Version 107.32 by Xiaoling on 2023/08/01 08:47

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230718162411-1.png||height="580" width="580"]]
3
4
5
6
7
8
9 **Table of Contents:**
10
11 {{toc/}}
12
13
14
15
16
17
18
19
20
21 = 1. Introduction =
22
23 == 1.1 Overview ==
24
25
26 (((
27 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:blue" %)**weather and climate**(%%). They consist of a (% style="color:blue" %)**main process device (WSC2-LB) and various sensors**.
28 )))
29
30 (((
31 The sensors include various type such as: (% style="color:blue" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
32 )))
33
34 (((
35 Main process device WSC2-LB is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:blue" %)**12v solar power**(%%) and have a (% style="color:blue" %)**built-in li-on backup battery**(%%). WSC2-LB reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
36 )))
37
38 (((
39 WSC2-LB is full compatible with(% style="color:blue" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
40
41
42 )))
43
44 = 2. How to use =
45
46 == 2.1 Installation ==
47
48
49 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H12.AppendixI:FieldInstallationPhoto"]] 
50
51 [[image:image-20230718164815-2.png||height="382" width="901"]]
52
53
54 (% style="color:blue" %)** Wiring:**
55
56 ~1. WSC2-LB and sensors all powered by solar power via MPPT
57
58 2. WSC2-LB and sensors connect to each other via RS485/Modbus.
59
60 3. WSC2-LB read value from each sensor and send uplink via LoRaWAN
61
62
63 WSC2-LB is shipped with a RS485 converter board, for the easy connection to different sensors and WSC2-LB. Below is a connection photo:
64
65
66 [[image:1656042136605-251.png]]
67
68
69 (% style="color:red" %)**Notice 1:**
70
71 * All weather sensors and WSC2-LB are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
72 * WSC2-LB has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
73 * Weather sensors won't work if solar panel and storage battery fails.
74
75 (% style="color:red" %)**Notice 2:**
76
77 Due to shipment and importation limitation, user is better to purchase below parts locally:
78
79 * Solar Panel
80 * Storage Battery
81 * MPPT Solar Recharger
82 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
83 * Cabinet.
84
85 == 2.2 How it works? ==
86
87
88 (((
89 Each WSC2-LB is shipped with a worldwide unique set of OTAA keys. To use WSC2-LB in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC2-LB in your LoRaWAN server and Power on WSC2-LB , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
90 )))
91
92
93 (((
94 Open WSC2-LB and put the yellow jumper as below position to power on WSC2-LB.
95 )))
96
97 [[image:1656042192857-709.png]]
98
99
100 (% style="color:red" %)**Notice:**
101
102 1. WSC2-LB will auto scan available weather sensors when power on or reboot.
103 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC2-LBviaATCommandorLoRaWANDownlink"]] to WSC2-LB to do a re-scan on the available sensors.
104
105 == 2.3 Example to use for LoRaWAN network ==
106
107
108 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
109
110 [[image:image-20230718164815-2.png||height="382" width="901"]]
111
112
113
114 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC2-LB device in TTN V3:
115
116
117 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC2-LB.
118
119 Each WSC2-LB is shipped with a sticker with the default device EUI as below:
120
121 [[image:image-20230426084533-1.png||height="231" width="497"]]
122
123
124 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
125
126 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
127
128 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
129
130 **Add APP EUI in the application.**
131
132 [[image:1656042662694-311.png]]
133
134 [[image:1656042673910-429.png]]
135
136
137
138
139 **Choose Manually to add WSC2-LB**
140
141 [[image:1656042695755-103.png]]
142
143
144
145 **Add APP KEY and DEV EUI**
146
147 [[image:1656042723199-746.png]]
148
149
150
151 (((
152 (% style="color:blue" %)**Step 2**(%%): Power on WSC2-LB, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
153 )))
154
155
156 [[image:1656042745346-283.png]]
157
158
159 == 2.4 Uplink Payload ==
160
161
162 Uplink payloads include two types: Valid Sensor Value and other status / control command.
163
164 * Valid Sensor Value: Use FPORT=2
165 * Other control command: Use FPORT other than 2.
166
167 === 2.4.1 Uplink FPORT~=5, Device Status ===
168
169
170 Uplink the device configures with FPORT=5. Once WSC2-LB Joined the network, it will uplink this message to the server. After first uplink, WSC2-LB will uplink Device Status every 12 hours
171
172
173 (((
174 User can also use downlink command**(0x2301)** to ask WSC2-LB to resend this uplink
175 )))
176
177 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
178 |=(% style="width: 70px;background-color:#D9E2F3" %)**Size(**bytes)|=(% style="width: 60px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)**1**|=(% style="width: 60px;background-color:#D9E2F3" %)**1**|=(% style="width: 50px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**3**
179 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
180
181 [[image:1656043061044-343.png]]
182
183
184 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
185
186
187 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
188
189 For WSC2-LB, this value is 0x0D.
190
191
192 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
193
194 0x0100, Means: v1.0.0 version.
195
196
197 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
198
199 0x01: EU868
200
201 0x02: US915
202
203 0x03: IN865
204
205 0x04: AU915
206
207 0x05: KZ865
208
209 0x06: RU864
210
211 0x07: AS923
212
213 0x08: AS923-1
214
215 0x09: AS923-2
216
217 0x0a: AS923-3
218
219
220 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
221
222 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
223
224
225 ==== (% style="color:#037691" %)**BAT:**(%%) ====
226
227 (((
228 shows the battery voltage for WSC2-LB MCU.
229 )))
230
231 (((
232 Ex1: 0x0BD6/1000 = 3.03 V
233 )))
234
235
236 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
237
238 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
239 |Byte3|Byte2|Byte1
240
241 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
242
243 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
244 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:113px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
245 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
246 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
247 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
248 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
249 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
250
251 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
252
253 External sensors detected by WSC2-LB include :
254
255 custom sensor A1,
256
257 PAR sensor (WSS-07),
258
259 Total Solar Radiation sensor (WSS-06),
260
261 CO2/PM2.5/PM10 (WSS-03),
262
263 Wind Speed/Direction (WSS-02)
264
265
266 User can also use downlink command(0x26 01) to ask WSC2-LB to resend this uplink :
267
268 (% style="color:#037691" %)**Downlink:0x26 01**
269
270 [[image:1656049673488-415.png]]
271
272
273 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
274
275
276 (((
277 WSC2-LB will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
278 )))
279
280 (((
281 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
282 )))
283
284
285 (((
286 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
287 )))
288
289
290 (% style="color:#4472c4" %)** Uplink Payload**:
291
292 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
293 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
294
295 (% style="color:#4472c4" %)** Sensor Segment Define**:
296
297 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
298 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
299
300 (% style="color:#4472c4" %)**Sensor Type Table:**
301
302 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
303 |(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**Sensor Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:65px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:97px" %)**Range**|(% style="background-color:#d9e2f3; color:#0070c0; width:78px" %)**Length( Bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:190px" %)**Example**
304 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
305 Speed: 0 ~~ 60m/s
306 Level: 0 ~~ 17
307 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
308 (((
309 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
310 )))
311
312 (((
313 0x02=2 (0x14: No Sensor, 0x15: Value Error)
314 )))
315 )))
316 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
317 Angel: 0 ~~ 360°
318 Direction: 16 positions
319 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
320 (((
321 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
322 )))
323
324 (((
325 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
326 )))
327 )))
328 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
329 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
330 )))
331 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
332 (((
333 0x00 (00) No Rain or snow detected
334 )))
335
336 (((
337 (0x02: No Sensor,0x03: Value Error)
338 )))
339 )))
340 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
341 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
342 )))
343 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
344 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
345 )))
346 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
347 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
348 )))
349 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
350 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
351 )))
352 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
353 0mm~100mm(Rainfall in the last 24 hours)
354 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
355 (((
356 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
357 )))
358
359 (((
360 (0x03FE: No Sensor,0x03FF: Value Error)
361 )))
362 )))
363 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
364 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
365 )))
366 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
367 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
368 )))
369 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
370 0~2500μmol/m^^2^^•s
371 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
372 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
373 )))
374 |(% style="width:103px" %)(((
375 Total Solar Radiation
376 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
377 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
378 )))
379
380 (((
381 Below is an example payload:  [[image:image-20220624140615-3.png]]
382 )))
383
384
385 (((
386 When sending this payload to LoRaWAN server. WSC2-LB will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
387 )))
388
389 * (((
390 When WSC2-LB sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
391 )))
392
393 (((
394 Uplink 1:  [[image:image-20220624140735-4.png]]
395 )))
396
397
398 (((
399 Uplink 2:  [[image:image-20220624140842-5.png]]
400
401 )))
402
403 * (((
404 When WSC2-LB sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
405 )))
406
407 (((
408 Uplink 1:  [[image:image-20220624141025-6.png]]
409 )))
410
411
412 Uplink 2:  [[image:image-20220624141100-7.png]]
413
414
415 === 2.4.3 Decoder in TTN V3 ===
416
417
418 (((
419 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
420 )))
421
422 (((
423 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
424 )))
425
426
427 (((
428 and put as below:
429 )))
430
431 [[image:1656051152438-578.png]]
432
433
434 == 2.5 Show data on Application Server ==
435
436
437 (((
438 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
439 )))
440
441 (((
442 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
443 )))
444
445 (((
446 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
447 )))
448
449 [[image:1656051197172-131.png]]
450
451
452
453 **Add TagoIO:**
454
455 [[image:1656051223585-631.png]]
456
457
458
459 **Authorization:**
460
461 [[image:1656051248318-368.png]]
462
463
464
465 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC2-LB:
466
467
468 [[image:1656051277767-168.png]]
469
470
471 == 2.6 Frequency Plans ==
472
473
474 The WSC2-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
475
476 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
477
478
479 = 3. Configure WSC2-LB =
480
481 == 3.1 Configure Methods ==
482
483
484 WSC2-LB supports below configure method:
485
486 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
487
488 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
489
490 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
491
492 == 3.2 General Commands ==
493
494
495 These commands are to configure:
496
497 * General system settings like: uplink interval.
498 * LoRaWAN protocol & radio related command.
499
500 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
501
502 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
503
504
505 == 3.3 Commands special design for WSC2-LB ==
506
507
508 These commands only valid for WSC2-LB, as below:
509
510
511 === 3.3.1 Set Transmit Interval Time ===
512
513
514 Feature: Change LoRaWAN End Node Transmit Interval.
515
516 (% style="color:#037691" %)**AT Command: AT+TDC**
517
518 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
519 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
520 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
521 30000
522 OK
523 the interval is 30000ms = 30s
524 )))
525 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
526 OK
527 Set transmit interval to 60000ms = 60 seconds
528 )))
529
530 (% style="color:#037691" %)**Downlink Command: 0x01**
531
532 Format: Command Code (0x01) followed by 3 bytes time value.
533
534 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
535
536 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
537 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
538
539 === 3.3.2 Set Emergency Mode ===
540
541
542 Feature: In emergency mode, WSC2-LB will uplink data every 1 minute.
543
544 (% style="color:#037691" %)**AT Command:**
545
546 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:466px" %)
547 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:225px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:85px" %)**Response**
548 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
549 OK
550
551 )))
552 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
553 OK
554 )))
555
556 (% style="color:#037691" %)**Downlink Command:**
557
558 * 0xE101     Same as: AT+ALARMMOD=1
559 * 0xE100     Same as: AT+ALARMMOD=0
560
561 === 3.3.3 Add or Delete RS485 Sensor ===
562
563
564 (((
565 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
566 )))
567
568 (((
569 (% style="color:#037691" %)**AT Command: **
570 )))
571
572 (((
573 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
574 )))
575
576 * (((
577 Type_Code range:  A1 ~~ A4
578 )))
579 * (((
580 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
581 )))
582 * (((
583 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
584 )))
585 * (((
586 Read_Length:  RS485 response frame length supposed to receive. Max can receive
587 )))
588 * (((
589 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
590 )))
591 * (((
592 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
593 )))
594 * (((
595 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
596 )))
597
598 (((
599 **Example:**
600 )))
601
602 (((
603 User need to change external sensor use the type code as address code.
604 )))
605
606 (((
607 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
608 )))
609
610 [[image:image-20220624143553-10.png]]
611
612
613 The response frame of the sensor is as follows:
614
615 [[image:image-20220624143618-11.png]]
616
617
618 **Then the following parameters should be:**
619
620 * Address_Code range: A1
621 * Query_Length: 8
622 * Query_Command: A103000000019CAA
623 * Read_Length: 8
624 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
625 * has_CRC: 1
626 * timeout: 1500 (Fill in the test according to the actual situation)
627
628 **So the input command is:**
629
630 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
631
632
633 In every sampling. WSC2-LB will auto append the sensor segment as per this structure and uplink.
634
635 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:351px" %)
636 |=(% style="width: 95px;background-color:#D9E2F3;color:#0070C0" %)Type Code|=(% style="width: 122px;background-color:#D9E2F3;color:#0070C0" %)Length (Bytes)|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)Measured Value
637 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
638
639 **Related commands:**
640
641 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
642
643 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
644
645
646 (% style="color:#037691" %)**Downlink Command:  **
647
648 **delete custom sensor A1:**
649
650 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
651
652 **Remove all custom sensors**
653
654 * 0xE5FF  
655
656 === 3.3.4 RS485 Test Command ===
657
658
659 (% style="color:#037691" %)**AT Command:**
660
661 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:494px" %)
662 |=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 248px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
663 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
664 Send command to 485 sensor. Range : no more than 10 bytes
665 )))|(% style="width:85px" %)OK
666
667 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
668
669 AT+RSWRITE=0103000001840A
670
671
672 (% style="color:#037691" %)**Downlink Command:**
673
674 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
675
676 === 3.3.5 RS485 response timeout ===
677
678
679 Feature: Set or get extended time to receive 485 sensor data.
680
681 (% style="color:#037691" %)**AT Command:**
682
683 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
684 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
685 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
686 Set response timeout to: Range : 0~~10000
687 )))|(% style="width:85px" %)OK
688
689 (% style="color:#037691" %)**Downlink Command:**
690
691 Format: Command Code (0xE0) followed by 3 bytes time value.
692
693 If the downlink payload=E0000005, it means set the END Node's Transmit Interval to 0x000005=5(S), while type code is E0.
694
695 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
696 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
697
698 === 3.3.6 Set Sensor Type ===
699
700
701 (((
702 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
703 )))
704
705 (((
706 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
707
708 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
709 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
710 | |A4|A3|A2|A1| | |
711 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
712 | | |Solar Radiation|PAR|PM10|PM2.5|(((
713 Rain
714 Gauge
715 )))|(((
716 Air
717 Pressure
718 )))
719 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
720 |Humidity|Temperature|CO2|(((
721 Rain/Snow
722 Detect
723 )))|illuminance|(((
724 Wind
725 Direction
726 )))|Wind Speed|BAT
727 )))
728
729
730 (% style="color:#037691" %)**AT Command:**
731
732 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:377px" %)
733 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 132px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 88px;background-color:#D9E2F3;color:#0070C0" %)**Response**
734 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
735
736 Eg: The setting command **AT+STYPE=80221** means:
737
738 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:495px" %)
739 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
740 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
741 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
742 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
743 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
744 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
745
746 So WSC2-LB will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
747
748
749 (% style="color:#037691" %)**Downlink Command:**
750
751 * 0xE400080221  Same as: AT+STYPE=80221
752
753 (% style="color:red" %)**Note:**
754
755 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
756
757
758 === 3.3.7  Set the registers read by the rain gauge ===
759
760
761 (% style="color:#037691" %)**AT Command:**
762
763 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
764 |=(% style="width: 172px; background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 175px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
765 |(% style="width:161px" %)(((
766 AT+RAINFALLSWITCH=1(Range: 1~~10)
767 )))|(% style="width:184px" %)(((
768 Set the registers read by the rain gauge
769 )))|(% style="width:85px" %)OK
770
771 (% style="color:#037691" %)**Downlink Command:**
772
773 * 0x1701  Same as: AT+RAINFALLSWITCH=1
774
775 = 4. Power consumption and battery =
776
777 == 4.1 Total Power Consumption ==
778
779
780 Dragino Weather Station serial products include the main process unit (WSC2-LB) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC2-LB is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
781
782
783 == 4.2 Reduce power consumption ==
784
785
786 The main process unit WSC2-LB is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC2-LB will not be to get real-time downlink command from IoT Server.
787
788
789 == 4.3 Battery ==
790
791
792 (((
793 All sensors are only power by external power source. If external power source is off. All sensor won't work.
794 )))
795
796 (((
797 Main Process Unit WSC2-LB is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC2-LB still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
798 )))
799
800
801 = 5. Main Process Unit WSC2-LB =
802
803
804 WSC2-LB is the main process unit in Dragino Weather Station solution. WSC2-LB is an an outdoor LoRaWAN RS485 end node. It is powered by external 12v solar power and have a built-in li-on backup battery.
805
806 WSC2-LB reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
807
808 WSC2-LB is full compatible with LoRaWAN Class C protocol, it can work with standard LoRaWAN gateway.
809
810 WSC2-LB Supports BLE configure and wireless OTA update which make user easy to use.
811
812 Each WSC2-LB is pre-load with a set of unique keys for LoRaWAN registration, register these keys to local LoRaWAN server and it will auto connect after power on.
813
814
815 == 5.1 Features ==
816
817
818 * LoRaWAN v1.0.3 Class A protocol.
819 * RS485 / Modbus protocol
820 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
821 * AT Commands to change parameters
822 * Downlink to change configure
823 * Powered by external 12v battery
824 * Back up rechargeable 1000mAh battery
825 * IP Rating: IP65
826 * Support default sensors or 3rd party RS485 sensors
827 * Support Bluetooth v5.1 and LoRaWAN remote configure
828 * Support wireless OTA update firmware
829 * Wall Attachable.
830
831 == 5.2 Power Consumption ==
832
833
834 WSC2-LB (without external sensor): Idle: 4mA, Transmit: max 40mA
835
836
837 == 5.3 Storage & Operation Temperature ==
838
839
840 -20°C to +60°C
841
842 == 5.4 Sleep mode and working mode ==
843
844
845 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
846
847 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
848
849
850 == 5.5 Button & LEDs ==
851
852
853 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
854
855
856 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
857 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
858 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
859 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
860 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
861 )))
862 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
863 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
864 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
865 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
866 )))
867 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
868
869
870 == 5.6 BLE connection ==
871
872
873 SN50v3-LB supports BLE remote configure.
874
875
876 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
877
878 * Press button to send an uplink
879 * Press button to active device.
880 * Device Power on or reset.
881
882 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
883
884
885 == 5.7 Pin Mapping ==
886
887
888 [[image:1656054149793-239.png]]
889
890
891 == 5.8 Mechanical ==
892
893
894 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
895
896
897 == 5.9 Connect to RS485 Sensors ==
898
899
900 WSC2-LB includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
901
902
903 [[image:1656054389031-379.png]]
904
905
906 Hardware Design for the Converter Board please see:
907
908 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
909
910
911 = 6. Weather Sensors =
912
913 == 6.1 Rain Gauge ~-~- WSS-01 ==
914
915
916 (((
917 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
918 )))
919
920 (((
921 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
922 )))
923
924 (((
925 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC2-LB. The weather station main processor WSC2-LB can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
926 )))
927
928 (((
929 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
930 )))
931
932 (((
933 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
934 )))
935
936
937 === 6.1.1 Feature ===
938
939
940 * RS485 Rain Gauge
941 * Small dimension, easy to install
942 * Vents under funnel, avoid leaf or other things to avoid rain flow.
943 * ABS enclosure.
944 * Horizontal adjustable.
945
946 === 6.1.2 Specification ===
947
948
949 * Resolution: 0.2mm
950 * Accuracy: ±3%
951 * Range: 0 ~~ 100mm
952 * Rainfall strength: 0mm ~~ 4mm/min (max 8mm/min)
953 * Input Power: DC 5 ~~ 24v
954 * Interface: RS485
955 * Working Temperature: 0℃ ~~ 70℃ (incorrect below 0 degree, because water become ICE)
956 * Working Humidity: <100% (no dewing)
957 * Power Consumption: 4mA @ 12v.
958
959 === 6.1.3 Dimension ===
960
961
962 [[image:1656054957406-980.png]]
963
964
965 === 6.1.4 Pin Mapping ===
966
967
968 [[image:1656054972828-692.png]]
969
970
971 === 6.1.5 Installation Notice ===
972
973
974 (((
975 Do not power on while connect the cables. Double check the wiring before power on.
976 )))
977
978 (((
979 Installation Photo as reference:
980 )))
981
982
983 (((
984 (% style="color:#4472c4" %)** Install on Ground:**
985 )))
986
987 (((
988 WSS-01 Rain Gauge include screws so can install in ground directly .
989 )))
990
991
992 (((
993 (% style="color:#4472c4" %)** Install on pole:**
994 )))
995
996 (((
997 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
998 )))
999
1000 [[image:image-20220624152218-1.png||height="526" width="276"]]
1001
1002 WS-K2: Bracket Kit for Pole installation
1003
1004
1005 WSSC-K2 dimension document, please see:
1006
1007 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
1008
1009
1010 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
1011
1012
1013 [[image:1656055444035-179.png]]
1014
1015
1016 (((
1017 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
1018 )))
1019
1020 (((
1021 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
1022 )))
1023
1024 (((
1025 Users only need to connect WSS-02 RS485 interface to WSC2-LB. The weather station main processor WSC2-LB can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
1026 )))
1027
1028
1029 === 6.2.1 Feature ===
1030
1031
1032 * RS485 wind speed / direction sensor
1033 * PC enclosure, resist corrosion
1034
1035 === 6.2.2 Specification ===
1036
1037
1038 * Wind speed range: 0 ~~ 60m/s
1039 * Wind direction range: 0 ~~ 360°
1040 * Start wind speed: ≤0.3 m/s
1041 * Accuracy: ±(0.3+0.03V) m/s , ±1°
1042 * Input Power: DC 5 ~~ 24v
1043 * Interface: RS485
1044 * Working Temperature: -30℃ ~~ 70℃
1045 * Working Humidity: <100% (no dewing)
1046 * Power Consumption: 13mA ~~ 12v.
1047 * Cable Length: 2 meters
1048
1049 === 6.2.3 Dimension ===
1050
1051
1052 [[image:image-20220624152813-2.png]]
1053
1054
1055 === 6.2.4 Pin Mapping ===
1056
1057
1058 [[image:1656056281231-994.png]]
1059
1060
1061 === 6.2.5  Angle Mapping ===
1062
1063
1064 [[image:1656056303845-585.png]]
1065
1066
1067 === 6.2.6  Installation Notice ===
1068
1069
1070 (((
1071 Do not power on while connect the cables. Double check the wiring before power on.
1072 )))
1073
1074 (((
1075 The sensor must be installed with below direction, towards North.
1076
1077
1078 )))
1079
1080 [[image:image-20220624153901-3.png]]
1081
1082
1083 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1084
1085
1086 (((
1087 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1088 )))
1089
1090 (((
1091 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1092 )))
1093
1094 (((
1095 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC2-LB. The weather station main processor WSC2-LB can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1096 )))
1097
1098
1099 === 6.3.1 Feature ===
1100
1101
1102 * RS485 CO2, PM2.5, PM10 sensor
1103 * NDIR to measure CO2 with Internal Temperature Compensation
1104 * Laser Beam Scattering to PM2.5 and PM10
1105
1106 === 6.3.2 Specification ===
1107
1108
1109 * CO2 Range: 0 ~~ 5000ppm, accuracy: ±3%F•S(25℃)
1110 * CO2 resolution: 1ppm
1111 * PM2.5/PM10 Range: 0 ~~ 1000μg/m3 , accuracy ±3%F•S(25℃)
1112 * PM2.5/PM10 resolution: 1μg/m3
1113 * Input Power: DC 7 ~~ 24v
1114 * Preheat time: 3min
1115 * Interface: RS485
1116 * Working Temperature:
1117 ** CO2: 0℃ ~~ 50℃;
1118 ** PM2.5/PM10: -30 ~~ 50℃
1119 * Working Humidity:
1120 ** PM2.5/PM10: 15 ~~ 80%RH (no dewing)
1121 ** CO2: 0 ~~ 95%RH
1122 * Power Consumption: 50mA@ 12v.
1123
1124 === 6.3.3 Dimension ===
1125
1126
1127 [[image:1656056708366-230.png]]
1128
1129
1130 === 6.3.4 Pin Mapping ===
1131
1132
1133 [[image:1656056722648-743.png]]
1134
1135
1136 === 6.3.5 Installation Notice ===
1137
1138
1139 Do not power on while connect the cables. Double check the wiring before power on.
1140
1141
1142 [[image:1656056751153-304.png]]
1143
1144
1145 [[image:1656056766224-773.png]]
1146
1147
1148 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1149
1150
1151 (((
1152 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1153 )))
1154
1155 (((
1156 WSS-04 has auto heating feature, this ensures measurement more reliable.
1157 )))
1158
1159 (((
1160 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC2-LB. The weather station main processor WSC2-LB can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1161 )))
1162
1163
1164 === 6.4.1 Feature ===
1165
1166
1167 * RS485 Rain/Snow detect sensor
1168 * Surface heating to dry
1169 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1170
1171 === 6.4.2 Specification ===
1172
1173
1174 * Detect if there is rain or snow
1175 * Input Power: DC 12 ~~ 24v
1176 * Interface: RS485
1177 * Working Temperature: -30℃ ~~ 70℃
1178 * Working Humidity: 10 ~~ 90%RH
1179 * Power Consumption:
1180 ** No heating: 12mA @ 12v,
1181 ** heating: 94ma @ 12v.
1182
1183 === 6.4.3 Dimension ===
1184
1185
1186 [[image:1656056844782-155.png]]
1187
1188
1189 === 6.4.4 Pin Mapping ===
1190
1191
1192 [[image:1656056855590-754.png]]
1193
1194
1195 === 6.4.5 Installation Notice ===
1196
1197
1198 Do not power on while connect the cables. Double check the wiring before power on.
1199
1200 (((
1201 Install with 15°degree.
1202 )))
1203
1204 [[image:1656056873783-780.png]]
1205
1206
1207 [[image:1656056883736-804.png]]
1208
1209
1210 === 6.4.6 Heating ===
1211
1212
1213 (((
1214 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1215 )))
1216
1217
1218 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1219
1220
1221 (((
1222 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1223 )))
1224
1225 (((
1226 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC2-LB. The weather station main processor WSC2-LB can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1227 )))
1228
1229
1230 === 6.5.1 Feature ===
1231
1232
1233 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1234
1235 === 6.5.2 Specification ===
1236
1237
1238 * Input Power: DC 12 ~~ 24v
1239 * Interface: RS485
1240 * Temperature Sensor Spec:
1241 ** Range: -30 ~~ 70℃
1242 ** resolution 0.1℃
1243 ** Accuracy: ±0.5℃
1244 * Humidity Sensor Spec:
1245 ** Range: 0 ~~ 100% RH
1246 ** resolution 0.1 %RH
1247 ** Accuracy: 3% RH
1248 * Pressure Sensor Spec:
1249 ** Range: 10 ~~ 1100hPa
1250 ** Resolution: 0.1hPa
1251 ** Accuracy: ±0.1hPa
1252 * Illuminate sensor:
1253 ** Range: 0~~2/20/200kLux
1254 ** Resolution: 10 Lux
1255 ** Accuracy: ±3%FS
1256 * Working Temperature: -30℃ ~~ 70℃
1257 * Working Humidity: 10 ~~ 90%RH
1258 * Power Consumption: 4mA @ 12v
1259
1260 === 6.5.3 Dimension ===
1261
1262
1263 [[image:1656057170639-522.png]]
1264
1265
1266 === 6.5.4 Pin Mapping ===
1267
1268
1269 [[image:1656057181899-910.png]]
1270
1271
1272 === 6.5.5 Installation Notice ===
1273
1274
1275 Do not power on while connect the cables. Double check the wiring before power on.
1276
1277 [[image:1656057199955-514.png]]
1278
1279
1280 [[image:1656057212438-475.png]]
1281
1282
1283 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1284
1285
1286 (((
1287 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1288 )))
1289
1290 (((
1291 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1292 )))
1293
1294 (((
1295 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC2-LB. The weather station main processor WSC2-LB can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1296 )))
1297
1298
1299 === 6.6.1 Feature ===
1300
1301
1302 * RS485 Total Solar Radiation sensor
1303 * Measure Total Radiation between 0.3 ~~ 3μm(300 ~~ 3000nm)
1304 * Measure Reflected Radiation if sense area towards ground.
1305
1306 === 6.6.2 Specification ===
1307
1308
1309 * Input Power: DC 5 ~~ 24v
1310 * Interface: RS485
1311 * Detect spectrum: 0.3 ~~ 3μm(300~3000nm)
1312 * Measure strength range: 0 ~~ 2000W/m2
1313 * Resolution: 0.1W/m2
1314 * Accuracy: ±3%
1315 * Yearly Stability: ≤±2%
1316 * Cosine response: ≤7% (@ Sun angle 10°)
1317 * Temperature Effect: ±2% (-10℃ ~~ 40℃)
1318 * Working Temperature: -40℃ ~~ 70℃
1319 * Working Humidity: 10 ~~ 90%RH
1320 * Power Consumption: 4mA @ 12v
1321
1322 === 6.6.3 Dimension ===
1323
1324
1325 [[image:1656057348695-898.png]]
1326
1327
1328 === 6.6.4 Pin Mapping ===
1329
1330
1331 [[image:1656057359343-744.png]]
1332
1333
1334 === 6.6.5 Installation Notice ===
1335
1336
1337 Do not power on while connect the cables. Double check the wiring before power on.
1338
1339
1340 [[image:1656057369259-804.png]]
1341
1342
1343 [[image:1656057377943-564.png]]
1344
1345
1346 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1347
1348
1349 (((
1350 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1351 )))
1352
1353 (((
1354 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1355 )))
1356
1357 (((
1358 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC2-LB. The weather station main processor WSC2-LB can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1359 )))
1360
1361
1362 === 6.7.1 Feature ===
1363
1364
1365 (((
1366 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1367 )))
1368
1369 (((
1370 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1371 )))
1372
1373
1374 === 6.7.2 Specification ===
1375
1376
1377 * Input Power: DC 5 ~~ 24v
1378 * Interface: RS485
1379 * Response Spectrum: 400~~700nm
1380 * Measure range: 0 ~~ 2500μmol/m2•s
1381 * Resolution: 1μmol/m2•s
1382 * Accuracy: ±2%
1383 * Yearly Stability: ≤ ±2%
1384 * Working Temperature: -30℃ ~~ 75℃
1385 * Working Humidity: 10 ~~ 90%RH
1386 * Power Consumption: 3mA @ 12v
1387
1388 === 6.7.3 Dimension ===
1389
1390
1391 [[image:1656057538793-888.png]]
1392
1393
1394 === 6.7.4 Pin Mapping ===
1395
1396
1397 [[image:1656057548116-203.png]]
1398
1399
1400 === 6.7.5 Installation Notice ===
1401
1402
1403 Do not power on while connect the cables. Double check the wiring before power on.
1404
1405
1406 [[image:1656057557191-895.png]]
1407
1408
1409 [[image:1656057565783-251.png]]
1410
1411
1412 = 7. OTA Firmware update =
1413
1414
1415 (% class="wikigeneratedid" %)
1416 **User can change firmware WSC2-LB to:**
1417
1418 * Change Frequency band/ region.
1419 * Update with new features.
1420 * Fix bugs.
1421
1422 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/8j3ioji411ni9gu/AADnOw3ErB1REsthKilfaq_Pa?dl=0]]**
1423
1424 **Methods to Update Firmware:**
1425
1426 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1427
1428 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1429
1430 = 8. FAQ =
1431
1432 == 8.1 What else do I need to purchase to build Weather Station? ==
1433
1434
1435 Below is the installation photo and structure:
1436
1437
1438 [[image:1656057598349-319.png]]
1439
1440
1441 [[image:1656057608049-693.png]]
1442
1443
1444 == 8.2 How to upgrade firmware for WSC2-LB? ==
1445
1446
1447 (((
1448 Firmware Location & Change log: [[https:~~/~~/www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0>>https://www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0]]
1449 )))
1450
1451 (((
1452 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1453 )))
1454
1455
1456 == 8.3 How to change the LoRa Frequency Bands/Region? ==
1457
1458
1459 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC2-LB3F"]]. When download the images, choose the required image file for download.
1460
1461
1462 == 8.4 Can I add my weather sensors? ==
1463
1464
1465 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1466
1467
1468 == 8.5 Where can i find the modbus command for the WSS sensors? ==
1469
1470
1471 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1472
1473
1474 = 9. Trouble Shooting =
1475
1476 == 9.1 AT Command input doesn't work ==
1477
1478
1479 (((
1480 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1481 )))
1482
1483
1484 = 10. Order Info =
1485
1486 == 10.1 Main Process Unit ==
1487
1488
1489 Part Number: (% style="color:blue" %)**WSC2-LB-XX**
1490
1491 (% style="color:blue" %)**XX**(%%): The default frequency band
1492
1493 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1494 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1495 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1496 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1497 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1498 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1499 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1500 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1501
1502 == 10.2 Sensors ==
1503
1504
1505 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:500px" %)
1506 |=(% style="width: 300px;background-color:#D9E2F3;color:#0070C0" %)**Sensor Model**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Part Number**
1507 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1508 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1509 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1510 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1511 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1512 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1513 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1514 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1515
1516 = 11. Support =
1517
1518
1519 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1520
1521 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1522
1523 = 12. Appendix I: Field Installation Photo =
1524
1525
1526 [[image:1656058346362-132.png||height="685" width="732"]]
1527
1528 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1529
1530
1531
1532 (% style="color:blue" %)**Wind Speed/Direction**
1533
1534 [[image:1656058373174-421.png||height="356" width="731"]]
1535
1536
1537
1538 (% style="color:blue" %)**Total Solar Radiation sensor**
1539
1540 [[image:1656058397364-282.png||height="453" width="732"]]
1541
1542
1543
1544 (% style="color:blue" %)**PAR Sensor**
1545
1546 [[image:1656058416171-615.png]]
1547
1548
1549
1550 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1551
1552 [[image:1656058441194-827.png||height="672" width="523"]]
1553
1554
1555
1556 (% style="color:blue" %)**Rain / Snow Detect**
1557
1558 [[image:1656058451456-166.png]]
1559
1560
1561
1562 (% style="color:blue" %)**Rain Gauge**
1563
1564 [[image:1656058463455-569.png||height="499" width="550"]]