Version 95.1 by Mengting Qiu on 2024/07/17 15:22

Hide last authors
Xiaoling 87.2 1
2
Xiaoling 41.2 3 (% style="text-align:center" %)
Xiaoling 87.2 4 [[image:image-20240103095714-2.png]]
Edwin Chen 2.1 5
6
7
Xiaoling 87.2 8
9
10
Xiaoling 79.3 11 **Table of Contents:**
Edwin Chen 2.1 12
13 {{toc/}}
14
15
16
17
18
19
20 = 1. Introduction =
21
Xiaoling 87.3 22 == 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
Edwin Chen 2.1 23
Xiaoling 43.2 24
Xiaoling 87.4 25 (% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 26
Xiaoling 87.3 27 (% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
Edwin Chen 2.1 28
Xiaoling 87.3 29 SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
Edwin Chen 2.1 30
Xiaoling 87.3 31 SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 32
Xiaoling 87.3 33 SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 34
35 == 1.2 ​Features ==
36
Xiaoling 43.44 37
Edwin Chen 2.1 38 * LoRaWAN 1.0.3 Class A
39 * Ultra-low power consumption
Edwin Chen 5.1 40 * Open-Source hardware/software
Edwin Chen 2.1 41 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
42 * Support Bluetooth v5.1 and LoRaWAN remote configure
43 * Support wireless OTA update firmware
44 * Uplink on periodically
45 * Downlink to change configure
Xiaoling 87.26 46 * 8500mAh Li/SOCl2 Battery (SN50v3-LB)
Xiaoling 87.5 47 * Solar panel + 3000mAh Li-on battery (SN50v3-LS)
Edwin Chen 2.1 48
49 == 1.3 Specification ==
50
Xiaoling 43.4 51
Edwin Chen 2.1 52 (% style="color:#037691" %)**Common DC Characteristics:**
53
Xiaoling 87.28 54 * Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
Edwin Chen 2.1 55 * Operating Temperature: -40 ~~ 85°C
56
Edwin Chen 5.1 57 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 58
Edwin Chen 5.1 59 * Battery output (2.6v ~~ 3.6v depends on battery)
60 * +5v controllable output
61 * 3 x Interrupt or Digital IN/OUT pins
62 * 3 x one-wire interfaces
63 * 1 x UART Interface
64 * 1 x I2C Interface
Edwin Chen 2.1 65
66 (% style="color:#037691" %)**LoRa Spec:**
67
68 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
69 * Max +22 dBm constant RF output vs.
70 * RX sensitivity: down to -139 dBm.
71 * Excellent blocking immunity
72
73 (% style="color:#037691" %)**Battery:**
74
75 * Li/SOCI2 un-chargeable battery
76 * Capacity: 8500mAh
77 * Self-Discharge: <1% / Year @ 25°C
78 * Max continuously current: 130mA
79 * Max boost current: 2A, 1 second
80
81 (% style="color:#037691" %)**Power Consumption**
82
83 * Sleep Mode: 5uA @ 3.3v
84 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
85
86 == 1.4 Sleep mode and working mode ==
87
Xiaoling 43.4 88
Edwin Chen 2.1 89 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
90
91 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
92
93
94 == 1.5 Button & LEDs ==
95
96
Xiaoling 87.29 97 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
Edwin Chen 2.1 98
Xiaoling 87.41 99 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.31 100 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
Edwin Chen 2.1 101 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
104 )))
105 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
106 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
107 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
108 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
109 )))
110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111
112 == 1.6 BLE connection ==
113
114
Xiaoling 87.4 115 SN50v3-LB/LS supports BLE remote configure.
Edwin Chen 2.1 116
117
118 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
119
120 * Press button to send an uplink
121 * Press button to active device.
122 * Device Power on or reset.
123
124 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
125
126
Edwin Chen 6.1 127 == 1.7 Pin Definitions ==
Edwin Chen 2.1 128
129
Saxer Lin 49.1 130 [[image:image-20230610163213-1.png||height="404" width="699"]]
Edwin Chen 2.1 131
132
133 == 1.8 Mechanical ==
134
Edwin Chen 85.1 135 === 1.8.1 for LB version ===
Edwin Chen 2.1 136
137
Edwin Chen 84.1 138 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
Edwin Chen 2.1 139
Edwin Chen 84.1 140
Edwin Chen 2.1 141 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
142
Edwin Chen 85.1 143 === 1.8.2 for LS version ===
Edwin Chen 2.1 144
Edwin Chen 84.1 145 [[image:image-20231231203439-3.png||height="385" width="886"]]
146
147
Saxer Lin 44.5 148 == 1.9 Hole Option ==
Edwin Chen 5.1 149
Xiaoling 43.4 150
Xiaoling 87.4 151 SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
Edwin Chen 5.1 152
153 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
154
155 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
156
157
Xiaoling 87.4 158 = 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
Edwin Chen 2.1 159
160 == 2.1 How it works ==
161
162
Xiaoling 87.4 163 The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 164
165
166 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
167
168
169 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
170
Xiaoling 44.3 171 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
Edwin Chen 2.1 172
173
Xiaoling 87.4 174 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
Edwin Chen 2.1 175
Xiaoling 87.4 176 Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 177
Edwin Chen 11.2 178 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 2.1 179
180
181 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
182
183
184 (% style="color:blue" %)**Register the device**
185
186 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
187
188
189 (% style="color:blue" %)**Add APP EUI and DEV EUI**
190
191 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
192
193
194 (% style="color:blue" %)**Add APP EUI in the application**
195
196
197 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
198
199
200 (% style="color:blue" %)**Add APP KEY**
201
202 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
203
Xiaoling 87.4 204 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
Edwin Chen 2.1 205
Xiaoling 87.4 206 Press the button for 5 seconds to activate the SN50v3-LB/LS.
Edwin Chen 2.1 207
208 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
209
210 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
211
212
213 == 2.3 ​Uplink Payload ==
214
215 === 2.3.1 Device Status, FPORT~=5 ===
216
217
Xiaoling 87.4 218 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 219
220 The Payload format is as below.
221
222
Xiaoling 87.41 223 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.24 224 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
Edwin Chen 2.1 225 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
Xiaoling 45.4 226 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
Edwin Chen 2.1 227
228 Example parse in TTNv3
229
230
Xiaoling 87.4 231 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
Edwin Chen 2.1 232
233 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
234
235 (% style="color:#037691" %)**Frequency Band**:
236
Xiaoling 53.2 237 0x01: EU868
Edwin Chen 2.1 238
Xiaoling 53.2 239 0x02: US915
Edwin Chen 2.1 240
Xiaoling 53.2 241 0x03: IN865
Edwin Chen 2.1 242
Xiaoling 53.2 243 0x04: AU915
Edwin Chen 2.1 244
Xiaoling 53.2 245 0x05: KZ865
Edwin Chen 2.1 246
Xiaoling 53.2 247 0x06: RU864
Edwin Chen 2.1 248
Xiaoling 53.2 249 0x07: AS923
Edwin Chen 2.1 250
Xiaoling 53.2 251 0x08: AS923-1
Edwin Chen 2.1 252
Xiaoling 53.2 253 0x09: AS923-2
Edwin Chen 2.1 254
Xiaoling 53.2 255 0x0a: AS923-3
Edwin Chen 2.1 256
Xiaoling 53.2 257 0x0b: CN470
Edwin Chen 2.1 258
Xiaoling 53.2 259 0x0c: EU433
Edwin Chen 2.1 260
Xiaoling 53.2 261 0x0d: KR920
Edwin Chen 2.1 262
Xiaoling 53.2 263 0x0e: MA869
Edwin Chen 2.1 264
265
266 (% style="color:#037691" %)**Sub-Band**:
267
268 AU915 and US915:value 0x00 ~~ 0x08
269
270 CN470: value 0x0B ~~ 0x0C
271
272 Other Bands: Always 0x00
273
274
275 (% style="color:#037691" %)**Battery Info**:
276
277 Check the battery voltage.
278
279 Ex1: 0x0B45 = 2885mV
280
281 Ex2: 0x0B49 = 2889mV
282
283
Edwin Chen 12.1 284 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 285
286
Xiaoling 87.4 287 SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
Edwin Chen 12.1 288
289 For example:
290
Xiaoling 44.2 291 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
Edwin Chen 12.1 292
293
Edwin Chen 13.1 294 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 295
Xiaoling 87.4 296 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
Edwin Chen 12.1 297
Xiaoling 44.2 298 2. All modes share the same Payload Explanation from HERE.
Xiaoling 43.53 299
Xiaoling 44.2 300 3. By default, the device will send an uplink message every 20 minutes.
301
302
Edwin Chen 13.1 303 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 304
Xiaoling 43.5 305
Edwin Chen 12.1 306 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
307
Xiaoling 87.32 308 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
309 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
Xiaoling 45.4 310 |Value|Bat|(% style="width:191px" %)(((
Xiaoling 43.12 311 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 312 )))|(% style="width:78px" %)(((
Xiaoling 43.12 313 ADC(PA4)
Saxer Lin 26.2 314 )))|(% style="width:216px" %)(((
Xiaoling 43.13 315 Digital in(PB15)&Digital Interrupt(PA8)
Saxer Lin 40.1 316 )))|(% style="width:308px" %)(((
Xiaoling 43.12 317 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 318 )))|(% style="width:154px" %)(((
Xiaoling 43.12 319 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 320 )))
321
Edwin Chen 12.1 322 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
323
324
Edwin Chen 13.1 325 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
326
Xiaoling 43.45 327
Edwin Chen 12.1 328 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
329
Xiaoling 87.34 330 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.33 331 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
Xiaoling 45.4 332 |Value|BAT|(% style="width:196px" %)(((
Xiaoling 43.16 333 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 334 )))|(% style="width:87px" %)(((
Xiaoling 43.16 335 ADC(PA4)
Saxer Lin 40.1 336 )))|(% style="width:189px" %)(((
Xiaoling 43.16 337 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 338 )))|(% style="width:208px" %)(((
Xiaoling 53.2 339 Distance measure by: 1) LIDAR-Lite V3HP
340 Or 2) Ultrasonic Sensor
Saxer Lin 40.1 341 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 342
343 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
344
Xiaoling 43.45 345
Xiaoling 43.17 346 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
Edwin Chen 12.1 347
Saxer Lin 26.2 348 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 349
Xiaoling 43.45 350
Xiaoling 43.17 351 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
Edwin Chen 12.1 352
Ellie Zhang 44.1 353 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
Saxer Lin 36.1 354
Saxer Lin 26.2 355 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 356
Xiaoling 43.45 357
Edwin Chen 12.1 358 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
359
Xiaoling 87.34 360 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
361 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**
Xiaoling 45.5 362 |Value|BAT|(% style="width:183px" %)(((
Xiaoling 43.19 363 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 364 )))|(% style="width:173px" %)(((
Xiaoling 43.19 365 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 366 )))|(% style="width:84px" %)(((
Xiaoling 43.19 367 ADC(PA4)
Saxer Lin 40.1 368 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 369 Distance measure by:1)TF-Mini plus LiDAR
Xiaoling 53.3 370 Or 2) TF-Luna LiDAR
Saxer Lin 40.1 371 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 372
373 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
374
Xiaoling 43.45 375
Edwin Chen 12.1 376 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
377
Ellie Zhang 44.1 378 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 379
Saxer Lin 26.2 380 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 381
Xiaoling 43.45 382
Edwin Chen 12.1 383 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
384
Ellie Zhang 44.1 385 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 386
Saxer Lin 52.1 387 [[image:image-20230610170047-1.png||height="452" width="799"]]
Edwin Chen 12.1 388
389
Edwin Chen 13.1 390 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
391
Xiaoling 43.45 392
Edwin Chen 12.1 393 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
394
Xiaoling 87.35 395 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.11 396 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Xiaoling 43.25 397 **Size(bytes)**
Xiaoling 87.35 398 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
Xiaoling 45.4 399 |Value|(% style="width:68px" %)(((
Xiaoling 43.23 400 ADC1(PA4)
Saxer Lin 26.2 401 )))|(% style="width:75px" %)(((
Xiaoling 43.23 402 ADC2(PA5)
Saxer Lin 36.1 403 )))|(((
Xiaoling 43.23 404 ADC3(PA8)
Saxer Lin 36.1 405 )))|(((
406 Digital Interrupt(PB15)
407 )))|(% style="width:304px" %)(((
Xiaoling 43.23 408 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 36.1 409 )))|(% style="width:163px" %)(((
Xiaoling 43.23 410 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 411 )))|(% style="width:53px" %)Bat
412
413 [[image:image-20230513110214-6.png]]
414
415
Edwin Chen 13.1 416 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
417
Edwin Chen 12.1 418
Saxer Lin 26.2 419 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 420
Xiaoling 87.36 421 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
422 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**
Xiaoling 45.4 423 |Value|BAT|(% style="width:186px" %)(((
Xiaoling 43.27 424 Temperature1(DS18B20)(PC13)
Saxer Lin 26.2 425 )))|(% style="width:82px" %)(((
Xiaoling 43.27 426 ADC(PA4)
Saxer Lin 26.2 427 )))|(% style="width:210px" %)(((
Xiaoling 43.27 428 Digital in(PB15) & Digital Interrupt(PA8) 
Saxer Lin 26.2 429 )))|(% style="width:191px" %)Temperature2(DS18B20)
Xiaoling 43.27 430 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
Edwin Chen 12.1 431
432 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
433
Xiaoling 44.4 434
Saxer Lin 39.2 435 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 436
Saxer Lin 39.1 437
Edwin Chen 13.1 438 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
439
Xiaoling 43.45 440
Saxer Lin 26.2 441 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 442
443 Each HX711 need to be calibrated before used. User need to do below two steps:
444
Xiaoling 44.2 445 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
446 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
Edwin Chen 12.1 447 1. (((
Saxer Lin 26.2 448 Weight has 4 bytes, the unit is g.
Xiaoling 43.53 449
450
451
Edwin Chen 12.1 452 )))
453
454 For example:
455
Xiaoling 44.2 456 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
Edwin Chen 12.1 457
458 Response:  Weight is 401 g
459
460 Check the response of this command and adjust the value to match the real value for thing.
461
Xiaoling 87.37 462 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.11 463 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Edwin Chen 12.1 464 **Size(bytes)**
Xiaoling 87.37 465 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4**
Xiaoling 45.4 466 |Value|BAT|(% style="width:193px" %)(((
Xiaoling 43.55 467 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 468 )))|(% style="width:85px" %)(((
Xiaoling 43.31 469 ADC(PA4)
Saxer Lin 40.1 470 )))|(% style="width:186px" %)(((
Xiaoling 43.55 471 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 472 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 473
Edwin Chen 12.1 474 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
475
476
Edwin Chen 13.1 477 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
478
Xiaoling 43.45 479
Edwin Chen 12.1 480 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
481
482 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
483
Saxer Lin 26.2 484 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 485
Xiaoling 43.53 486
Xiaoling 43.45 487 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
Edwin Chen 12.1 488
Xiaoling 87.38 489 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
490 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4**
Xiaoling 45.4 491 |Value|BAT|(% style="width:256px" %)(((
Xiaoling 43.31 492 Temperature(DS18B20)(PC13)
Saxer Lin 36.1 493 )))|(% style="width:108px" %)(((
Xiaoling 43.31 494 ADC(PA4)
Saxer Lin 36.1 495 )))|(% style="width:126px" %)(((
Xiaoling 43.31 496 Digital in(PB15)
Saxer Lin 36.1 497 )))|(% style="width:145px" %)(((
Xiaoling 43.31 498 Count(PA8)
Saxer Lin 36.1 499 )))
500
Edwin Chen 12.1 501 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
502
503
Edwin Chen 13.1 504 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
505
Xiaoling 43.45 506
Xiaoling 87.39 507 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.11 508 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Edwin Chen 12.1 509 **Size(bytes)**
Xiaoling 87.39 510 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
Xiaoling 45.4 511 |Value|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 512 Temperature(DS18B20)
513 (PC13)
Saxer Lin 40.1 514 )))|(% style="width:83px" %)(((
Xiaoling 43.35 515 ADC(PA5)
Saxer Lin 40.1 516 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 517 Digital Interrupt1(PA8)
Saxer Lin 40.1 518 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 519
520 [[image:image-20230513111203-7.png||height="324" width="975"]]
521
Xiaoling 43.45 522
Edwin Chen 13.1 523 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
524
Xiaoling 43.45 525
Xiaoling 87.39 526 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.11 527 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Edwin Chen 12.1 528 **Size(bytes)**
Xiaoling 87.39 529 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2
Xiaoling 45.4 530 |Value|BAT|(% style="width:207px" %)(((
Saxer Lin 36.1 531 Temperature(DS18B20)
532 (PC13)
533 )))|(% style="width:94px" %)(((
Xiaoling 43.36 534 ADC1(PA4)
Saxer Lin 36.1 535 )))|(% style="width:198px" %)(((
536 Digital Interrupt(PB15)
537 )))|(% style="width:84px" %)(((
Xiaoling 43.36 538 ADC2(PA5)
Saxer Lin 40.1 539 )))|(% style="width:82px" %)(((
Xiaoling 43.36 540 ADC3(PA8)
Edwin Chen 12.1 541 )))
542
Saxer Lin 36.1 543 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 544
545
Edwin Chen 13.1 546 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
547
Xiaoling 43.45 548
Xiaoling 87.40 549 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.11 550 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Edwin Chen 12.1 551 **Size(bytes)**
Xiaoling 87.40 552 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4
Xiaoling 45.4 553 |Value|BAT|(((
Xiaoling 43.58 554 Temperature
555 (DS18B20)(PC13)
Edwin Chen 12.1 556 )))|(((
Xiaoling 43.58 557 Temperature2
558 (DS18B20)(PB9)
Edwin Chen 12.1 559 )))|(((
Saxer Lin 36.1 560 Digital Interrupt
561 (PB15)
562 )))|(% style="width:193px" %)(((
Xiaoling 43.58 563 Temperature3
564 (DS18B20)(PB8)
Saxer Lin 36.1 565 )))|(% style="width:78px" %)(((
Xiaoling 43.39 566 Count1(PA8)
Saxer Lin 36.1 567 )))|(% style="width:78px" %)(((
Xiaoling 43.39 568 Count2(PA4)
Edwin Chen 12.1 569 )))
570
Saxer Lin 36.1 571 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 572
Xiaoling 43.40 573 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
Edwin Chen 12.1 574
Xiaoling 43.44 575 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
Edwin Chen 12.1 576
Xiaoling 43.44 577 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
Edwin Chen 12.1 578
Xiaoling 43.44 579 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
Edwin Chen 12.1 580
581
Xiaoling 43.41 582 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
583
Saxer Lin 36.1 584 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 585
Saxer Lin 36.1 586 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 587
588
Xiaoling 87.10 589 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
Saxer Lin 65.1 590
Xiaoling 87.10 591
Mengting Qiu 74.8 592 (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
Xiaoling 74.3 593
Saxer Lin 65.1 594 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
595
Xiaoling 74.3 596 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
Saxer Lin 65.1 597
Saxer Lin 69.1 598
Saxer Lin 65.1 599 ===== 2.3.2.10.a  Uplink, PWM input capture =====
600
Xiaoling 74.3 601
Saxer Lin 65.1 602 [[image:image-20230817172209-2.png||height="439" width="683"]]
603
Xiaoling 87.40 604 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
Xiaoling 87.24 605 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
Saxer Lin 65.1 606 |Value|Bat|(% style="width:191px" %)(((
607 Temperature(DS18B20)(PC13)
608 )))|(% style="width:78px" %)(((
609 ADC(PA4)
610 )))|(% style="width:135px" %)(((
611 PWM_Setting
612 &Digital Interrupt(PA8)
613 )))|(% style="width:70px" %)(((
614 Pulse period
615 )))|(% style="width:89px" %)(((
616 Duration of high level
617 )))
618
619 [[image:image-20230817170702-1.png||height="161" width="1044"]]
620
621
Saxer Lin 72.1 622 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
Saxer Lin 65.1 623
Xiaoling 74.4 624 **Frequency:**
Saxer Lin 65.1 625
Saxer Lin 72.1 626 (% class="MsoNormal" %)
Xiaoling 74.4 627 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
Saxer Lin 65.1 628
Saxer Lin 72.1 629 (% class="MsoNormal" %)
Xiaoling 74.4 630 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
Saxer Lin 72.1 631
Xiaoling 74.4 632
Saxer Lin 72.1 633 (% class="MsoNormal" %)
Xiaoling 74.4 634 **Duty cycle:**
Saxer Lin 72.1 635
636 Duty cycle= Duration of high level/ Pulse period*100 ~(%).
637
638 [[image:image-20230818092200-1.png||height="344" width="627"]]
639
Xiaoling 87.10 640
Mengting Qiu 77.1 641 ===== 2.3.2.10.b  Uplink, PWM output =====
Saxer Lin 72.1 642
Xiaoling 87.10 643
Mengting Qiu 77.1 644 [[image:image-20230817172209-2.png||height="439" width="683"]]
Saxer Lin 65.1 645
Mengting Qiu 79.1 646 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
Xiaoling 74.3 647
Mengting Qiu 79.1 648 a is the time delay of the output, the unit is ms.
Mengting Qiu 75.1 649
Mengting Qiu 79.1 650 b is the output frequency, the unit is HZ.
Mengting Qiu 75.1 651
Mengting Qiu 79.1 652 c is the duty cycle of the output, the unit is %.
Mengting Qiu 75.1 653
Mengting Qiu 79.1 654 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
Mengting Qiu 75.1 655
Mengting Qiu 79.1 656 aa is the time delay of the output, the unit is ms.
657
658 bb is the output frequency, the unit is HZ.
659
660 cc is the duty cycle of the output, the unit is %.
661
662
663 For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
664
665 The oscilloscope displays as follows:
666
Xiaoling 87.10 667 [[image:image-20231213102404-1.jpeg||height="688" width="821"]]
Mengting Qiu 79.1 668
669
Mengting Qiu 75.1 670 ===== 2.3.2.10.c  Downlink, PWM output =====
671
672
Saxer Lin 65.1 673 [[image:image-20230817173800-3.png||height="412" width="685"]]
674
675 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
676
677 xx xx xx is the output frequency, the unit is HZ.
678
679 yy is the duty cycle of the output, the unit is %.
680
681 zz zz is the time delay of the output, the unit is ms.
682
683
684 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
685
686 The oscilloscope displays as follows:
687
Xiaoling 87.10 688 [[image:image-20230817173858-5.png||height="634" width="843"]]
Saxer Lin 65.1 689
690
Mengting Qiu 89.1 691
692 ==== 2.3.2.11  MOD~=11 (TEMP117) ====
693
694
695 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
696
697 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
698 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
699 |Value|Bat|(% style="width:191px" %)(((
700 Temperature(DS18B20)(PC13)
701 )))|(% style="width:78px" %)(((
702 ADC(PA4)
703 )))|(% style="width:216px" %)(((
704 Digital in(PB15)&Digital Interrupt(PA8)
705 )))|(% style="width:308px" %)(((
706 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
707 )))|(% style="width:154px" %)(((
708 Humidity(SHT20 or SHT31)
709 )))
710
711 [[image:image-20240717113113-1.png||height="361" width="814"]]
712
713
714 ==== 2.3.2.12  MOD~=12 ====
715
716
717
718
Edwin Chen 14.1 719 === 2.3.3  ​Decode payload ===
720
Xiaoling 43.45 721
Edwin Chen 12.1 722 While using TTN V3 network, you can add the payload format to decode the payload.
723
724 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
725
726 The payload decoder function for TTN V3 are here:
727
Xiaoling 87.4 728 SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 729
730
Edwin Chen 14.1 731 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 732
Xiaoling 43.45 733
Xiaoling 87.4 734 Check the battery voltage for SN50v3-LB/LS.
Edwin Chen 2.1 735
736 Ex1: 0x0B45 = 2885mV
737
738 Ex2: 0x0B49 = 2889mV
739
740
Edwin Chen 14.1 741 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 742
Xiaoling 43.45 743
Saxer Lin 42.1 744 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 745
Xiaoling 43.45 746 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
Edwin Chen 14.1 747
Xiaoling 43.41 748 (% style="color:blue" %)**Connection:**
Edwin Chen 14.1 749
Saxer Lin 26.2 750 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 751
Xiaoling 43.46 752
Xiaoling 43.41 753 (% style="color:blue" %)**Example**:
Edwin Chen 2.1 754
755 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
756
757 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
758
759 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
760
761
Edwin Chen 14.1 762 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 763
Xiaoling 43.46 764
Saxer Lin 26.2 765 The digital input for pin PB15,
Edwin Chen 2.1 766
Saxer Lin 26.2 767 * When PB15 is high, the bit 1 of payload byte 6 is 1.
768 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 769
Saxer Lin 26.2 770 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
771 (((
Saxer Lin 36.1 772 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
773
Xiaoling 43.46 774 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
775
776
Saxer Lin 26.2 777 )))
778
Edwin Chen 14.1 779 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 780
Xiaoling 43.46 781
Saxer Lin 53.1 782 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 783
Saxer Lin 53.1 784 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 785
Saxer Lin 26.2 786 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 787
Xiaoling 44.2 788
Xiaoling 43.46 789 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
Edwin Chen 14.1 790
Saxer Lin 43.1 791
Saxer Lin 59.1 792 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
793
794 [[image:image-20230811113449-1.png||height="370" width="608"]]
795
Xiaoling 87.10 796
797
Edwin Chen 14.1 798 ==== 2.3.3.5 Digital Interrupt ====
799
Xiaoling 43.46 800
Xiaoling 87.4 801 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
Edwin Chen 14.1 802
Xiaoling 43.44 803 (% style="color:blue" %)** Interrupt connection method:**
Edwin Chen 14.1 804
Saxer Lin 36.1 805 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 806
Xiaoling 43.46 807
Xiaoling 43.8 808 (% style="color:blue" %)**Example to use with door sensor :**
Edwin Chen 14.1 809
810 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
811
812 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
813
Xiaoling 87.4 814 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 815
816
Xiaoling 43.46 817 (% style="color:blue" %)**Below is the installation example:**
818
Xiaoling 87.4 819 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
Edwin Chen 14.1 820
821 * (((
Xiaoling 87.4 822 One pin to SN50v3-LB/LS's PA8 pin
Edwin Chen 14.1 823 )))
824 * (((
Xiaoling 87.4 825 The other pin to SN50v3-LB/LS's VDD pin
Edwin Chen 14.1 826 )))
827
Saxer Lin 36.1 828 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 829
Xiaoling 43.46 830 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
Edwin Chen 14.1 831
Saxer Lin 36.1 832 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 833
834 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
835
836 The above photos shows the two parts of the magnetic switch fitted to a door.
837
838 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
839
840 The command is:
841
Xiaoling 44.2 842 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 843
844 Below shows some screen captures in TTN V3:
845
846 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
847
Xiaoling 43.47 848
Xiaoling 44.4 849 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
Edwin Chen 14.1 850
851 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
852
853
Saxer Lin 26.2 854 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 855
Xiaoling 43.47 856
Saxer Lin 26.2 857 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 858
Saxer Lin 40.1 859 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 860
Xiaoling 87.4 861 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
Edwin Chen 14.1 862
Xiaoling 44.2 863
Edwin Chen 14.1 864 Below is the connection to SHT20/ SHT31. The connection is as below:
865
Saxer Lin 52.1 866 [[image:image-20230610170152-2.png||height="501" width="846"]]
Saxer Lin 36.1 867
Xiaoling 44.4 868
Edwin Chen 14.1 869 The device will be able to get the I2C sensor data now and upload to IoT Server.
870
871 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
872
873 Convert the read byte to decimal and divide it by ten.
874
Edwin Chen 2.1 875 **Example:**
876
Edwin Chen 14.1 877 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 878
Edwin Chen 14.1 879 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 880
Edwin Chen 14.1 881 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 882
883
Edwin Chen 14.1 884 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 885
Xiaoling 43.48 886
Xiaoling 43.42 887 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
Edwin Chen 14.1 888
889
890 ==== 2.3.3.8 Ultrasonic Sensor ====
891
Xiaoling 43.48 892
Saxer Lin 26.2 893 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 894
Xiaoling 87.4 895 The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 896
Xiaoling 43.44 897 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
Saxer Lin 36.1 898
Edwin Chen 14.1 899 The picture below shows the connection:
900
Saxer Lin 36.1 901 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 902
Xiaoling 43.50 903
Xiaoling 87.4 904 Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 905
906 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
907
908 **Example:**
909
910 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
911
912
913 ==== 2.3.3.9  Battery Output - BAT pin ====
914
Xiaoling 43.50 915
Xiaoling 87.4 916 The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
Edwin Chen 14.1 917
918
919 ==== 2.3.3.10  +5V Output ====
920
Xiaoling 43.50 921
Xiaoling 87.4 922 SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
Edwin Chen 14.1 923
924 The 5V output time can be controlled by AT Command.
925
Xiaoling 43.9 926 (% style="color:blue" %)**AT+5VT=1000**
Edwin Chen 14.1 927
928 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
929
Xiaoling 44.4 930 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
Edwin Chen 14.1 931
932
933 ==== 2.3.3.11  BH1750 Illumination Sensor ====
934
Xiaoling 43.50 935
Edwin Chen 14.1 936 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
937
Saxer Lin 40.1 938 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 939
Xiaoling 43.51 940
Saxer Lin 40.1 941 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 942
943
Saxer Lin 65.1 944 ==== 2.3.3.12  PWM MOD ====
Edwin Chen 14.1 945
Xiaoling 43.51 946
Saxer Lin 69.1 947 * (((
948 The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
949 )))
950 * (((
951 If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
952 )))
953
954 [[image:image-20230817183249-3.png||height="320" width="417"]]
955
956 * (((
957 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
958 )))
959 * (((
Xiaoling 74.2 960 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
Mengting Qiu 74.8 961 )))
962 * (((
Mengting Qiu 76.1 963 PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
Saxer Lin 70.1 964
Mengting Qiu 74.8 965 For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
Xiaoling 74.5 966
Xiaoling 87.4 967 a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
Mengting Qiu 74.8 968
Mengting Qiu 76.1 969 b) If the output duration is more than 30 seconds, better to use external power source. 
Xiaoling 87.4 970 )))
Mengting Qiu 74.8 971
Saxer Lin 65.1 972 ==== 2.3.3.13  Working MOD ====
973
974
Edwin Chen 14.1 975 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
976
977 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
978
979 Case 7^^th^^ Byte >> 2 & 0x1f:
980
981 * 0: MOD1
982 * 1: MOD2
983 * 2: MOD3
984 * 3: MOD4
985 * 4: MOD5
986 * 5: MOD6
Saxer Lin 36.1 987 * 6: MOD7
988 * 7: MOD8
989 * 8: MOD9
Saxer Lin 65.1 990 * 9: MOD10
Edwin Chen 14.1 991
Edwin Chen 2.1 992 == 2.4 Payload Decoder file ==
993
994
995 In TTN, use can add a custom payload so it shows friendly reading
996
997 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
998
Saxer Lin 40.1 999 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 1000
1001
Edwin Chen 15.1 1002 == 2.5 Frequency Plans ==
Edwin Chen 2.1 1003
1004
Xiaoling 87.30 1005 The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
Edwin Chen 2.1 1006
1007 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
1008
1009
Xiaoling 87.4 1010 = 3. Configure SN50v3-LB/LS =
Edwin Chen 2.1 1011
1012 == 3.1 Configure Methods ==
1013
1014
Xiaoling 87.4 1015 SN50v3-LB/LS supports below configure method:
Edwin Chen 2.1 1016
1017 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1018 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
1019 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
1020
1021 == 3.2 General Commands ==
1022
1023
1024 These commands are to configure:
1025
1026 * General system settings like: uplink interval.
1027 * LoRaWAN protocol & radio related command.
1028
1029 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
1030
1031 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1032
1033
Xiaoling 87.4 1034 == 3.3 Commands special design for SN50v3-LB/LS ==
Edwin Chen 2.1 1035
1036
Xiaoling 87.4 1037 These commands only valid for SN50v3-LB/LS, as below:
Edwin Chen 2.1 1038
1039
1040 === 3.3.1 Set Transmit Interval Time ===
1041
Xiaoling 43.51 1042
Edwin Chen 2.1 1043 Feature: Change LoRaWAN End Node Transmit Interval.
1044
1045 (% style="color:blue" %)**AT Command: AT+TDC**
1046
1047 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1048 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
Edwin Chen 2.1 1049 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1050 30000
1051 OK
1052 the interval is 30000ms = 30s
1053 )))
1054 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
1055 OK
1056 Set transmit interval to 60000ms = 60 seconds
1057 )))
1058
1059 (% style="color:blue" %)**Downlink Command: 0x01**
1060
1061 Format: Command Code (0x01) followed by 3 bytes time value.
1062
1063 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1064
1065 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1066 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1067
1068 === 3.3.2 Get Device Status ===
1069
Xiaoling 43.52 1070
Saxer Lin 40.1 1071 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 1072
Xiaoling 44.4 1073 (% style="color:blue" %)**Downlink Payload: 0x26 01**
Edwin Chen 2.1 1074
Xiaoling 44.4 1075 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
Edwin Chen 2.1 1076
1077
Saxer Lin 36.1 1078 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 1079
Xiaoling 43.52 1080
Edwin Chen 2.1 1081 Feature, Set Interrupt mode for GPIO_EXIT.
1082
Xiaoling 87.15 1083 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
Edwin Chen 2.1 1084
1085 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1086 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 36.1 1087 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
Edwin Chen 2.1 1088 0
1089 OK
1090 the mode is 0 =Disable Interrupt
1091 )))
Saxer Lin 36.1 1092 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
Edwin Chen 2.1 1093 Set Transmit Interval
1094 0. (Disable Interrupt),
1095 ~1. (Trigger by rising and falling edge)
1096 2. (Trigger by falling edge)
1097 3. (Trigger by rising edge)
1098 )))|(% style="width:157px" %)OK
Saxer Lin 36.1 1099 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1100 Set Transmit Interval
1101 trigger by rising edge.
1102 )))|(% style="width:157px" %)OK
1103 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1104
Edwin Chen 2.1 1105 (% style="color:blue" %)**Downlink Command: 0x06**
1106
1107 Format: Command Code (0x06) followed by 3 bytes.
1108
1109 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1110
Saxer Lin 36.1 1111 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1112 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1113 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1114 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
Edwin Chen 2.1 1115
Saxer Lin 36.1 1116 === 3.3.4 Set Power Output Duration ===
1117
Xiaoling 43.52 1118
Saxer Lin 36.1 1119 Control the output duration 5V . Before each sampling, device will
1120
1121 ~1. first enable the power output to external sensor,
1122
1123 2. keep it on as per duration, read sensor value and construct uplink payload
1124
1125 3. final, close the power output.
1126
1127 (% style="color:blue" %)**AT Command: AT+5VT**
1128
1129 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1130 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 36.1 1131 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1132 500(default)
1133 OK
1134 )))
1135 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1136 Close after a delay of 1000 milliseconds.
1137 )))|(% style="width:157px" %)OK
1138
1139 (% style="color:blue" %)**Downlink Command: 0x07**
1140
1141 Format: Command Code (0x07) followed by 2 bytes.
1142
1143 The first and second bytes are the time to turn on.
1144
Saxer Lin 40.1 1145 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1146 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 1147
1148 === 3.3.5 Set Weighing parameters ===
1149
Xiaoling 43.52 1150
Saxer Lin 37.1 1151 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 1152
1153 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1154
1155 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1156 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 37.1 1157 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
Xiaoling 87.16 1158 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
Saxer Lin 37.1 1159 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 1160
1161 (% style="color:blue" %)**Downlink Command: 0x08**
1162
Saxer Lin 37.1 1163 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 1164
Saxer Lin 37.1 1165 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 1166
Saxer Lin 37.1 1167 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 1168
Saxer Lin 37.1 1169 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1170 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1171 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1172
Saxer Lin 36.1 1173 === 3.3.6 Set Digital pulse count value ===
1174
Xiaoling 43.52 1175
Saxer Lin 36.1 1176 Feature: Set the pulse count value.
1177
Saxer Lin 37.1 1178 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1179
Saxer Lin 36.1 1180 (% style="color:blue" %)**AT Command: AT+SETCNT**
1181
Xiaoling 87.41 1182 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1183 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 36.1 1184 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1185 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1186
1187 (% style="color:blue" %)**Downlink Command: 0x09**
1188
1189 Format: Command Code (0x09) followed by 5 bytes.
1190
1191 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1192
1193 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 1194 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 1195
1196 === 3.3.7 Set Workmode ===
1197
Xiaoling 43.52 1198
Saxer Lin 37.1 1199 Feature: Switch working mode.
Saxer Lin 36.1 1200
1201 (% style="color:blue" %)**AT Command: AT+MOD**
1202
Xiaoling 87.41 1203 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1204 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 36.1 1205 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1206 OK
1207 )))
1208 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1209 OK
1210 Attention:Take effect after ATZ
1211 )))
1212
1213 (% style="color:blue" %)**Downlink Command: 0x0A**
1214
1215 Format: Command Code (0x0A) followed by 1 bytes.
1216
1217 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1218 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1219
Saxer Lin 72.1 1220 === 3.3.8 PWM setting ===
1221
Xiaoling 74.5 1222
Xiaoling 87.24 1223 Feature: Set the time acquisition unit for PWM input capture.
Saxer Lin 72.1 1224
1225 (% style="color:blue" %)**AT Command: AT+PWMSET**
1226
Xiaoling 87.41 1227 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.17 1228 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
Mengting Qiu 77.1 1229 |(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
Saxer Lin 72.1 1230 0(default)
1231 OK
1232 )))
Mengting Qiu 77.1 1233 |(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
Saxer Lin 72.1 1234 OK
1235
1236 )))
Mengting Qiu 77.1 1237 |(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
Saxer Lin 72.1 1238
1239 (% style="color:blue" %)**Downlink Command: 0x0C**
1240
1241 Format: Command Code (0x0C) followed by 1 bytes.
1242
1243 * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1244 * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1245
Xiaoling 87.24 1246 **Feature: Set PWM output time, output frequency and output duty cycle.**
1247
Mengting Qiu 76.1 1248 (% style="color:blue" %)**AT Command: AT+PWMOUT**
Mengting Qiu 75.1 1249
Xiaoling 87.41 1250 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.21 1251 |=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
Mengting Qiu 77.1 1252 |(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
Mengting Qiu 76.1 1253 0,0,0(default)
1254 OK
1255 )))
Mengting Qiu 77.1 1256 |(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
Mengting Qiu 76.1 1257 OK
1258
1259 )))
Mengting Qiu 77.1 1260 |(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1261 The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
Mengting Qiu 75.1 1262
Mengting Qiu 77.1 1263
1264 )))|(% style="width:137px" %)(((
1265 OK
1266 )))
1267
Xiaoling 87.41 1268 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.18 1269 |=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
Mengting Qiu 77.1 1270 |(% colspan="1" rowspan="3" style="width:155px" %)(((
1271 AT+PWMOUT=a,b,c
1272
1273
1274 )))|(% colspan="1" rowspan="3" style="width:112px" %)(((
Mengting Qiu 79.1 1275 Set PWM output time, output frequency and output duty cycle.
1276
1277 (((
Mengting Qiu 77.1 1278
1279 )))
1280
1281 (((
1282
1283 )))
1284 )))|(% style="width:242px" %)(((
Mengting Qiu 76.1 1285 a: Output time (unit: seconds)
Mengting Qiu 77.1 1286 The value ranges from 0 to 65535.
1287 When a=65535, PWM will always output.
1288 )))
1289 |(% style="width:242px" %)(((
Mengting Qiu 76.1 1290 b: Output frequency (unit: HZ)
Mengting Qiu 77.1 1291 )))
1292 |(% style="width:242px" %)(((
1293 c: Output duty cycle (unit: %)
1294 The value ranges from 0 to 100.
Mengting Qiu 76.1 1295 )))
1296
Mengting Qiu 77.1 1297 (% style="color:blue" %)**Downlink Command: 0x0B01**
Mengting Qiu 76.1 1298
Mengting Qiu 77.1 1299 Format: Command Code (0x0B01) followed by 6 bytes.
Mengting Qiu 76.1 1300
Xiaoling 87.19 1301 Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
Mengting Qiu 76.1 1302
Mengting Qiu 77.1 1303 * Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1304 * Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
Mengting Qiu 76.1 1305
Mengting Qiu 79.1 1306 = 4. Battery & Power Cons =
1307
1308
Xiaoling 87.6 1309 SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1310
1311 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1312
1313
1314 = 5. OTA Firmware update =
1315
1316
1317 (% class="wikigeneratedid" %)
Xiaoling 87.4 1318 **User can change firmware SN50v3-LB/LS to:**
Edwin Chen 2.1 1319
1320 * Change Frequency band/ region.
1321 * Update with new features.
1322 * Fix bugs.
1323
Xiaoling 52.2 1324 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
Edwin Chen 2.1 1325
Xiaoling 44.4 1326 **Methods to Update Firmware:**
Edwin Chen 2.1 1327
Xiaoling 53.3 1328 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1329 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
Edwin Chen 2.1 1330
1331 = 6. FAQ =
1332
Xiaoling 87.4 1333 == 6.1 Where can i find source code of SN50v3-LB/LS? ==
Edwin Chen 2.1 1334
Xiaoling 43.52 1335
Edwin Chen 17.1 1336 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1337 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
Edwin Chen 2.1 1338
Xiaoling 87.4 1339 == 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
Xiaoling 55.2 1340
1341
Edwin Chen 55.1 1342 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1343
1344
Xiaoling 87.4 1345 == 6.3 How to put several sensors to a SN50v3-LB/LS? ==
Edwin Chen 57.1 1346
Xiaoling 57.2 1347
Xiaoling 87.4 1348 When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
Edwin Chen 57.1 1349
1350 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1351
1352 [[image:image-20230810121434-1.png||height="242" width="656"]]
1353
1354
Edwin Chen 2.1 1355 = 7. Order Info =
1356
1357
Xiaoling 87.9 1358 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
Edwin Chen 2.1 1359
1360 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1361
Edwin Chen 2.1 1362 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1363 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1364 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1365 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1366 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1367 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1368 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1369 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1370
Edwin Chen 10.1 1371 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1372
Edwin Chen 10.1 1373 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1374 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1375 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1376 * (% style="color:red" %)**NH**(%%): No Hole
1377
Edwin Chen 2.1 1378 = 8. ​Packing Info =
1379
Xiaoling 43.52 1380
Edwin Chen 2.1 1381 (% style="color:#037691" %)**Package Includes**:
1382
Xiaoling 87.4 1383 * SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
Edwin Chen 2.1 1384
1385 (% style="color:#037691" %)**Dimension and weight**:
1386
1387 * Device Size: cm
1388 * Device Weight: g
1389 * Package Size / pcs : cm
1390 * Weight / pcs : g
1391
1392 = 9. Support =
1393
1394
1395 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 43.10 1396
Xiaoling 41.4 1397 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]