
1041 Define to use one uplink or multiple uplinks for the sampling.
1042
1043 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1044
1045 * **AT Command:**
1046
1047 (% class="box infomessage" %)
1048 (((
1049 **AT+DATAUP=0**
1050 )))
1051
1052 (% class="box infomessage" %)
1053 (((
1054 **AT+DATAUP=1**
1055 )))
1056
1057
1058 * **Downlink Payload:**
1059
1060 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1061
1062 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1063
1064
1065
1066
1067 ==== **Manually trigger an Uplink** ====
1068
1069 Ask device to send an uplink immediately.
1070
1071 * **Downlink Payload:**
1072
1073 **0x08 FF**, RS485-BL will immediately send an uplink.
1074
1075
1076
1077
1078 ==== **Clear RS485 Command** ====
1079
1080 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1081
1082
1083 * **AT Command:**
1084
1085 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1086
1087 Example screen shot after clear all RS485 commands. 
1088
1089
1090 The uplink screen shot is:
1091
1092 [[image:1654134704555-320.png]]
1093
1094
1095 * **Downlink Payload:**
1096
1097 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1098
1099
1100
1101 ==== **Set Serial Communication Parameters** ====
1102
1103 Set the Rs485 serial communication parameters:
1104
1105 * **AT Command:**
1106
1107 Set Baud Rate:
1108
1109 (% class="box infomessage" %)
1110 (((
1111 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1112 )))
1113
1114 Set UART Parity
1115
1116 (% class="box infomessage" %)
1117 (((
1118 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1119 )))
1120
1121 Set STOPBIT
1122
1123 (% class="box infomessage" %)
1124 (((
1125 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1126 )))
1127
1128
1129 * **Downlink Payload:**
1130
1131 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1132
1133 **Example:**
1134
1135 * A7 01 00 60   same as AT+BAUDR=9600
1136 * A7 01 04 80  same as AT+BAUDR=115200
1137
1138 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1139
1140 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1141
1142
1143
1144 ==== **Control output power duration** ====
1145
1146 User can set the output power duration before each sampling.
1147
1148 * **AT Command:**
1149
1150 **Example:**
1151
1152 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1153
1154 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1155
1156
1157 * **LoRaWAN Downlink Command:**
1158
1159 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1160
1161 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1162
1163
1164
1165 == 3.6 Buttons ==
1166
1167 (% border="1" style="background-color:#ffffcc; color:green; width:233px" %)
1168 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1169 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1170
1171 == 3.7 +3V3 Output ==
1172
1173 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1174
1175 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1176
1177 The +3V3 output time can be controlled by AT Command.
1178
1179
1180 (% style="color:#037691" %)**AT+3V3T=1000**
1181
1182
1183 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1184
1185 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1186
1187
1188 == 3.8 +5V Output ==
1189
1190 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1191
1192 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1193
1194 The 5V output time can be controlled by AT Command.
1195
1196
1197 (% style="color:#037691" %)**AT+5VT=1000**
1198
1199
1200 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1201
1202 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1203
1204
1205 == 3.9 LEDs ==
1206
1207 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1208 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1209 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1210
1211 == 3.10 Switch Jumper ==
1212
1213 (% border="1" style="background-color:#ffffcc; color:green; width:515px" %)
1214 |=(% style="width: 124px;" %)**Switch Jumper**|=(% style="width: 388px;" %)**Feature**
1215 |(% style="width:124px" %)**SW1**|(% style="width:388px" %)(((
1216 ISP position: Upgrade firmware via UART
1217
1218 Flash position: Configure device, check running status.
1219 )))
1220 |(% style="width:124px" %)**SW2**|(% style="width:388px" %)(((
1221 5V position: set to compatible with 5v I/O.
1222
1223 3.3v position: set to compatible with 3.3v I/O.,
1224 )))
1225
1226 **+3.3V**: is always ON
1227
1228 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1229
1230
1231 = 4. Case Study =
1232
1233 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1234
1235
1236 = 5. Use AT Command =
1237
1238 == 5.1 Access AT Command ==
1239
1240 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1241
1242 [[image:1654135840598-282.png]]
1243
1244
1245 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1246
1247 [[image:1654136105500-922.png]]
1248
1249
1250 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1251
1252
1253 == 5.2 Common AT Command Sequence ==
1254
1255 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1256
1257 If device has not joined network yet:
1258
1259 (% class="box infomessage" %)
1260 (((
1261 **AT+FDR**
1262 )))
1263
1264 (% class="box infomessage" %)
1265 (((
1266 **AT+NJM=0**
1267 )))
1268
1269 (% class="box infomessage" %)
1270 (((
1271 **ATZ**
1272 )))
1273
1274
1275 If device already joined network:
1276
1277 (% class="box infomessage" %)
1278 (((
1279 **AT+NJM=0**
1280 )))
1281
1282 (% class="box infomessage" %)
1283 (((
1284 **ATZ**
1285 )))
1286
1287
1288 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1289
1290
1291 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1292
1293 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1294
1295 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1296
1297 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1298
1299 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1300
1301 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1302
1303 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1304
1305 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1306
1307 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1308
1309 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1310
1311
1312 (% style="color:red" %)**Note:**
1313
1314 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1315 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1316 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1317 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1318
1319 [[image:1654136435598-589.png]]
1320
1321
1322 = 6. FAQ =
1323
1324 == 6.1 How to upgrade the image? ==
1325
1326 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1327
1328 * Support new features
1329 * For bug fix
1330 * Change LoRaWAN bands.
1331
1332 Below shows the hardware connection for how to upload an image to RS485-BL:
1333
1334 [[image:1654136646995-976.png]]
1335
1336 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1337
1338 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1339
1340 **Step3: **Open flashloader; choose the correct COM port to update.
1341
1342 [[image:image-20220602102605-1.png]]
1343
1344
1345 [[image:image-20220602102637-2.png]]
1346
1347
1348 [[image:image-20220602102715-3.png]]
1349
1350
1351
1352 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1353
1354 (((
1355 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1356 )))
1357
1358
1359
1360 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1361
1362 (((
1363 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1364 )))
1365
1366
1367
1368 = 7. Trouble Shooting =
1369
1370
1371 == 7.1 Downlink doesn’t work, how to solve it? ==
1372
1373 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1374
1375
1376 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1377
1378 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1379
1380
1381 = 8. Order Info =
1382
1383 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1384
1385 (% style="color:blue" %)**XXX:**
1386
1387 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1388 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1389 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1390 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1391 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1392 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1393 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1394 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1395 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1396 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1397
1398 = 9. Packing Info =
1399
1400 (((
1401 **Package Includes**:
1402 )))
1403
1404 * (((
1405 RS485-BL x 1
1406 )))
1407 * (((
1408 Stick Antenna for LoRa RF part x 1
1409 )))
1410 * (((
1411 Program cable x 1
1412 )))
1413
1414 (((
1415 **Dimension and weight**:
1416 )))
1417
1418 * (((
1419 Device Size: 13.5 x 7 x 3 cm
1420 )))
1421 * (((
1422 Device Weight: 105g
1423 )))
1424 * (((
1425 Package Size / pcs : 14.5 x 8 x 5 cm
1426 )))
1427 * (((
1428 Weight / pcs : 170g
1429
1430
1431 )))
1432
1433 = 10. Support =
1434
1435 * (((
1436 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1437 )))
1438 * (((
1439 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1440 )))