Version 87.34 by Xiaoling on 2024/01/24 15:22

Hide last authors
Xiaoling 87.2 1
2
Xiaoling 41.2 3 (% style="text-align:center" %)
Xiaoling 87.2 4 [[image:image-20240103095714-2.png]]
Edwin Chen 2.1 5
6
7
Xiaoling 87.2 8
9
10
Xiaoling 79.3 11 **Table of Contents:**
Edwin Chen 2.1 12
13 {{toc/}}
14
15
16
17
18
19
20 = 1. Introduction =
21
Xiaoling 87.3 22 == 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
Edwin Chen 2.1 23
Xiaoling 43.2 24
Xiaoling 87.4 25 (% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 26
Xiaoling 87.3 27 (% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
Edwin Chen 2.1 28
Xiaoling 87.3 29 SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
Edwin Chen 2.1 30
Xiaoling 87.3 31 SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 32
Xiaoling 87.3 33 SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 34
35 == 1.2 ​Features ==
36
Xiaoling 43.44 37
Edwin Chen 2.1 38 * LoRaWAN 1.0.3 Class A
39 * Ultra-low power consumption
Edwin Chen 5.1 40 * Open-Source hardware/software
Edwin Chen 2.1 41 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
42 * Support Bluetooth v5.1 and LoRaWAN remote configure
43 * Support wireless OTA update firmware
44 * Uplink on periodically
45 * Downlink to change configure
Xiaoling 87.26 46 * 8500mAh Li/SOCl2 Battery (SN50v3-LB)
Xiaoling 87.5 47 * Solar panel + 3000mAh Li-on battery (SN50v3-LS)
Edwin Chen 2.1 48
49 == 1.3 Specification ==
50
Xiaoling 43.4 51
Edwin Chen 2.1 52 (% style="color:#037691" %)**Common DC Characteristics:**
53
Xiaoling 87.28 54 * Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
Edwin Chen 2.1 55 * Operating Temperature: -40 ~~ 85°C
56
Edwin Chen 5.1 57 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 58
Edwin Chen 5.1 59 * Battery output (2.6v ~~ 3.6v depends on battery)
60 * +5v controllable output
61 * 3 x Interrupt or Digital IN/OUT pins
62 * 3 x one-wire interfaces
63 * 1 x UART Interface
64 * 1 x I2C Interface
Edwin Chen 2.1 65
66 (% style="color:#037691" %)**LoRa Spec:**
67
68 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
69 * Max +22 dBm constant RF output vs.
70 * RX sensitivity: down to -139 dBm.
71 * Excellent blocking immunity
72
73 (% style="color:#037691" %)**Battery:**
74
75 * Li/SOCI2 un-chargeable battery
76 * Capacity: 8500mAh
77 * Self-Discharge: <1% / Year @ 25°C
78 * Max continuously current: 130mA
79 * Max boost current: 2A, 1 second
80
81 (% style="color:#037691" %)**Power Consumption**
82
83 * Sleep Mode: 5uA @ 3.3v
84 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
85
86 == 1.4 Sleep mode and working mode ==
87
Xiaoling 43.4 88
Edwin Chen 2.1 89 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
90
91 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
92
93
94 == 1.5 Button & LEDs ==
95
96
Xiaoling 87.29 97 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
Edwin Chen 2.1 98
99 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.31 100 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
Edwin Chen 2.1 101 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
104 )))
105 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
106 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
107 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
108 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
109 )))
110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111
112 == 1.6 BLE connection ==
113
114
Xiaoling 87.4 115 SN50v3-LB/LS supports BLE remote configure.
Edwin Chen 2.1 116
117
118 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
119
120 * Press button to send an uplink
121 * Press button to active device.
122 * Device Power on or reset.
123
124 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
125
126
Edwin Chen 6.1 127 == 1.7 Pin Definitions ==
Edwin Chen 2.1 128
129
Saxer Lin 49.1 130 [[image:image-20230610163213-1.png||height="404" width="699"]]
Edwin Chen 2.1 131
132
133 == 1.8 Mechanical ==
134
Edwin Chen 85.1 135 === 1.8.1 for LB version ===
Edwin Chen 2.1 136
137
Edwin Chen 84.1 138 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
Edwin Chen 2.1 139
Edwin Chen 84.1 140
Edwin Chen 2.1 141 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
142
Edwin Chen 85.1 143 === 1.8.2 for LS version ===
Edwin Chen 2.1 144
Edwin Chen 84.1 145 [[image:image-20231231203439-3.png||height="385" width="886"]]
146
147
Saxer Lin 44.5 148 == 1.9 Hole Option ==
Edwin Chen 5.1 149
Xiaoling 43.4 150
Xiaoling 87.4 151 SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
Edwin Chen 5.1 152
153 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
154
155 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
156
157
Xiaoling 87.4 158 = 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
Edwin Chen 2.1 159
160 == 2.1 How it works ==
161
162
Xiaoling 87.4 163 The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 164
165
166 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
167
168
169 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
170
Xiaoling 44.3 171 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
Edwin Chen 2.1 172
173
Xiaoling 87.4 174 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
Edwin Chen 2.1 175
Xiaoling 87.4 176 Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 177
Edwin Chen 11.2 178 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 2.1 179
180
181 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
182
183
184 (% style="color:blue" %)**Register the device**
185
186 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
187
188
189 (% style="color:blue" %)**Add APP EUI and DEV EUI**
190
191 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
192
193
194 (% style="color:blue" %)**Add APP EUI in the application**
195
196
197 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
198
199
200 (% style="color:blue" %)**Add APP KEY**
201
202 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
203
204
Xiaoling 87.4 205 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
Edwin Chen 2.1 206
207
Xiaoling 87.4 208 Press the button for 5 seconds to activate the SN50v3-LB/LS.
Edwin Chen 2.1 209
210 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
211
212 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
213
214
215 == 2.3 ​Uplink Payload ==
216
217 === 2.3.1 Device Status, FPORT~=5 ===
218
219
Xiaoling 87.4 220 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 221
222 The Payload format is as below.
223
224
225 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.24 226 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
Edwin Chen 2.1 227 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
Xiaoling 45.4 228 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
Edwin Chen 2.1 229
230 Example parse in TTNv3
231
232
Xiaoling 87.4 233 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
Edwin Chen 2.1 234
235 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
236
237 (% style="color:#037691" %)**Frequency Band**:
238
Xiaoling 53.2 239 0x01: EU868
Edwin Chen 2.1 240
Xiaoling 53.2 241 0x02: US915
Edwin Chen 2.1 242
Xiaoling 53.2 243 0x03: IN865
Edwin Chen 2.1 244
Xiaoling 53.2 245 0x04: AU915
Edwin Chen 2.1 246
Xiaoling 53.2 247 0x05: KZ865
Edwin Chen 2.1 248
Xiaoling 53.2 249 0x06: RU864
Edwin Chen 2.1 250
Xiaoling 53.2 251 0x07: AS923
Edwin Chen 2.1 252
Xiaoling 53.2 253 0x08: AS923-1
Edwin Chen 2.1 254
Xiaoling 53.2 255 0x09: AS923-2
Edwin Chen 2.1 256
Xiaoling 53.2 257 0x0a: AS923-3
Edwin Chen 2.1 258
Xiaoling 53.2 259 0x0b: CN470
Edwin Chen 2.1 260
Xiaoling 53.2 261 0x0c: EU433
Edwin Chen 2.1 262
Xiaoling 53.2 263 0x0d: KR920
Edwin Chen 2.1 264
Xiaoling 53.2 265 0x0e: MA869
Edwin Chen 2.1 266
267
268 (% style="color:#037691" %)**Sub-Band**:
269
270 AU915 and US915:value 0x00 ~~ 0x08
271
272 CN470: value 0x0B ~~ 0x0C
273
274 Other Bands: Always 0x00
275
276
277 (% style="color:#037691" %)**Battery Info**:
278
279 Check the battery voltage.
280
281 Ex1: 0x0B45 = 2885mV
282
283 Ex2: 0x0B49 = 2889mV
284
285
Edwin Chen 12.1 286 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 287
288
Xiaoling 87.4 289 SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
Edwin Chen 12.1 290
291 For example:
292
Xiaoling 44.2 293 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
Edwin Chen 12.1 294
295
Edwin Chen 13.1 296 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 297
Xiaoling 87.4 298 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
Edwin Chen 12.1 299
Xiaoling 44.2 300 2. All modes share the same Payload Explanation from HERE.
Xiaoling 43.53 301
Xiaoling 44.2 302 3. By default, the device will send an uplink message every 20 minutes.
303
304
Edwin Chen 13.1 305 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 306
Xiaoling 43.5 307
Edwin Chen 12.1 308 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
309
Xiaoling 87.32 310 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
311 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
Xiaoling 45.4 312 |Value|Bat|(% style="width:191px" %)(((
Xiaoling 43.12 313 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 314 )))|(% style="width:78px" %)(((
Xiaoling 43.12 315 ADC(PA4)
Saxer Lin 26.2 316 )))|(% style="width:216px" %)(((
Xiaoling 43.13 317 Digital in(PB15)&Digital Interrupt(PA8)
Saxer Lin 40.1 318 )))|(% style="width:308px" %)(((
Xiaoling 43.12 319 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 320 )))|(% style="width:154px" %)(((
Xiaoling 43.12 321 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 322 )))
323
Edwin Chen 12.1 324 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
325
326
Edwin Chen 13.1 327 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
328
Xiaoling 43.45 329
Edwin Chen 12.1 330 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
331
Xiaoling 87.34 332 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.33 333 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
Xiaoling 45.4 334 |Value|BAT|(% style="width:196px" %)(((
Xiaoling 43.16 335 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 336 )))|(% style="width:87px" %)(((
Xiaoling 43.16 337 ADC(PA4)
Saxer Lin 40.1 338 )))|(% style="width:189px" %)(((
Xiaoling 43.16 339 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 340 )))|(% style="width:208px" %)(((
Xiaoling 53.2 341 Distance measure by: 1) LIDAR-Lite V3HP
342 Or 2) Ultrasonic Sensor
Saxer Lin 40.1 343 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 344
345 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
346
Xiaoling 43.45 347
Xiaoling 43.17 348 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
Edwin Chen 12.1 349
Saxer Lin 26.2 350 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 351
Xiaoling 43.45 352
Xiaoling 43.17 353 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
Edwin Chen 12.1 354
Ellie Zhang 44.1 355 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
Saxer Lin 36.1 356
Saxer Lin 26.2 357 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 358
Xiaoling 43.45 359
Edwin Chen 12.1 360 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
361
Xiaoling 87.34 362 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
363 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**
Xiaoling 45.5 364 |Value|BAT|(% style="width:183px" %)(((
Xiaoling 43.19 365 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 366 )))|(% style="width:173px" %)(((
Xiaoling 43.19 367 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 368 )))|(% style="width:84px" %)(((
Xiaoling 43.19 369 ADC(PA4)
Saxer Lin 40.1 370 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 371 Distance measure by:1)TF-Mini plus LiDAR
Xiaoling 53.3 372 Or 2) TF-Luna LiDAR
Saxer Lin 40.1 373 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 374
375 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
376
Xiaoling 43.45 377
Edwin Chen 12.1 378 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
379
Ellie Zhang 44.1 380 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 381
Saxer Lin 26.2 382 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 383
Xiaoling 43.45 384
Edwin Chen 12.1 385 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
386
Ellie Zhang 44.1 387 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 388
Saxer Lin 52.1 389 [[image:image-20230610170047-1.png||height="452" width="799"]]
Edwin Chen 12.1 390
391
Edwin Chen 13.1 392 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
393
Xiaoling 43.45 394
Edwin Chen 12.1 395 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
396
Xiaoling 43.21 397 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 87.11 398 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Xiaoling 43.25 399 **Size(bytes)**
Xiaoling 87.11 400 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
Xiaoling 45.4 401 |Value|(% style="width:68px" %)(((
Xiaoling 43.23 402 ADC1(PA4)
Saxer Lin 26.2 403 )))|(% style="width:75px" %)(((
Xiaoling 43.23 404 ADC2(PA5)
Saxer Lin 36.1 405 )))|(((
Xiaoling 43.23 406 ADC3(PA8)
Saxer Lin 36.1 407 )))|(((
408 Digital Interrupt(PB15)
409 )))|(% style="width:304px" %)(((
Xiaoling 43.23 410 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 36.1 411 )))|(% style="width:163px" %)(((
Xiaoling 43.23 412 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 413 )))|(% style="width:53px" %)Bat
414
415 [[image:image-20230513110214-6.png]]
416
417
Edwin Chen 13.1 418 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
419
Edwin Chen 12.1 420
Saxer Lin 26.2 421 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 422
Xiaoling 43.26 423 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 87.24 424 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**
Xiaoling 45.4 425 |Value|BAT|(% style="width:186px" %)(((
Xiaoling 43.27 426 Temperature1(DS18B20)(PC13)
Saxer Lin 26.2 427 )))|(% style="width:82px" %)(((
Xiaoling 43.27 428 ADC(PA4)
Saxer Lin 26.2 429 )))|(% style="width:210px" %)(((
Xiaoling 43.27 430 Digital in(PB15) & Digital Interrupt(PA8) 
Saxer Lin 26.2 431 )))|(% style="width:191px" %)Temperature2(DS18B20)
Xiaoling 43.27 432 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
Edwin Chen 12.1 433
434 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
435
Xiaoling 44.4 436
Saxer Lin 39.2 437 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 438
Saxer Lin 39.1 439
Edwin Chen 13.1 440 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
441
Xiaoling 43.45 442
Saxer Lin 26.2 443 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 444
445 Each HX711 need to be calibrated before used. User need to do below two steps:
446
Xiaoling 44.2 447 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
448 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
Edwin Chen 12.1 449 1. (((
Saxer Lin 26.2 450 Weight has 4 bytes, the unit is g.
Xiaoling 43.53 451
452
453
Edwin Chen 12.1 454 )))
455
456 For example:
457
Xiaoling 44.2 458 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
Edwin Chen 12.1 459
460 Response:  Weight is 401 g
461
462 Check the response of this command and adjust the value to match the real value for thing.
463
Xiaoling 43.29 464 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 87.11 465 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Edwin Chen 12.1 466 **Size(bytes)**
Xiaoling 87.11 467 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**
Xiaoling 45.4 468 |Value|BAT|(% style="width:193px" %)(((
Xiaoling 43.55 469 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 470 )))|(% style="width:85px" %)(((
Xiaoling 43.31 471 ADC(PA4)
Saxer Lin 40.1 472 )))|(% style="width:186px" %)(((
Xiaoling 43.55 473 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 474 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 475
Edwin Chen 12.1 476 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
477
478
Edwin Chen 13.1 479 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
480
Xiaoling 43.45 481
Edwin Chen 12.1 482 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
483
484 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
485
Saxer Lin 26.2 486 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 487
Xiaoling 43.53 488
Xiaoling 43.45 489 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
Edwin Chen 12.1 490
Xiaoling 43.38 491 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 87.11 492 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4**
Xiaoling 45.4 493 |Value|BAT|(% style="width:256px" %)(((
Xiaoling 43.31 494 Temperature(DS18B20)(PC13)
Saxer Lin 36.1 495 )))|(% style="width:108px" %)(((
Xiaoling 43.31 496 ADC(PA4)
Saxer Lin 36.1 497 )))|(% style="width:126px" %)(((
Xiaoling 43.31 498 Digital in(PB15)
Saxer Lin 36.1 499 )))|(% style="width:145px" %)(((
Xiaoling 43.31 500 Count(PA8)
Saxer Lin 36.1 501 )))
502
Edwin Chen 12.1 503 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
504
505
Edwin Chen 13.1 506 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
507
Xiaoling 43.45 508
Xiaoling 43.38 509 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 87.11 510 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Edwin Chen 12.1 511 **Size(bytes)**
Xiaoling 87.11 512 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
Xiaoling 45.4 513 |Value|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 514 Temperature(DS18B20)
515 (PC13)
Saxer Lin 40.1 516 )))|(% style="width:83px" %)(((
Xiaoling 43.35 517 ADC(PA5)
Saxer Lin 40.1 518 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 519 Digital Interrupt1(PA8)
Saxer Lin 40.1 520 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 521
522 [[image:image-20230513111203-7.png||height="324" width="975"]]
523
Xiaoling 43.45 524
Edwin Chen 13.1 525 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
526
Xiaoling 43.45 527
Xiaoling 43.38 528 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 87.11 529 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Edwin Chen 12.1 530 **Size(bytes)**
Xiaoling 87.11 531 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2
Xiaoling 45.4 532 |Value|BAT|(% style="width:207px" %)(((
Saxer Lin 36.1 533 Temperature(DS18B20)
534 (PC13)
535 )))|(% style="width:94px" %)(((
Xiaoling 43.36 536 ADC1(PA4)
Saxer Lin 36.1 537 )))|(% style="width:198px" %)(((
538 Digital Interrupt(PB15)
539 )))|(% style="width:84px" %)(((
Xiaoling 43.36 540 ADC2(PA5)
Saxer Lin 40.1 541 )))|(% style="width:82px" %)(((
Xiaoling 43.36 542 ADC3(PA8)
Edwin Chen 12.1 543 )))
544
Saxer Lin 36.1 545 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 546
547
Edwin Chen 13.1 548 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
549
Xiaoling 43.45 550
Xiaoling 43.38 551 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 87.11 552 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Edwin Chen 12.1 553 **Size(bytes)**
Xiaoling 87.11 554 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4
Xiaoling 45.4 555 |Value|BAT|(((
Xiaoling 43.58 556 Temperature
557 (DS18B20)(PC13)
Edwin Chen 12.1 558 )))|(((
Xiaoling 43.58 559 Temperature2
560 (DS18B20)(PB9)
Edwin Chen 12.1 561 )))|(((
Saxer Lin 36.1 562 Digital Interrupt
563 (PB15)
564 )))|(% style="width:193px" %)(((
Xiaoling 43.58 565 Temperature3
566 (DS18B20)(PB8)
Saxer Lin 36.1 567 )))|(% style="width:78px" %)(((
Xiaoling 43.39 568 Count1(PA8)
Saxer Lin 36.1 569 )))|(% style="width:78px" %)(((
Xiaoling 43.39 570 Count2(PA4)
Edwin Chen 12.1 571 )))
572
Saxer Lin 36.1 573 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 574
Xiaoling 43.40 575 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
Edwin Chen 12.1 576
Xiaoling 43.44 577 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
Edwin Chen 12.1 578
Xiaoling 43.44 579 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
Edwin Chen 12.1 580
Xiaoling 43.44 581 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
Edwin Chen 12.1 582
583
Xiaoling 43.41 584 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
585
Saxer Lin 36.1 586 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 587
Saxer Lin 36.1 588 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 589
590
Xiaoling 87.10 591 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
Saxer Lin 65.1 592
Xiaoling 87.10 593
Mengting Qiu 74.8 594 (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
Xiaoling 74.3 595
Saxer Lin 65.1 596 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
597
Xiaoling 74.3 598 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
Saxer Lin 65.1 599
Saxer Lin 69.1 600
Saxer Lin 65.1 601 ===== 2.3.2.10.a  Uplink, PWM input capture =====
602
Xiaoling 74.3 603
Saxer Lin 65.1 604 [[image:image-20230817172209-2.png||height="439" width="683"]]
605
Xiaoling 79.2 606 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
Xiaoling 87.24 607 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
Saxer Lin 65.1 608 |Value|Bat|(% style="width:191px" %)(((
609 Temperature(DS18B20)(PC13)
610 )))|(% style="width:78px" %)(((
611 ADC(PA4)
612 )))|(% style="width:135px" %)(((
613 PWM_Setting
614 &Digital Interrupt(PA8)
615 )))|(% style="width:70px" %)(((
616 Pulse period
617 )))|(% style="width:89px" %)(((
618 Duration of high level
619 )))
620
621 [[image:image-20230817170702-1.png||height="161" width="1044"]]
622
623
Saxer Lin 72.1 624 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
Saxer Lin 65.1 625
Xiaoling 74.4 626 **Frequency:**
Saxer Lin 65.1 627
Saxer Lin 72.1 628 (% class="MsoNormal" %)
Xiaoling 74.4 629 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
Saxer Lin 65.1 630
Saxer Lin 72.1 631 (% class="MsoNormal" %)
Xiaoling 74.4 632 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
Saxer Lin 72.1 633
Xiaoling 74.4 634
Saxer Lin 72.1 635 (% class="MsoNormal" %)
Xiaoling 74.4 636 **Duty cycle:**
Saxer Lin 72.1 637
638 Duty cycle= Duration of high level/ Pulse period*100 ~(%).
639
640 [[image:image-20230818092200-1.png||height="344" width="627"]]
641
Xiaoling 87.10 642
Mengting Qiu 77.1 643 ===== 2.3.2.10.b  Uplink, PWM output =====
Saxer Lin 72.1 644
Xiaoling 87.10 645
Mengting Qiu 77.1 646 [[image:image-20230817172209-2.png||height="439" width="683"]]
Saxer Lin 65.1 647
Mengting Qiu 79.1 648 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
Xiaoling 74.3 649
Mengting Qiu 79.1 650 a is the time delay of the output, the unit is ms.
Mengting Qiu 75.1 651
Mengting Qiu 79.1 652 b is the output frequency, the unit is HZ.
Mengting Qiu 75.1 653
Mengting Qiu 79.1 654 c is the duty cycle of the output, the unit is %.
Mengting Qiu 75.1 655
Mengting Qiu 79.1 656 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
Mengting Qiu 75.1 657
Mengting Qiu 79.1 658 aa is the time delay of the output, the unit is ms.
659
660 bb is the output frequency, the unit is HZ.
661
662 cc is the duty cycle of the output, the unit is %.
663
664
665 For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
666
667 The oscilloscope displays as follows:
668
Xiaoling 87.10 669 [[image:image-20231213102404-1.jpeg||height="688" width="821"]]
Mengting Qiu 79.1 670
671
Mengting Qiu 75.1 672 ===== 2.3.2.10.c  Downlink, PWM output =====
673
674
Saxer Lin 65.1 675 [[image:image-20230817173800-3.png||height="412" width="685"]]
676
677 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
678
679 xx xx xx is the output frequency, the unit is HZ.
680
681 yy is the duty cycle of the output, the unit is %.
682
683 zz zz is the time delay of the output, the unit is ms.
684
685
686 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
687
688 The oscilloscope displays as follows:
689
Xiaoling 87.10 690 [[image:image-20230817173858-5.png||height="634" width="843"]]
Saxer Lin 65.1 691
692
Edwin Chen 14.1 693 === 2.3.3  ​Decode payload ===
694
Xiaoling 43.45 695
Edwin Chen 12.1 696 While using TTN V3 network, you can add the payload format to decode the payload.
697
698 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
699
700 The payload decoder function for TTN V3 are here:
701
Xiaoling 87.4 702 SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 703
704
Edwin Chen 14.1 705 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 706
Xiaoling 43.45 707
Xiaoling 87.4 708 Check the battery voltage for SN50v3-LB/LS.
Edwin Chen 2.1 709
710 Ex1: 0x0B45 = 2885mV
711
712 Ex2: 0x0B49 = 2889mV
713
714
Edwin Chen 14.1 715 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 716
Xiaoling 43.45 717
Saxer Lin 42.1 718 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 719
Xiaoling 43.45 720 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
Edwin Chen 14.1 721
Xiaoling 43.41 722 (% style="color:blue" %)**Connection:**
Edwin Chen 14.1 723
Saxer Lin 26.2 724 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 725
Xiaoling 43.46 726
Xiaoling 43.41 727 (% style="color:blue" %)**Example**:
Edwin Chen 2.1 728
729 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
730
731 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
732
733 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
734
735
Edwin Chen 14.1 736 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 737
Xiaoling 43.46 738
Saxer Lin 26.2 739 The digital input for pin PB15,
Edwin Chen 2.1 740
Saxer Lin 26.2 741 * When PB15 is high, the bit 1 of payload byte 6 is 1.
742 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 743
Saxer Lin 26.2 744 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
745 (((
Saxer Lin 36.1 746 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
747
Xiaoling 43.46 748 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
749
750
Saxer Lin 26.2 751 )))
752
Edwin Chen 14.1 753 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 754
Xiaoling 43.46 755
Saxer Lin 53.1 756 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 757
Saxer Lin 53.1 758 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 759
Saxer Lin 26.2 760 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 761
Xiaoling 44.2 762
Xiaoling 43.46 763 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
Edwin Chen 14.1 764
Saxer Lin 43.1 765
Saxer Lin 59.1 766 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
767
768 [[image:image-20230811113449-1.png||height="370" width="608"]]
769
Xiaoling 87.10 770
771
Edwin Chen 14.1 772 ==== 2.3.3.5 Digital Interrupt ====
773
Xiaoling 43.46 774
Xiaoling 87.4 775 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
Edwin Chen 14.1 776
Xiaoling 43.44 777 (% style="color:blue" %)** Interrupt connection method:**
Edwin Chen 14.1 778
Saxer Lin 36.1 779 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 780
Xiaoling 43.46 781
Xiaoling 43.8 782 (% style="color:blue" %)**Example to use with door sensor :**
Edwin Chen 14.1 783
784 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
785
786 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
787
Xiaoling 87.4 788 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 789
790
Xiaoling 43.46 791 (% style="color:blue" %)**Below is the installation example:**
792
Xiaoling 87.4 793 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
Edwin Chen 14.1 794
795 * (((
Xiaoling 87.4 796 One pin to SN50v3-LB/LS's PA8 pin
Edwin Chen 14.1 797 )))
798 * (((
Xiaoling 87.4 799 The other pin to SN50v3-LB/LS's VDD pin
Edwin Chen 14.1 800 )))
801
Saxer Lin 36.1 802 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 803
Xiaoling 43.46 804 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
Edwin Chen 14.1 805
Saxer Lin 36.1 806 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 807
808 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
809
810 The above photos shows the two parts of the magnetic switch fitted to a door.
811
812 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
813
814 The command is:
815
Xiaoling 44.2 816 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 817
818 Below shows some screen captures in TTN V3:
819
820 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
821
Xiaoling 43.47 822
Xiaoling 44.4 823 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
Edwin Chen 14.1 824
825 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
826
827
Saxer Lin 26.2 828 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 829
Xiaoling 43.47 830
Saxer Lin 26.2 831 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 832
Saxer Lin 40.1 833 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 834
Xiaoling 87.4 835 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
Edwin Chen 14.1 836
Xiaoling 44.2 837
Edwin Chen 14.1 838 Below is the connection to SHT20/ SHT31. The connection is as below:
839
Saxer Lin 52.1 840 [[image:image-20230610170152-2.png||height="501" width="846"]]
Saxer Lin 36.1 841
Xiaoling 44.4 842
Edwin Chen 14.1 843 The device will be able to get the I2C sensor data now and upload to IoT Server.
844
845 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
846
847 Convert the read byte to decimal and divide it by ten.
848
Edwin Chen 2.1 849 **Example:**
850
Edwin Chen 14.1 851 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 852
Edwin Chen 14.1 853 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 854
Edwin Chen 14.1 855 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 856
857
Edwin Chen 14.1 858 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 859
Xiaoling 43.48 860
Xiaoling 43.42 861 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
Edwin Chen 14.1 862
863
864 ==== 2.3.3.8 Ultrasonic Sensor ====
865
Xiaoling 43.48 866
Saxer Lin 26.2 867 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 868
Xiaoling 87.4 869 The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 870
Xiaoling 43.44 871 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
Saxer Lin 36.1 872
Edwin Chen 14.1 873 The picture below shows the connection:
874
Saxer Lin 36.1 875 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 876
Xiaoling 43.50 877
Xiaoling 87.4 878 Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 879
880 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
881
882 **Example:**
883
884 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
885
886
887 ==== 2.3.3.9  Battery Output - BAT pin ====
888
Xiaoling 43.50 889
Xiaoling 87.4 890 The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
Edwin Chen 14.1 891
892
893 ==== 2.3.3.10  +5V Output ====
894
Xiaoling 43.50 895
Xiaoling 87.4 896 SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
Edwin Chen 14.1 897
898 The 5V output time can be controlled by AT Command.
899
Xiaoling 43.9 900 (% style="color:blue" %)**AT+5VT=1000**
Edwin Chen 14.1 901
902 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
903
Xiaoling 44.4 904 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
Edwin Chen 14.1 905
906
907 ==== 2.3.3.11  BH1750 Illumination Sensor ====
908
Xiaoling 43.50 909
Edwin Chen 14.1 910 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
911
Saxer Lin 40.1 912 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 913
Xiaoling 43.51 914
Saxer Lin 40.1 915 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 916
917
Saxer Lin 65.1 918 ==== 2.3.3.12  PWM MOD ====
Edwin Chen 14.1 919
Xiaoling 43.51 920
Saxer Lin 69.1 921 * (((
922 The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
923 )))
924 * (((
925 If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
926 )))
927
928 [[image:image-20230817183249-3.png||height="320" width="417"]]
929
930 * (((
931 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
932 )))
933 * (((
Xiaoling 74.2 934 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
Mengting Qiu 74.8 935 )))
936 * (((
Mengting Qiu 76.1 937 PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
Saxer Lin 70.1 938
Mengting Qiu 74.8 939 For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
Xiaoling 74.5 940
Xiaoling 87.4 941 a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
Mengting Qiu 74.8 942
Mengting Qiu 76.1 943 b) If the output duration is more than 30 seconds, better to use external power source. 
Xiaoling 87.4 944 )))
Mengting Qiu 74.8 945
Saxer Lin 65.1 946 ==== 2.3.3.13  Working MOD ====
947
948
Edwin Chen 14.1 949 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
950
951 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
952
953 Case 7^^th^^ Byte >> 2 & 0x1f:
954
955 * 0: MOD1
956 * 1: MOD2
957 * 2: MOD3
958 * 3: MOD4
959 * 4: MOD5
960 * 5: MOD6
Saxer Lin 36.1 961 * 6: MOD7
962 * 7: MOD8
963 * 8: MOD9
Saxer Lin 65.1 964 * 9: MOD10
Edwin Chen 14.1 965
Edwin Chen 2.1 966 == 2.4 Payload Decoder file ==
967
968
969 In TTN, use can add a custom payload so it shows friendly reading
970
971 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
972
Saxer Lin 40.1 973 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 974
975
Edwin Chen 15.1 976 == 2.5 Frequency Plans ==
Edwin Chen 2.1 977
978
Xiaoling 87.30 979 The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
Edwin Chen 2.1 980
981 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
982
983
Xiaoling 87.4 984 = 3. Configure SN50v3-LB/LS =
Edwin Chen 2.1 985
986 == 3.1 Configure Methods ==
987
988
Xiaoling 87.4 989 SN50v3-LB/LS supports below configure method:
Edwin Chen 2.1 990
991 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
992 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
993 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
994
995 == 3.2 General Commands ==
996
997
998 These commands are to configure:
999
1000 * General system settings like: uplink interval.
1001 * LoRaWAN protocol & radio related command.
1002
1003 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
1004
1005 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1006
1007
Xiaoling 87.4 1008 == 3.3 Commands special design for SN50v3-LB/LS ==
Edwin Chen 2.1 1009
1010
Xiaoling 87.4 1011 These commands only valid for SN50v3-LB/LS, as below:
Edwin Chen 2.1 1012
1013
1014 === 3.3.1 Set Transmit Interval Time ===
1015
Xiaoling 43.51 1016
Edwin Chen 2.1 1017 Feature: Change LoRaWAN End Node Transmit Interval.
1018
1019 (% style="color:blue" %)**AT Command: AT+TDC**
1020
1021 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1022 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
Edwin Chen 2.1 1023 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1024 30000
1025 OK
1026 the interval is 30000ms = 30s
1027 )))
1028 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
1029 OK
1030 Set transmit interval to 60000ms = 60 seconds
1031 )))
1032
1033 (% style="color:blue" %)**Downlink Command: 0x01**
1034
1035 Format: Command Code (0x01) followed by 3 bytes time value.
1036
1037 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1038
1039 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1040 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1041
1042 === 3.3.2 Get Device Status ===
1043
Xiaoling 43.52 1044
Saxer Lin 40.1 1045 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 1046
Xiaoling 44.4 1047 (% style="color:blue" %)**Downlink Payload: 0x26 01**
Edwin Chen 2.1 1048
Xiaoling 44.4 1049 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
Edwin Chen 2.1 1050
1051
Saxer Lin 36.1 1052 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 1053
Xiaoling 43.52 1054
Edwin Chen 2.1 1055 Feature, Set Interrupt mode for GPIO_EXIT.
1056
Xiaoling 87.15 1057 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
Edwin Chen 2.1 1058
1059 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1060 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 36.1 1061 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
Edwin Chen 2.1 1062 0
1063 OK
1064 the mode is 0 =Disable Interrupt
1065 )))
Saxer Lin 36.1 1066 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
Edwin Chen 2.1 1067 Set Transmit Interval
1068 0. (Disable Interrupt),
1069 ~1. (Trigger by rising and falling edge)
1070 2. (Trigger by falling edge)
1071 3. (Trigger by rising edge)
1072 )))|(% style="width:157px" %)OK
Saxer Lin 36.1 1073 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1074 Set Transmit Interval
1075 trigger by rising edge.
1076 )))|(% style="width:157px" %)OK
1077 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1078
Edwin Chen 2.1 1079 (% style="color:blue" %)**Downlink Command: 0x06**
1080
1081 Format: Command Code (0x06) followed by 3 bytes.
1082
1083 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1084
Saxer Lin 36.1 1085 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1086 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1087 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1088 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
Edwin Chen 2.1 1089
Saxer Lin 36.1 1090 === 3.3.4 Set Power Output Duration ===
1091
Xiaoling 43.52 1092
Saxer Lin 36.1 1093 Control the output duration 5V . Before each sampling, device will
1094
1095 ~1. first enable the power output to external sensor,
1096
1097 2. keep it on as per duration, read sensor value and construct uplink payload
1098
1099 3. final, close the power output.
1100
1101 (% style="color:blue" %)**AT Command: AT+5VT**
1102
1103 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1104 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 36.1 1105 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1106 500(default)
1107 OK
1108 )))
1109 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1110 Close after a delay of 1000 milliseconds.
1111 )))|(% style="width:157px" %)OK
1112
1113 (% style="color:blue" %)**Downlink Command: 0x07**
1114
1115 Format: Command Code (0x07) followed by 2 bytes.
1116
1117 The first and second bytes are the time to turn on.
1118
Saxer Lin 40.1 1119 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1120 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 1121
1122 === 3.3.5 Set Weighing parameters ===
1123
Xiaoling 43.52 1124
Saxer Lin 37.1 1125 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 1126
1127 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1128
1129 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1130 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 37.1 1131 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
Xiaoling 87.16 1132 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
Saxer Lin 37.1 1133 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 1134
1135 (% style="color:blue" %)**Downlink Command: 0x08**
1136
Saxer Lin 37.1 1137 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 1138
Saxer Lin 37.1 1139 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 1140
Saxer Lin 37.1 1141 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 1142
Saxer Lin 37.1 1143 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1144 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1145 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1146
Saxer Lin 36.1 1147 === 3.3.6 Set Digital pulse count value ===
1148
Xiaoling 43.52 1149
Saxer Lin 36.1 1150 Feature: Set the pulse count value.
1151
Saxer Lin 37.1 1152 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1153
Saxer Lin 36.1 1154 (% style="color:blue" %)**AT Command: AT+SETCNT**
1155
1156 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1157 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 36.1 1158 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1159 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1160
1161 (% style="color:blue" %)**Downlink Command: 0x09**
1162
1163 Format: Command Code (0x09) followed by 5 bytes.
1164
1165 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1166
1167 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 1168 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 1169
1170 === 3.3.7 Set Workmode ===
1171
Xiaoling 43.52 1172
Saxer Lin 37.1 1173 Feature: Switch working mode.
Saxer Lin 36.1 1174
1175 (% style="color:blue" %)**AT Command: AT+MOD**
1176
1177 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1178 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 36.1 1179 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1180 OK
1181 )))
1182 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1183 OK
1184 Attention:Take effect after ATZ
1185 )))
1186
1187 (% style="color:blue" %)**Downlink Command: 0x0A**
1188
1189 Format: Command Code (0x0A) followed by 1 bytes.
1190
1191 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1192 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1193
Saxer Lin 72.1 1194 === 3.3.8 PWM setting ===
1195
Xiaoling 74.5 1196
Xiaoling 87.24 1197 Feature: Set the time acquisition unit for PWM input capture.
Saxer Lin 72.1 1198
1199 (% style="color:blue" %)**AT Command: AT+PWMSET**
1200
1201 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.17 1202 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
Mengting Qiu 77.1 1203 |(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
Saxer Lin 72.1 1204 0(default)
1205 OK
1206 )))
Mengting Qiu 77.1 1207 |(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
Saxer Lin 72.1 1208 OK
1209
1210 )))
Mengting Qiu 77.1 1211 |(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
Saxer Lin 72.1 1212
1213 (% style="color:blue" %)**Downlink Command: 0x0C**
1214
1215 Format: Command Code (0x0C) followed by 1 bytes.
1216
1217 * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1218 * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1219
Xiaoling 87.24 1220 **Feature: Set PWM output time, output frequency and output duty cycle.**
1221
Mengting Qiu 76.1 1222 (% style="color:blue" %)**AT Command: AT+PWMOUT**
Mengting Qiu 75.1 1223
Mengting Qiu 77.1 1224 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.21 1225 |=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
Mengting Qiu 77.1 1226 |(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
Mengting Qiu 76.1 1227 0,0,0(default)
1228 OK
1229 )))
Mengting Qiu 77.1 1230 |(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
Mengting Qiu 76.1 1231 OK
1232
1233 )))
Mengting Qiu 77.1 1234 |(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1235 The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
Mengting Qiu 75.1 1236
Mengting Qiu 77.1 1237
1238 )))|(% style="width:137px" %)(((
1239 OK
1240 )))
1241
1242 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.18 1243 |=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
Mengting Qiu 77.1 1244 |(% colspan="1" rowspan="3" style="width:155px" %)(((
1245 AT+PWMOUT=a,b,c
1246
1247
1248 )))|(% colspan="1" rowspan="3" style="width:112px" %)(((
Mengting Qiu 79.1 1249 Set PWM output time, output frequency and output duty cycle.
1250
1251 (((
Mengting Qiu 77.1 1252
1253 )))
1254
1255 (((
1256
1257 )))
1258 )))|(% style="width:242px" %)(((
Mengting Qiu 76.1 1259 a: Output time (unit: seconds)
Mengting Qiu 77.1 1260 The value ranges from 0 to 65535.
1261 When a=65535, PWM will always output.
1262 )))
1263 |(% style="width:242px" %)(((
Mengting Qiu 76.1 1264 b: Output frequency (unit: HZ)
Mengting Qiu 77.1 1265 )))
1266 |(% style="width:242px" %)(((
1267 c: Output duty cycle (unit: %)
1268 The value ranges from 0 to 100.
Mengting Qiu 76.1 1269 )))
1270
Mengting Qiu 77.1 1271 (% style="color:blue" %)**Downlink Command: 0x0B01**
Mengting Qiu 76.1 1272
Mengting Qiu 77.1 1273 Format: Command Code (0x0B01) followed by 6 bytes.
Mengting Qiu 76.1 1274
Xiaoling 87.19 1275 Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
Mengting Qiu 76.1 1276
Mengting Qiu 77.1 1277 * Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1278 * Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
Mengting Qiu 76.1 1279
Mengting Qiu 79.1 1280 = 4. Battery & Power Cons =
1281
1282
Xiaoling 87.6 1283 SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1284
1285 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1286
1287
1288 = 5. OTA Firmware update =
1289
1290
1291 (% class="wikigeneratedid" %)
Xiaoling 87.4 1292 **User can change firmware SN50v3-LB/LS to:**
Edwin Chen 2.1 1293
1294 * Change Frequency band/ region.
1295 * Update with new features.
1296 * Fix bugs.
1297
Xiaoling 52.2 1298 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
Edwin Chen 2.1 1299
Xiaoling 44.4 1300 **Methods to Update Firmware:**
Edwin Chen 2.1 1301
Xiaoling 53.3 1302 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1303 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
Edwin Chen 2.1 1304
1305 = 6. FAQ =
1306
Xiaoling 87.4 1307 == 6.1 Where can i find source code of SN50v3-LB/LS? ==
Edwin Chen 2.1 1308
Xiaoling 43.52 1309
Edwin Chen 17.1 1310 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1311 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
Edwin Chen 2.1 1312
Xiaoling 87.4 1313 == 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
Xiaoling 55.2 1314
1315
Edwin Chen 55.1 1316 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1317
1318
Xiaoling 87.4 1319 == 6.3 How to put several sensors to a SN50v3-LB/LS? ==
Edwin Chen 57.1 1320
Xiaoling 57.2 1321
Xiaoling 87.4 1322 When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
Edwin Chen 57.1 1323
1324 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1325
1326 [[image:image-20230810121434-1.png||height="242" width="656"]]
1327
1328
Edwin Chen 2.1 1329 = 7. Order Info =
1330
1331
Xiaoling 87.9 1332 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
Edwin Chen 2.1 1333
1334 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1335
Edwin Chen 2.1 1336 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1337 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1338 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1339 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1340 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1341 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1342 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1343 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1344
Edwin Chen 10.1 1345 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1346
Edwin Chen 10.1 1347 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1348 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1349 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1350 * (% style="color:red" %)**NH**(%%): No Hole
1351
Edwin Chen 2.1 1352 = 8. ​Packing Info =
1353
Xiaoling 43.52 1354
Edwin Chen 2.1 1355 (% style="color:#037691" %)**Package Includes**:
1356
Xiaoling 87.4 1357 * SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
Edwin Chen 2.1 1358
1359 (% style="color:#037691" %)**Dimension and weight**:
1360
1361 * Device Size: cm
1362 * Device Weight: g
1363 * Package Size / pcs : cm
1364 * Weight / pcs : g
1365
1366 = 9. Support =
1367
1368
1369 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 43.10 1370
Xiaoling 41.4 1371 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]