Version 40.36 by Xiaoling on 2022/06/06 09:57

Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="385" width="385"]]
3
4
5
6
7 **RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19 = 1.Introduction =
20
21 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
22
23 (((
24
25 )))
26
27 (((
28 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
29 )))
30
31 (((
32 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
33 )))
34
35 (((
36 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
37 )))
38
39 (((
40 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
41 )))
42
43 (((
44 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
45 )))
46
47 (((
48 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
49 )))
50
51 (((
52 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
53 )))
54
55 [[image:1652953304999-717.png||height="424" width="733"]]
56
57
58
59 == 1.2 Specifications ==
60
61
62 **Hardware System:**
63
64 * STM32L072CZT6 MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption (exclude RS485 device):
67 ** Idle: 6uA@3.3v
68 ** 20dB Transmit: 130mA@3.3v
69
70 **Interface for Model:**
71
72 * 1 x RS485 Interface
73 * 1 x TTL Serial , 3.3v or 5v.
74 * 1 x I2C Interface, 3.3v or 5v.
75 * 1 x one wire interface
76 * 1 x Interrupt Interface
77 * 1 x Controllable 5V output, max
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * Programmable bit rate up to 300 kbps.
87 * High sensitivity: down to -148 dBm.
88 * Bullet-proof front end: IIP3 = -12.5 dBm.
89 * Excellent blocking immunity.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * LoRa modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
96
97
98 == 1.3 Features ==
99
100 * LoRaWAN Class A & Class C protocol (default Class A)
101 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
102 * AT Commands to change parameters
103 * Remote configure parameters via LoRaWAN Downlink
104 * Firmware upgradable via program port
105 * Support multiply RS485 devices by flexible rules
106 * Support Modbus protocol
107 * Support Interrupt uplink
108
109
110 == 1.4 Applications ==
111
112 * Smart Buildings & Home Automation
113 * Logistics and Supply Chain Management
114 * Smart Metering
115 * Smart Agriculture
116 * Smart Cities
117 * Smart Factory
118
119
120 == 1.5 Firmware Change log ==
121
122 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
123
124
125 == 1.6 Hardware Change log ==
126
127 (((
128
129
130 (((
131 v1.4
132 )))
133 )))
134
135 (((
136 (((
137 ~1. Change Power IC to TPS22916
138 )))
139 )))
140
141 (((
142
143 )))
144
145 (((
146 (((
147 v1.3
148 )))
149 )))
150
151 (((
152 (((
153 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
154 )))
155 )))
156
157 (((
158
159 )))
160
161 (((
162 (((
163 v1.2
164 )))
165 )))
166
167 (((
168 (((
169 Release version ​​​​​
170 )))
171
172
173 )))
174
175 = 2. Pin mapping and Power ON Device =
176
177 (((
178 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
179 )))
180
181 [[image:1652953055962-143.png||height="387" width="728"]]
182
183
184 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
185
186
187 = 3. Operation Mode =
188
189 == 3.1 How it works? ==
190
191 (((
192 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
193
194
195 )))
196
197 == 3.2 Example to join LoRaWAN network ==
198
199 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
200
201 [[image:1652953414711-647.png||height="337" width="723"]]
202
203 (((
204 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
205 )))
206
207 (((
208 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
209 )))
210
211 (((
212 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
213 )))
214
215 (((
216 Each RS485-BL is shipped with a sticker with unique device EUI:
217 )))
218
219 [[image:1652953462722-299.png]]
220
221 (((
222 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
223 )))
224
225 (((
226 Add APP EUI in the application.
227 )))
228
229
230 [[image:image-20220519174512-1.png]]
231
232 [[image:image-20220519174512-2.png||height="328" width="731"]]
233
234 [[image:image-20220519174512-3.png||height="556" width="724"]]
235
236 [[image:image-20220519174512-4.png]]
237
238 You can also choose to create the device manually.
239
240 [[image:1652953542269-423.png||height="710" width="723"]]
241
242 Add APP KEY and DEV EUI
243
244 [[image:1652953553383-907.png||height="514" width="724"]]
245
246
247 (((
248 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
249 )))
250
251 [[image:1652953568895-172.png||height="232" width="724"]]
252
253
254 == 3.3 Configure Commands to read data ==
255
256 (((
257 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
258
259
260 )))
261
262 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
263
264 (((
265 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
266 )))
267
268 (((
269 **~1. RS485-MODBUS mode:**
270 )))
271
272 (((
273 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
274 )))
275
276 (((
277 **2. TTL mode:**
278 )))
279
280 (((
281 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
282 )))
283
284 (((
285 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
286 )))
287
288 (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
289 |(((
290 (((
291 **AT Commands**
292 )))
293 )))|(% style="width:285px" %)(((
294 (((
295 **Description**
296 )))
297 )))|(% style="width:347px" %)(((
298 (((
299 **Example**
300 )))
301 )))
302 |(((
303 (((
304 AT+BAUDR
305 )))
306 )))|(% style="width:285px" %)(((
307 (((
308 Set the baud rate (for RS485 connection). Default Value is: 9600.
309 )))
310 )))|(% style="width:347px" %)(((
311 (((
312 (((
313 AT+BAUDR=9600
314 )))
315 )))
316
317 (((
318 (((
319 Options: (1200,2400,4800,14400,19200,115200)
320 )))
321 )))
322 )))
323 |(((
324 (((
325 AT+PARITY
326 )))
327 )))|(% style="width:285px" %)(((
328 (((
329 (((
330 Set UART parity (for RS485 connection)
331 )))
332 )))
333
334 (((
335 (((
336 Default Value is: no parity.
337 )))
338 )))
339 )))|(% style="width:347px" %)(((
340 (((
341 (((
342 AT+PARITY=0
343 )))
344 )))
345
346 (((
347 (((
348 Option: 0: no parity, 1: odd parity, 2: even parity
349 )))
350 )))
351 )))
352 |(((
353 (((
354 AT+STOPBIT
355 )))
356 )))|(% style="width:285px" %)(((
357 (((
358 (((
359 Set serial stopbit (for RS485 connection)
360 )))
361 )))
362
363 (((
364 (((
365 Default Value is: 1bit.
366 )))
367 )))
368 )))|(% style="width:347px" %)(((
369 (((
370 (((
371 AT+STOPBIT=0 for 1bit
372 )))
373 )))
374
375 (((
376 (((
377 AT+STOPBIT=1 for 1.5 bit
378 )))
379 )))
380
381 (((
382 (((
383 AT+STOPBIT=2 for 2 bits
384 )))
385 )))
386 )))
387
388
389
390 === 3.3.2 Configure sensors ===
391
392 (((
393 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
394 )))
395
396 (((
397 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
398 )))
399
400 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
401 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
402 |AT+CFGDEV|(% style="width:418px" %)(((
403 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
404
405 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
406
407 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
408 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
409
410 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
411
412
413 === 3.3.3 Configure read commands for each sampling ===
414
415 (((
416 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
417 )))
418
419 (((
420 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
421 )))
422
423 (((
424 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
425 )))
426
427 (((
428 This section describes how to achieve above goals.
429 )))
430
431 (((
432 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
433 )))
434
435 (((
436 **Command from RS485-BL to Sensor:**
437 )))
438
439 (((
440 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
441 )))
442
443 (((
444 **Handle return from sensors to RS485-BL**:
445 )))
446
447 (((
448 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
449 )))
450
451 * (((
452 **AT+DATACUT**
453 )))
454
455 (((
456 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
457 )))
458
459 * (((
460 **AT+SEARCH**
461 )))
462
463 (((
464 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
465 )))
466
467 (((
468 **Define wait timeout:**
469 )))
470
471 (((
472 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
473 )))
474
475 (((
476 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
477 )))
478
479 **Examples:**
480
481 Below are examples for the how above AT Commands works.
482
483 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
484
485 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:501px" %)
486 |(% style="width:498px" %)(((
487 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
488
489 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
490
491 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
492 )))
493
494 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
495
496 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
497
498 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
499
500 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:580px" %)
501 |(% style="width:577px" %)(((
502 **AT+SEARCHx=aa,xx xx xx xx xx**
503
504 * **aa: 1: prefix match mode; 2: prefix and suffix match mode**
505 * **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
506 )))
507
508 **Examples:**
509
510 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
511
512 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
513
514 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
515
516 [[image:1653271044481-711.png]]
517
518 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
519
520 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
521
522 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
523
524 [[image:1653271276735-972.png]]
525
526 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
527
528 (% style="background-color:#4f81bd; color:white; width:729px" %)
529 |(% style="width:726px" %)(((
530 **AT+DATACUTx=a,b,c**
531
532 * **a: length for the return of AT+COMMAND**
533 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
534 * **c: define the position for valid value.  **
535 )))
536
537 **Examples:**
538
539 * Grab bytes:
540
541 [[image:1653271581490-837.png||height="313" width="722"]]
542
543
544 * Grab a section.
545
546 [[image:1653271648378-342.png||height="326" width="720"]]
547
548
549 * Grab different sections.
550
551 [[image:1653271657255-576.png||height="305" width="730"]]
552
553 (((
554 (% style="color:red" %)**Note:**
555 )))
556
557 (((
558 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
559 )))
560
561 (((
562 **Example:**
563 )))
564
565 (((
566 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
567 )))
568
569 (((
570 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
571 )))
572
573 (((
574 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
575 )))
576
577 (((
578 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
579 )))
580
581 (((
582 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
583 )))
584
585 (((
586 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
587 )))
588
589 [[image:1653271763403-806.png]]
590
591
592 === 3.3.4 Compose the uplink payload ===
593
594 (((
595 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
596 )))
597
598 (((
599 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
600 )))
601
602 (((
603 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
604 )))
605
606 (((
607 Final Payload is
608 )))
609
610 (((
611 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
612 )))
613
614 (((
615 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
616 )))
617
618 [[image:1653272787040-634.png||height="515" width="719"]]
619
620
621
622 (((
623 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
624
625
626 )))
627
628 (((
629 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
630 )))
631
632 (((
633 Final Payload is
634 )))
635
636 (((
637 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
638 )))
639
640 1. (((
641 Battery Info (2 bytes): Battery voltage
642 )))
643 1. (((
644 PAYVER (1 byte): Defined by AT+PAYVER
645 )))
646 1. (((
647 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
648 )))
649 1. (((
650 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
651 )))
652 1. (((
653 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
654 )))
655
656 [[image:1653272817147-600.png||height="437" width="717"]]
657
658 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
659
660
661 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
662
663 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
664
665 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
666
667
668 Below are the uplink payloads:
669
670 [[image:1653272901032-107.png]]
671
672
673 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
674
675 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
676
677 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
678
679 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
680
681 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
682
683
684
685 === 3.3.5 Uplink on demand ===
686
687 (((
688 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
689 )))
690
691 (((
692 Downlink control command:
693 )))
694
695 (((
696 **0x08 command**: Poll an uplink with current command set in RS485-BL.
697 )))
698
699 (((
700 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
701
702
703 )))
704
705 === 3.3.6 Uplink on Interrupt ===
706
707 Put the interrupt sensor between 3.3v_out and GPIO ext.
708
709 [[image:1653273818896-432.png]]
710
711
712 (((
713 AT+INTMOD=0  Disable Interrupt
714 )))
715
716 (((
717 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
718 )))
719
720 (((
721 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
722 )))
723
724 (((
725 AT+INTMOD=3  Interrupt trigger by rising edge.
726
727
728 )))
729
730 == 3.4 Uplink Payload ==
731
732 (% border="1" style="background-color:#4f81bd; color:white; width:850px" %)
733 |**Size(bytes)**|(% style="width:130px" %)**2**|(% style="width:93px" %)**1**|(% style="width:509px" %)**Length depends on the return from the commands**
734 |Value|(% style="width:130px" %)(((
735 (((
736 Battery(mV)
737 )))
738
739 (((
740 &
741 )))
742
743 (((
744 Interrupt _Flag
745 )))
746 )))|(% style="width:93px" %)(((
747 PAYLOAD_VER
748
749
750 )))|(% style="width:509px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
751
752 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
753
754 (((
755 {{{function Decoder(bytes, port) {}}}
756 )))
757
758 (((
759 {{{//Payload Formats of RS485-BL Deceive}}}
760 )))
761
762 (((
763 {{{return {}}}
764 )))
765
766 (((
767 {{{ //Battery,units:V}}}
768 )))
769
770 (((
771 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
772 )))
773
774 (((
775 {{{ //GPIO_EXTI }}}
776 )))
777
778 (((
779 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
780 )))
781
782 (((
783 {{{ //payload of version}}}
784 )))
785
786 (((
787 {{{ Pay_ver:bytes[2],}}}
788 )))
789
790 (((
791 {{{ }; }}}
792 )))
793
794 (((
795 **}**
796
797
798 )))
799
800 (((
801 TTN V3 uplink screen shot.
802 )))
803
804 [[image:1653274001211-372.png||height="192" width="732"]]
805
806
807 == 3.5 Configure RS485-BL via AT or Downlink ==
808
809 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
810
811 There are two kinds of Commands:
812
813 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
814
815 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
816
817
818 === 3.5.1 Common Commands: ===
819
820 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
821
822
823 === 3.5.2 Sensor related commands: ===
824
825
826 ==== **Choose Device Type (RS485 or TTL)** ====
827
828 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
829
830 * **AT Command**
831
832 (% class="box infomessage" %)
833 (((
834 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
835 )))
836
837 (% class="box infomessage" %)
838 (((
839 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
840 )))
841
842
843 * **Downlink Payload**
844
845 **0A aa**  ~-~->  same as AT+MOD=aa
846
847
848
849 ==== **RS485 Debug Command (AT+CFGDEV)** ====
850
851 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
852
853 * **AT Command**
854
855 (% class="box infomessage" %)
856 (((
857 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
858 )))
859
860 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
861
862
863 * **Downlink Payload**
864
865 Format: A8 MM NN XX XX XX XX YY
866
867 Where:
868
869 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
870 * NN: The length of RS485 command
871 * XX XX XX XX: RS485 command total NN bytes
872 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
873
874 **Example 1:**
875
876 To connect a Modbus Alarm with below commands.
877
878 * The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
879
880 * The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
881
882 So if user want to use downlink command to control to RS485 Alarm, he can use:
883
884 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
885
886 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
887
888 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
889
890
891 **Example 2:**
892
893 Check TTL Sensor return:
894
895 [[image:1654132684752-193.png]]
896
897
898
899
900 ==== **Set Payload version** ====
901
902 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
903
904 * **AT Command:**
905
906 (% class="box infomessage" %)
907 (((
908 **AT+PAYVER: Set PAYVER field = 1**
909 )))
910
911
912 * **Downlink Payload:**
913
914 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
915
916 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
917
918
919
920 ==== **Set RS485 Sampling Commands** ====
921
922 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
923
924 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
925
926
927 * **AT Command:**
928
929 (% class="box infomessage" %)
930 (((
931 **AT+COMMANDx: Configure RS485 read command to sensor.**
932 )))
933
934 (% class="box infomessage" %)
935 (((
936 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
937 )))
938
939 (% class="box infomessage" %)
940 (((
941 **AT+SEARCHx: Configure search command**
942 )))
943
944
945 * **Downlink Payload:**
946
947 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
948
949 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
950
951 Format: AF MM NN LL XX XX XX XX YY
952
953 Where:
954
955 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
956 * NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
957 * LL:  The length of AT+COMMAND or AT+DATACUT command
958 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
959 * YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
960
961 **Example:**
962
963 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
964
965 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
966
967 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
968
969
970 **0xAB** downlink command can be used for set AT+SEARCHx
971
972 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
973
974 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
975 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
976
977 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
978
979
980
981 ==== **Fast command to handle MODBUS device** ====
982
983 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
984
985 This command is valid since v1.3 firmware version
986
987
988 **AT+MBFUN has only two value:**
989
990 * **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
991
992 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
993
994 * **AT+MBFUN=0**: Disable Modbus fast reading.
995
996 **Example:**
997
998 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
999 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1000 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1001
1002 [[image:1654133913295-597.png]]
1003
1004
1005 [[image:1654133954153-643.png]]
1006
1007
1008 * **Downlink Commands:**
1009
1010 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1011
1012
1013
1014 ==== **RS485 command timeout** ====
1015
1016 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1017
1018 Default value: 0, range:  0 ~~ 5 seconds
1019
1020
1021 * **AT Command:**
1022
1023 (% class="box infomessage" %)
1024 (((
1025 **AT+CMDDLaa=hex(bb cc)**
1026 )))
1027
1028 **Example:**
1029
1030 **AT+CMDDL1=1000** to send the open time to 1000ms
1031
1032
1033 * **Downlink Payload:**
1034
1035 0x AA aa bb cc
1036
1037 Same as: AT+CMDDLaa=hex(bb cc)
1038
1039 **Example:**
1040
1041 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1042
1043
1044
1045 ==== **Uplink payload mode** ====
1046
1047 Define to use one uplink or multiple uplinks for the sampling.
1048
1049 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1050
1051 * **AT Command:**
1052
1053 (% class="box infomessage" %)
1054 (((
1055 **AT+DATAUP=0**
1056 )))
1057
1058 (% class="box infomessage" %)
1059 (((
1060 **AT+DATAUP=1**
1061 )))
1062
1063
1064 * **Downlink Payload:**
1065
1066 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1067
1068 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1069
1070
1071
1072
1073 ==== **Manually trigger an Uplink** ====
1074
1075 Ask device to send an uplink immediately.
1076
1077 * **Downlink Payload:**
1078
1079 **0x08 FF**, RS485-BL will immediately send an uplink.
1080
1081
1082
1083
1084 ==== **Clear RS485 Command** ====
1085
1086 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1087
1088
1089 * **AT Command:**
1090
1091 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1092
1093 Example screen shot after clear all RS485 commands. 
1094
1095
1096 The uplink screen shot is:
1097
1098 [[image:1654134704555-320.png]]
1099
1100
1101 * **Downlink Payload:**
1102
1103 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1104
1105
1106
1107 ==== **Set Serial Communication Parameters** ====
1108
1109 Set the Rs485 serial communication parameters:
1110
1111 * **AT Command:**
1112
1113 Set Baud Rate:
1114
1115 (% class="box infomessage" %)
1116 (((
1117 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1118 )))
1119
1120 Set UART Parity
1121
1122 (% class="box infomessage" %)
1123 (((
1124 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1125 )))
1126
1127 Set STOPBIT
1128
1129 (% class="box infomessage" %)
1130 (((
1131 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1132 )))
1133
1134
1135 * **Downlink Payload:**
1136
1137 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1138
1139 **Example:**
1140
1141 * A7 01 00 60   same as AT+BAUDR=9600
1142 * A7 01 04 80  same as AT+BAUDR=115200
1143
1144 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1145
1146 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1147
1148
1149
1150 ==== **Control output power duration** ====
1151
1152 User can set the output power duration before each sampling.
1153
1154 * **AT Command:**
1155
1156 **Example:**
1157
1158 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1159
1160 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1161
1162
1163 * **LoRaWAN Downlink Command:**
1164
1165 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1166
1167 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1168
1169
1170
1171 == 3.6 Buttons ==
1172
1173 (% border="1" style="background-color:#ffffcc; color:green; width:233px" %)
1174 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1175 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1176
1177
1178 == 3.7 +3V3 Output ==
1179
1180 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1181
1182 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1183
1184 The +3V3 output time can be controlled by AT Command.
1185
1186
1187 (% style="color:#037691" %)**AT+3V3T=1000**
1188
1189
1190 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1191
1192 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1193
1194
1195 == 3.8 +5V Output ==
1196
1197 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1198
1199 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1200
1201 The 5V output time can be controlled by AT Command.
1202
1203
1204 (% style="color:#037691" %)**AT+5VT=1000**
1205
1206
1207 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1208
1209 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1210
1211
1212 == 3.9 LEDs ==
1213
1214 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1215 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1216 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1217
1218
1219 == 3.10 Switch Jumper ==
1220
1221 (% border="1" style="background-color:#ffffcc; color:green; width:515px" %)
1222 |=(% style="width: 124px;" %)**Switch Jumper**|=(% style="width: 388px;" %)**Feature**
1223 |(% style="width:124px" %)**SW1**|(% style="width:388px" %)(((
1224 ISP position: Upgrade firmware via UART
1225
1226 Flash position: Configure device, check running status.
1227 )))
1228 |(% style="width:124px" %)**SW2**|(% style="width:388px" %)(((
1229 5V position: set to compatible with 5v I/O.
1230
1231 3.3v position: set to compatible with 3.3v I/O.,
1232 )))
1233
1234 **+3.3V**: is always ON
1235
1236 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1237
1238
1239 = 4. Case Study =
1240
1241 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1242
1243
1244 = 5. Use AT Command =
1245
1246 == 5.1 Access AT Command ==
1247
1248 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1249
1250 [[image:1654135840598-282.png]]
1251
1252
1253 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1254
1255 [[image:1654136105500-922.png]]
1256
1257
1258 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1259
1260
1261 == 5.2 Common AT Command Sequence ==
1262
1263 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1264
1265 If device has not joined network yet:
1266
1267 (% class="box infomessage" %)
1268 (((
1269 **AT+FDR**
1270 )))
1271
1272 (% class="box infomessage" %)
1273 (((
1274 **AT+NJM=0**
1275 )))
1276
1277 (% class="box infomessage" %)
1278 (((
1279 **ATZ**
1280 )))
1281
1282
1283 If device already joined network:
1284
1285 (% class="box infomessage" %)
1286 (((
1287 **AT+NJM=0**
1288 )))
1289
1290 (% class="box infomessage" %)
1291 (((
1292 **ATZ**
1293 )))
1294
1295
1296 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1297
1298
1299 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1300
1301 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1302
1303 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1304
1305 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1306
1307 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1308
1309 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1310
1311 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1312
1313 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1314
1315 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1316
1317 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1318
1319
1320 (% style="color:red" %)**Note:**
1321
1322 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1323 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1324 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1325 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1326
1327 [[image:1654136435598-589.png]]
1328
1329
1330 = 6. FAQ =
1331
1332 == 6.1 How to upgrade the image? ==
1333
1334 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1335
1336 * Support new features
1337 * For bug fix
1338 * Change LoRaWAN bands.
1339
1340 Below shows the hardware connection for how to upload an image to RS485-BL:
1341
1342 [[image:1654136646995-976.png]]
1343
1344 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1345
1346 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1347
1348 **Step3: **Open flashloader; choose the correct COM port to update.
1349
1350 [[image:image-20220602102605-1.png]]
1351
1352
1353 [[image:image-20220602102637-2.png]]
1354
1355
1356 [[image:image-20220602102715-3.png]]
1357
1358
1359
1360 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1361
1362 (((
1363 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1364 )))
1365
1366
1367
1368 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1369
1370 (((
1371 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1372 )))
1373
1374
1375
1376 = 7. Trouble Shooting =
1377
1378
1379 == 7.1 Downlink doesn’t work, how to solve it? ==
1380
1381 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1382
1383
1384 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1385
1386 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1387
1388
1389 = 8. Order Info =
1390
1391 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1392
1393 (% style="color:blue" %)**XXX:**
1394
1395 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1396 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1397 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1398 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1399 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1400 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1401 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1402 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1403 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1404 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1405
1406
1407
1408 = 9. Packing Info =
1409
1410 (((
1411 **Package Includes**:
1412 )))
1413
1414 * (((
1415 RS485-BL x 1
1416 )))
1417 * (((
1418 Stick Antenna for LoRa RF part x 1
1419 )))
1420 * (((
1421 Program cable x 1
1422 )))
1423
1424 (((
1425 **Dimension and weight**:
1426 )))
1427
1428 * (((
1429 Device Size: 13.5 x 7 x 3 cm
1430 )))
1431 * (((
1432 Device Weight: 105g
1433 )))
1434 * (((
1435 Package Size / pcs : 14.5 x 8 x 5 cm
1436 )))
1437 * (((
1438 Weight / pcs : 170g
1439
1440
1441 )))
1442
1443 = 10. Support =
1444
1445 * (((
1446 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1447 )))
1448 * (((
1449 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1450 )))