Version 87.3 by Xiaoling on 2024/01/03 10:44

Hide last authors
Xiaoling 87.2 1
2
Xiaoling 41.2 3 (% style="text-align:center" %)
Xiaoling 87.2 4 [[image:image-20240103095714-2.png]]
Edwin Chen 2.1 5
6
7
Xiaoling 87.2 8
9
10
Xiaoling 79.3 11 **Table of Contents:**
Edwin Chen 2.1 12
13 {{toc/}}
14
15
16
17
18
19
20 = 1. Introduction =
21
Xiaoling 87.3 22 == 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
Edwin Chen 2.1 23
Xiaoling 43.2 24
Xiaoling 87.3 25 (% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 26
Xiaoling 87.3 27 (% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
Edwin Chen 2.1 28
Xiaoling 87.3 29 SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
Edwin Chen 2.1 30
Xiaoling 87.3 31 SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 32
Xiaoling 87.3 33 SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 34
35 == 1.2 ​Features ==
36
Xiaoling 43.44 37
Edwin Chen 2.1 38 * LoRaWAN 1.0.3 Class A
39 * Ultra-low power consumption
Edwin Chen 5.1 40 * Open-Source hardware/software
Edwin Chen 2.1 41 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
42 * Support Bluetooth v5.1 and LoRaWAN remote configure
43 * Support wireless OTA update firmware
44 * Uplink on periodically
45 * Downlink to change configure
46 * 8500mAh Battery for long term use
47
48 == 1.3 Specification ==
49
Xiaoling 43.4 50
Edwin Chen 2.1 51 (% style="color:#037691" %)**Common DC Characteristics:**
52
53 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
54 * Operating Temperature: -40 ~~ 85°C
55
Edwin Chen 5.1 56 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 57
Edwin Chen 5.1 58 * Battery output (2.6v ~~ 3.6v depends on battery)
59 * +5v controllable output
60 * 3 x Interrupt or Digital IN/OUT pins
61 * 3 x one-wire interfaces
62 * 1 x UART Interface
63 * 1 x I2C Interface
Edwin Chen 2.1 64
65 (% style="color:#037691" %)**LoRa Spec:**
66
67 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
68 * Max +22 dBm constant RF output vs.
69 * RX sensitivity: down to -139 dBm.
70 * Excellent blocking immunity
71
72 (% style="color:#037691" %)**Battery:**
73
74 * Li/SOCI2 un-chargeable battery
75 * Capacity: 8500mAh
76 * Self-Discharge: <1% / Year @ 25°C
77 * Max continuously current: 130mA
78 * Max boost current: 2A, 1 second
79
80 (% style="color:#037691" %)**Power Consumption**
81
82 * Sleep Mode: 5uA @ 3.3v
83 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
84
85 == 1.4 Sleep mode and working mode ==
86
Xiaoling 43.4 87
Edwin Chen 2.1 88 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
89
90 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
91
92
93 == 1.5 Button & LEDs ==
94
95
Edwin Chen 82.1 96 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
Edwin Chen 2.1 97
98
99 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
100 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
101 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
104 )))
105 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
106 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
107 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
108 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
109 )))
110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111
112 == 1.6 BLE connection ==
113
114
Edwin Chen 5.1 115 SN50v3-LB supports BLE remote configure.
Edwin Chen 2.1 116
117
118 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
119
120 * Press button to send an uplink
121 * Press button to active device.
122 * Device Power on or reset.
123
124 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
125
126
Edwin Chen 6.1 127 == 1.7 Pin Definitions ==
Edwin Chen 2.1 128
129
Saxer Lin 49.1 130 [[image:image-20230610163213-1.png||height="404" width="699"]]
Edwin Chen 2.1 131
132
133 == 1.8 Mechanical ==
134
Edwin Chen 85.1 135 === 1.8.1 for LB version ===
Edwin Chen 2.1 136
137
Edwin Chen 84.1 138 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
Edwin Chen 2.1 139
Edwin Chen 84.1 140
Edwin Chen 2.1 141 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
142
Edwin Chen 85.1 143 === 1.8.2 for LS version ===
Edwin Chen 2.1 144
Edwin Chen 84.1 145 [[image:image-20231231203439-3.png||height="385" width="886"]]
146
147
Saxer Lin 44.5 148 == 1.9 Hole Option ==
Edwin Chen 5.1 149
Xiaoling 43.4 150
Edwin Chen 5.1 151 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
152
153 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
154
155 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
156
157
Edwin Chen 10.1 158 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
Edwin Chen 2.1 159
160 == 2.1 How it works ==
161
162
Xiaoling 44.3 163 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 164
165
166 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
167
168
169 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
170
Xiaoling 44.3 171 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
Edwin Chen 2.1 172
173
Edwin Chen 11.2 174 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
Edwin Chen 2.1 175
Edwin Chen 11.2 176 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 177
Edwin Chen 11.2 178 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 2.1 179
180
181 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
182
183
184 (% style="color:blue" %)**Register the device**
185
186 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
187
188
189 (% style="color:blue" %)**Add APP EUI and DEV EUI**
190
191 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
192
193
194 (% style="color:blue" %)**Add APP EUI in the application**
195
196
197 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
198
199
200 (% style="color:blue" %)**Add APP KEY**
201
202 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
203
204
Edwin Chen 11.2 205 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
Edwin Chen 2.1 206
207
Edwin Chen 11.2 208 Press the button for 5 seconds to activate the SN50v3-LB.
Edwin Chen 2.1 209
210 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
211
212 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
213
214
215 == 2.3 ​Uplink Payload ==
216
217 === 2.3.1 Device Status, FPORT~=5 ===
218
219
Xiaoling 44.3 220 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 221
222 The Payload format is as below.
223
224
225 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
226 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
227 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
Xiaoling 45.4 228 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
Edwin Chen 2.1 229
230 Example parse in TTNv3
231
232
Xiaoling 44.3 233 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
Edwin Chen 2.1 234
235 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
236
237 (% style="color:#037691" %)**Frequency Band**:
238
Xiaoling 53.2 239 0x01: EU868
Edwin Chen 2.1 240
Xiaoling 53.2 241 0x02: US915
Edwin Chen 2.1 242
Xiaoling 53.2 243 0x03: IN865
Edwin Chen 2.1 244
Xiaoling 53.2 245 0x04: AU915
Edwin Chen 2.1 246
Xiaoling 53.2 247 0x05: KZ865
Edwin Chen 2.1 248
Xiaoling 53.2 249 0x06: RU864
Edwin Chen 2.1 250
Xiaoling 53.2 251 0x07: AS923
Edwin Chen 2.1 252
Xiaoling 53.2 253 0x08: AS923-1
Edwin Chen 2.1 254
Xiaoling 53.2 255 0x09: AS923-2
Edwin Chen 2.1 256
Xiaoling 53.2 257 0x0a: AS923-3
Edwin Chen 2.1 258
Xiaoling 53.2 259 0x0b: CN470
Edwin Chen 2.1 260
Xiaoling 53.2 261 0x0c: EU433
Edwin Chen 2.1 262
Xiaoling 53.2 263 0x0d: KR920
Edwin Chen 2.1 264
Xiaoling 53.2 265 0x0e: MA869
Edwin Chen 2.1 266
267
268 (% style="color:#037691" %)**Sub-Band**:
269
270 AU915 and US915:value 0x00 ~~ 0x08
271
272 CN470: value 0x0B ~~ 0x0C
273
274 Other Bands: Always 0x00
275
276
277 (% style="color:#037691" %)**Battery Info**:
278
279 Check the battery voltage.
280
281 Ex1: 0x0B45 = 2885mV
282
283 Ex2: 0x0B49 = 2889mV
284
285
Edwin Chen 12.1 286 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 287
288
Xiaoling 44.2 289 SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
Edwin Chen 12.1 290
291 For example:
292
Xiaoling 44.2 293 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
Edwin Chen 12.1 294
295
Edwin Chen 13.1 296 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 297
Xiaoling 44.3 298 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
Edwin Chen 12.1 299
Xiaoling 44.2 300 2. All modes share the same Payload Explanation from HERE.
Xiaoling 43.53 301
Xiaoling 44.2 302 3. By default, the device will send an uplink message every 20 minutes.
303
304
Edwin Chen 13.1 305 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 306
Xiaoling 43.5 307
Edwin Chen 12.1 308 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
309
Xiaoling 43.5 310 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.54 311 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
Xiaoling 45.4 312 |Value|Bat|(% style="width:191px" %)(((
Xiaoling 43.12 313 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 314 )))|(% style="width:78px" %)(((
Xiaoling 43.12 315 ADC(PA4)
Saxer Lin 26.2 316 )))|(% style="width:216px" %)(((
Xiaoling 43.13 317 Digital in(PB15)&Digital Interrupt(PA8)
Saxer Lin 40.1 318 )))|(% style="width:308px" %)(((
Xiaoling 43.12 319 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 320 )))|(% style="width:154px" %)(((
Xiaoling 43.12 321 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 322 )))
323
Edwin Chen 12.1 324 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
325
326
Edwin Chen 13.1 327 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
328
Xiaoling 43.45 329
Edwin Chen 12.1 330 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
331
Xiaoling 43.14 332 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.54 333 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
Xiaoling 45.4 334 |Value|BAT|(% style="width:196px" %)(((
Xiaoling 43.16 335 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 336 )))|(% style="width:87px" %)(((
Xiaoling 43.16 337 ADC(PA4)
Saxer Lin 40.1 338 )))|(% style="width:189px" %)(((
Xiaoling 43.16 339 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 340 )))|(% style="width:208px" %)(((
Xiaoling 53.2 341 Distance measure by: 1) LIDAR-Lite V3HP
342 Or 2) Ultrasonic Sensor
Saxer Lin 40.1 343 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 344
345 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
346
Xiaoling 43.45 347
Xiaoling 43.17 348 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
Edwin Chen 12.1 349
Saxer Lin 26.2 350 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 351
Xiaoling 43.45 352
Xiaoling 43.17 353 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
Edwin Chen 12.1 354
Ellie Zhang 44.1 355 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
Saxer Lin 36.1 356
Saxer Lin 26.2 357 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 358
Xiaoling 43.45 359
Edwin Chen 12.1 360 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
361
Xiaoling 43.19 362 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 363 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
Xiaoling 45.5 364 |Value|BAT|(% style="width:183px" %)(((
Xiaoling 43.19 365 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 366 )))|(% style="width:173px" %)(((
Xiaoling 43.19 367 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 368 )))|(% style="width:84px" %)(((
Xiaoling 43.19 369 ADC(PA4)
Saxer Lin 40.1 370 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 371 Distance measure by:1)TF-Mini plus LiDAR
Xiaoling 53.3 372 Or 2) TF-Luna LiDAR
Saxer Lin 40.1 373 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 374
375 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
376
Xiaoling 43.45 377
Edwin Chen 12.1 378 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
379
Ellie Zhang 44.1 380 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 381
Saxer Lin 26.2 382 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 383
Xiaoling 43.45 384
Edwin Chen 12.1 385 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
386
Ellie Zhang 44.1 387 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 388
Saxer Lin 52.1 389 [[image:image-20230610170047-1.png||height="452" width="799"]]
Edwin Chen 12.1 390
391
Edwin Chen 13.1 392 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
393
Xiaoling 43.45 394
Edwin Chen 12.1 395 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
396
Xiaoling 43.21 397 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.25 398 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
399 **Size(bytes)**
Xiaoling 43.54 400 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
Xiaoling 45.4 401 |Value|(% style="width:68px" %)(((
Xiaoling 43.23 402 ADC1(PA4)
Saxer Lin 26.2 403 )))|(% style="width:75px" %)(((
Xiaoling 43.23 404 ADC2(PA5)
Saxer Lin 36.1 405 )))|(((
Xiaoling 43.23 406 ADC3(PA8)
Saxer Lin 36.1 407 )))|(((
408 Digital Interrupt(PB15)
409 )))|(% style="width:304px" %)(((
Xiaoling 43.23 410 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 36.1 411 )))|(% style="width:163px" %)(((
Xiaoling 43.23 412 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 413 )))|(% style="width:53px" %)Bat
414
415 [[image:image-20230513110214-6.png]]
416
417
Edwin Chen 13.1 418 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
419
Edwin Chen 12.1 420
Saxer Lin 26.2 421 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 422
Xiaoling 43.26 423 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 424 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
Xiaoling 45.4 425 |Value|BAT|(% style="width:186px" %)(((
Xiaoling 43.27 426 Temperature1(DS18B20)(PC13)
Saxer Lin 26.2 427 )))|(% style="width:82px" %)(((
Xiaoling 43.27 428 ADC(PA4)
Saxer Lin 26.2 429 )))|(% style="width:210px" %)(((
Xiaoling 43.27 430 Digital in(PB15) & Digital Interrupt(PA8) 
Saxer Lin 26.2 431 )))|(% style="width:191px" %)Temperature2(DS18B20)
Xiaoling 43.27 432 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
Edwin Chen 12.1 433
434 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
435
Xiaoling 44.4 436
Saxer Lin 39.2 437 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 438
Saxer Lin 39.1 439
Edwin Chen 13.1 440 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
441
Xiaoling 43.45 442
Saxer Lin 26.2 443 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 444
445 Each HX711 need to be calibrated before used. User need to do below two steps:
446
Xiaoling 44.2 447 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
448 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
Edwin Chen 12.1 449 1. (((
Saxer Lin 26.2 450 Weight has 4 bytes, the unit is g.
Xiaoling 43.53 451
452
453
Edwin Chen 12.1 454 )))
455
456 For example:
457
Xiaoling 44.2 458 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
Edwin Chen 12.1 459
460 Response:  Weight is 401 g
461
462 Check the response of this command and adjust the value to match the real value for thing.
463
Xiaoling 43.29 464 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
465 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 466 **Size(bytes)**
Xiaoling 43.30 467 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
Xiaoling 45.4 468 |Value|BAT|(% style="width:193px" %)(((
Xiaoling 43.55 469 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 470 )))|(% style="width:85px" %)(((
Xiaoling 43.31 471 ADC(PA4)
Saxer Lin 40.1 472 )))|(% style="width:186px" %)(((
Xiaoling 43.55 473 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 474 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 475
Edwin Chen 12.1 476 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
477
478
Edwin Chen 13.1 479 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
480
Xiaoling 43.45 481
Edwin Chen 12.1 482 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
483
484 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
485
Saxer Lin 26.2 486 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 487
Xiaoling 43.53 488
Xiaoling 43.45 489 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
Edwin Chen 12.1 490
Xiaoling 43.38 491 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.57 492 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
Xiaoling 45.4 493 |Value|BAT|(% style="width:256px" %)(((
Xiaoling 43.31 494 Temperature(DS18B20)(PC13)
Saxer Lin 36.1 495 )))|(% style="width:108px" %)(((
Xiaoling 43.31 496 ADC(PA4)
Saxer Lin 36.1 497 )))|(% style="width:126px" %)(((
Xiaoling 43.31 498 Digital in(PB15)
Saxer Lin 36.1 499 )))|(% style="width:145px" %)(((
Xiaoling 43.31 500 Count(PA8)
Saxer Lin 36.1 501 )))
502
Edwin Chen 12.1 503 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
504
505
Edwin Chen 13.1 506 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
507
Xiaoling 43.45 508
Xiaoling 43.38 509 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.33 510 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 511 **Size(bytes)**
Xiaoling 43.34 512 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
Xiaoling 45.4 513 |Value|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 514 Temperature(DS18B20)
515 (PC13)
Saxer Lin 40.1 516 )))|(% style="width:83px" %)(((
Xiaoling 43.35 517 ADC(PA5)
Saxer Lin 40.1 518 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 519 Digital Interrupt1(PA8)
Saxer Lin 40.1 520 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 521
522 [[image:image-20230513111203-7.png||height="324" width="975"]]
523
Xiaoling 43.45 524
Edwin Chen 13.1 525 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
526
Xiaoling 43.45 527
Xiaoling 43.38 528 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.35 529 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 530 **Size(bytes)**
Xiaoling 43.55 531 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
Xiaoling 45.4 532 |Value|BAT|(% style="width:207px" %)(((
Saxer Lin 36.1 533 Temperature(DS18B20)
534 (PC13)
535 )))|(% style="width:94px" %)(((
Xiaoling 43.36 536 ADC1(PA4)
Saxer Lin 36.1 537 )))|(% style="width:198px" %)(((
538 Digital Interrupt(PB15)
539 )))|(% style="width:84px" %)(((
Xiaoling 43.36 540 ADC2(PA5)
Saxer Lin 40.1 541 )))|(% style="width:82px" %)(((
Xiaoling 43.36 542 ADC3(PA8)
Edwin Chen 12.1 543 )))
544
Saxer Lin 36.1 545 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 546
547
Edwin Chen 13.1 548 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
549
Xiaoling 43.45 550
Xiaoling 43.38 551 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
552 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 553 **Size(bytes)**
Xiaoling 43.56 554 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
Xiaoling 45.4 555 |Value|BAT|(((
Xiaoling 43.58 556 Temperature
557 (DS18B20)(PC13)
Edwin Chen 12.1 558 )))|(((
Xiaoling 43.58 559 Temperature2
560 (DS18B20)(PB9)
Edwin Chen 12.1 561 )))|(((
Saxer Lin 36.1 562 Digital Interrupt
563 (PB15)
564 )))|(% style="width:193px" %)(((
Xiaoling 43.58 565 Temperature3
566 (DS18B20)(PB8)
Saxer Lin 36.1 567 )))|(% style="width:78px" %)(((
Xiaoling 43.39 568 Count1(PA8)
Saxer Lin 36.1 569 )))|(% style="width:78px" %)(((
Xiaoling 43.39 570 Count2(PA4)
Edwin Chen 12.1 571 )))
572
Saxer Lin 36.1 573 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 574
Xiaoling 43.40 575 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
Edwin Chen 12.1 576
Xiaoling 43.44 577 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
Edwin Chen 12.1 578
Xiaoling 43.44 579 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
Edwin Chen 12.1 580
Xiaoling 43.44 581 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
Edwin Chen 12.1 582
583
Xiaoling 43.41 584 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
585
Saxer Lin 36.1 586 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 587
Saxer Lin 36.1 588 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 589
590
Saxer Lin 65.1 591 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
592
Mengting Qiu 74.8 593 (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
Xiaoling 74.3 594
Saxer Lin 65.1 595 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
596
Xiaoling 74.3 597 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
Saxer Lin 65.1 598
Saxer Lin 69.1 599
Saxer Lin 65.1 600 ===== 2.3.2.10.a  Uplink, PWM input capture =====
601
Xiaoling 74.3 602
Saxer Lin 65.1 603 [[image:image-20230817172209-2.png||height="439" width="683"]]
604
Xiaoling 79.2 605 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
606 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
Saxer Lin 65.1 607 |Value|Bat|(% style="width:191px" %)(((
608 Temperature(DS18B20)(PC13)
609 )))|(% style="width:78px" %)(((
610 ADC(PA4)
611 )))|(% style="width:135px" %)(((
612 PWM_Setting
613 &Digital Interrupt(PA8)
614 )))|(% style="width:70px" %)(((
615 Pulse period
616 )))|(% style="width:89px" %)(((
617 Duration of high level
618 )))
619
620 [[image:image-20230817170702-1.png||height="161" width="1044"]]
621
622
Saxer Lin 72.1 623 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
Saxer Lin 65.1 624
Xiaoling 74.4 625 **Frequency:**
Saxer Lin 65.1 626
Saxer Lin 72.1 627 (% class="MsoNormal" %)
Xiaoling 74.4 628 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
Saxer Lin 65.1 629
Saxer Lin 72.1 630 (% class="MsoNormal" %)
Xiaoling 74.4 631 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
Saxer Lin 72.1 632
Xiaoling 74.4 633
Saxer Lin 72.1 634 (% class="MsoNormal" %)
Xiaoling 74.4 635 **Duty cycle:**
Saxer Lin 72.1 636
637 Duty cycle= Duration of high level/ Pulse period*100 ~(%).
638
639 [[image:image-20230818092200-1.png||height="344" width="627"]]
640
Mengting Qiu 77.1 641 ===== 2.3.2.10.b  Uplink, PWM output =====
Saxer Lin 72.1 642
Mengting Qiu 77.1 643 [[image:image-20230817172209-2.png||height="439" width="683"]]
Saxer Lin 65.1 644
Mengting Qiu 79.1 645 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
Xiaoling 74.3 646
Mengting Qiu 79.1 647 a is the time delay of the output, the unit is ms.
Mengting Qiu 75.1 648
Mengting Qiu 79.1 649 b is the output frequency, the unit is HZ.
Mengting Qiu 75.1 650
Mengting Qiu 79.1 651 c is the duty cycle of the output, the unit is %.
Mengting Qiu 75.1 652
Mengting Qiu 79.1 653 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
Mengting Qiu 75.1 654
Mengting Qiu 79.1 655 aa is the time delay of the output, the unit is ms.
656
657 bb is the output frequency, the unit is HZ.
658
659 cc is the duty cycle of the output, the unit is %.
660
661
662 For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
663
664 The oscilloscope displays as follows:
665
666 [[image:image-20231213102404-1.jpeg||height="780" width="932"]]
667
668
Mengting Qiu 75.1 669 ===== 2.3.2.10.c  Downlink, PWM output =====
670
671
Saxer Lin 65.1 672 [[image:image-20230817173800-3.png||height="412" width="685"]]
673
674 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
675
676 xx xx xx is the output frequency, the unit is HZ.
677
678 yy is the duty cycle of the output, the unit is %.
679
680 zz zz is the time delay of the output, the unit is ms.
681
682
683 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
684
685 The oscilloscope displays as follows:
686
687 [[image:image-20230817173858-5.png||height="694" width="921"]]
688
689
Edwin Chen 14.1 690 === 2.3.3  ​Decode payload ===
691
Xiaoling 43.45 692
Edwin Chen 12.1 693 While using TTN V3 network, you can add the payload format to decode the payload.
694
695 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
696
697 The payload decoder function for TTN V3 are here:
698
Xiaoling 44.2 699 SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 700
701
Edwin Chen 14.1 702 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 703
Xiaoling 43.45 704
Xiaoling 44.2 705 Check the battery voltage for SN50v3-LB.
Edwin Chen 2.1 706
707 Ex1: 0x0B45 = 2885mV
708
709 Ex2: 0x0B49 = 2889mV
710
711
Edwin Chen 14.1 712 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 713
Xiaoling 43.45 714
Saxer Lin 42.1 715 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 716
Xiaoling 43.45 717 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
Edwin Chen 14.1 718
Xiaoling 43.41 719 (% style="color:blue" %)**Connection:**
Edwin Chen 14.1 720
Saxer Lin 26.2 721 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 722
Xiaoling 43.46 723
Xiaoling 43.41 724 (% style="color:blue" %)**Example**:
Edwin Chen 2.1 725
726 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
727
728 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
729
730 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
731
732
Edwin Chen 14.1 733 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 734
Xiaoling 43.46 735
Saxer Lin 26.2 736 The digital input for pin PB15,
Edwin Chen 2.1 737
Saxer Lin 26.2 738 * When PB15 is high, the bit 1 of payload byte 6 is 1.
739 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 740
Saxer Lin 26.2 741 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
742 (((
Saxer Lin 36.1 743 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
744
Xiaoling 43.46 745 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
746
747
Saxer Lin 26.2 748 )))
749
Edwin Chen 14.1 750 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 751
Xiaoling 43.46 752
Saxer Lin 53.1 753 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 754
Saxer Lin 53.1 755 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 756
Saxer Lin 26.2 757 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 758
Xiaoling 44.2 759
Xiaoling 43.46 760 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
Edwin Chen 14.1 761
Saxer Lin 43.1 762
Saxer Lin 59.1 763 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
764
765 [[image:image-20230811113449-1.png||height="370" width="608"]]
766
Edwin Chen 14.1 767 ==== 2.3.3.5 Digital Interrupt ====
768
Xiaoling 43.46 769
Xiaoling 44.2 770 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
Edwin Chen 14.1 771
Xiaoling 43.44 772 (% style="color:blue" %)** Interrupt connection method:**
Edwin Chen 14.1 773
Saxer Lin 36.1 774 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 775
Xiaoling 43.46 776
Xiaoling 43.8 777 (% style="color:blue" %)**Example to use with door sensor :**
Edwin Chen 14.1 778
779 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
780
781 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
782
Xiaoling 44.2 783 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 784
785
Xiaoling 43.46 786 (% style="color:blue" %)**Below is the installation example:**
787
Xiaoling 44.2 788 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
Edwin Chen 14.1 789
790 * (((
Xiaoling 44.2 791 One pin to SN50v3-LB's PA8 pin
Edwin Chen 14.1 792 )))
793 * (((
Xiaoling 44.2 794 The other pin to SN50v3-LB's VDD pin
Edwin Chen 14.1 795 )))
796
Saxer Lin 36.1 797 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 798
Xiaoling 43.46 799 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
Edwin Chen 14.1 800
Saxer Lin 36.1 801 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 802
803 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
804
805 The above photos shows the two parts of the magnetic switch fitted to a door.
806
807 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
808
809 The command is:
810
Xiaoling 44.2 811 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 812
813 Below shows some screen captures in TTN V3:
814
815 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
816
Xiaoling 43.47 817
Xiaoling 44.4 818 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
Edwin Chen 14.1 819
820 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
821
822
Saxer Lin 26.2 823 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 824
Xiaoling 43.47 825
Saxer Lin 26.2 826 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 827
Saxer Lin 40.1 828 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 829
Xiaoling 44.2 830 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
Edwin Chen 14.1 831
Xiaoling 44.2 832
Edwin Chen 14.1 833 Below is the connection to SHT20/ SHT31. The connection is as below:
834
Saxer Lin 52.1 835 [[image:image-20230610170152-2.png||height="501" width="846"]]
Saxer Lin 36.1 836
Xiaoling 44.4 837
Edwin Chen 14.1 838 The device will be able to get the I2C sensor data now and upload to IoT Server.
839
840 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
841
842 Convert the read byte to decimal and divide it by ten.
843
Edwin Chen 2.1 844 **Example:**
845
Edwin Chen 14.1 846 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 847
Edwin Chen 14.1 848 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 849
Edwin Chen 14.1 850 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 851
852
Edwin Chen 14.1 853 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 854
Xiaoling 43.48 855
Xiaoling 43.42 856 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
Edwin Chen 14.1 857
858
859 ==== 2.3.3.8 Ultrasonic Sensor ====
860
Xiaoling 43.48 861
Saxer Lin 26.2 862 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 863
Xiaoling 44.2 864 The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 865
Xiaoling 43.44 866 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
Saxer Lin 36.1 867
Edwin Chen 14.1 868 The picture below shows the connection:
869
Saxer Lin 36.1 870 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 871
Xiaoling 43.50 872
Xiaoling 44.2 873 Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 874
875 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
876
877 **Example:**
878
879 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
880
881
882 ==== 2.3.3.9  Battery Output - BAT pin ====
883
Xiaoling 43.50 884
Xiaoling 44.4 885 The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
Edwin Chen 14.1 886
887
888 ==== 2.3.3.10  +5V Output ====
889
Xiaoling 43.50 890
Xiaoling 44.2 891 SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
Edwin Chen 14.1 892
893 The 5V output time can be controlled by AT Command.
894
Xiaoling 43.9 895 (% style="color:blue" %)**AT+5VT=1000**
Edwin Chen 14.1 896
897 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
898
Xiaoling 44.4 899 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
Edwin Chen 14.1 900
901
902 ==== 2.3.3.11  BH1750 Illumination Sensor ====
903
Xiaoling 43.50 904
Edwin Chen 14.1 905 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
906
Saxer Lin 40.1 907 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 908
Xiaoling 43.51 909
Saxer Lin 40.1 910 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 911
912
Saxer Lin 65.1 913 ==== 2.3.3.12  PWM MOD ====
Edwin Chen 14.1 914
Xiaoling 43.51 915
Saxer Lin 69.1 916 * (((
917 The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
918 )))
919 * (((
920 If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
921 )))
922
923 [[image:image-20230817183249-3.png||height="320" width="417"]]
924
925 * (((
926 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
927 )))
928 * (((
Xiaoling 74.2 929 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
Mengting Qiu 74.8 930 )))
931 * (((
Mengting Qiu 76.1 932 PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
Saxer Lin 70.1 933
Mengting Qiu 74.8 934 For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
Xiaoling 74.5 935
Mengting Qiu 76.1 936 a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
Mengting Qiu 74.8 937
Mengting Qiu 76.1 938 b) If the output duration is more than 30 seconds, better to use external power source. 
Mengting Qiu 74.8 939
940
Saxer Lin 70.1 941
Saxer Lin 69.1 942 )))
943
Saxer Lin 65.1 944 ==== 2.3.3.13  Working MOD ====
945
946
Edwin Chen 14.1 947 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
948
949 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
950
951 Case 7^^th^^ Byte >> 2 & 0x1f:
952
953 * 0: MOD1
954 * 1: MOD2
955 * 2: MOD3
956 * 3: MOD4
957 * 4: MOD5
958 * 5: MOD6
Saxer Lin 36.1 959 * 6: MOD7
960 * 7: MOD8
961 * 8: MOD9
Saxer Lin 65.1 962 * 9: MOD10
Edwin Chen 14.1 963
Edwin Chen 2.1 964 == 2.4 Payload Decoder file ==
965
966
967 In TTN, use can add a custom payload so it shows friendly reading
968
969 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
970
Saxer Lin 40.1 971 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 972
973
Edwin Chen 15.1 974 == 2.5 Frequency Plans ==
Edwin Chen 2.1 975
976
Edwin Chen 15.1 977 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 2.1 978
979 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
980
981
Edwin Chen 16.1 982 = 3. Configure SN50v3-LB =
Edwin Chen 2.1 983
984 == 3.1 Configure Methods ==
985
986
Edwin Chen 16.1 987 SN50v3-LB supports below configure method:
Edwin Chen 2.1 988
989 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
990 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
991 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
992
993 == 3.2 General Commands ==
994
995
996 These commands are to configure:
997
998 * General system settings like: uplink interval.
999 * LoRaWAN protocol & radio related command.
1000
1001 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
1002
1003 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1004
1005
Edwin Chen 16.1 1006 == 3.3 Commands special design for SN50v3-LB ==
Edwin Chen 2.1 1007
1008
Xiaoling 44.2 1009 These commands only valid for SN50v3-LB, as below:
Edwin Chen 2.1 1010
1011
1012 === 3.3.1 Set Transmit Interval Time ===
1013
Xiaoling 43.51 1014
Edwin Chen 2.1 1015 Feature: Change LoRaWAN End Node Transmit Interval.
1016
1017 (% style="color:blue" %)**AT Command: AT+TDC**
1018
1019 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.2 1020 |=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
Edwin Chen 2.1 1021 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1022 30000
1023 OK
1024 the interval is 30000ms = 30s
1025 )))
1026 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
1027 OK
1028 Set transmit interval to 60000ms = 60 seconds
1029 )))
1030
1031 (% style="color:blue" %)**Downlink Command: 0x01**
1032
1033 Format: Command Code (0x01) followed by 3 bytes time value.
1034
1035 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1036
1037 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1038 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1039
1040 === 3.3.2 Get Device Status ===
1041
Xiaoling 43.52 1042
Saxer Lin 40.1 1043 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 1044
Xiaoling 44.4 1045 (% style="color:blue" %)**Downlink Payload: 0x26 01**
Edwin Chen 2.1 1046
Xiaoling 44.4 1047 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
Edwin Chen 2.1 1048
1049
Saxer Lin 36.1 1050 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 1051
Xiaoling 43.52 1052
Edwin Chen 2.1 1053 Feature, Set Interrupt mode for GPIO_EXIT.
1054
Saxer Lin 36.1 1055 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
Edwin Chen 2.1 1056
1057 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1058 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1059 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
Edwin Chen 2.1 1060 0
1061 OK
1062 the mode is 0 =Disable Interrupt
1063 )))
Saxer Lin 36.1 1064 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
Edwin Chen 2.1 1065 Set Transmit Interval
1066 0. (Disable Interrupt),
1067 ~1. (Trigger by rising and falling edge)
1068 2. (Trigger by falling edge)
1069 3. (Trigger by rising edge)
1070 )))|(% style="width:157px" %)OK
Saxer Lin 36.1 1071 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1072 Set Transmit Interval
1073 trigger by rising edge.
1074 )))|(% style="width:157px" %)OK
1075 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1076
Edwin Chen 2.1 1077 (% style="color:blue" %)**Downlink Command: 0x06**
1078
1079 Format: Command Code (0x06) followed by 3 bytes.
1080
1081 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1082
Saxer Lin 36.1 1083 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1084 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1085 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1086 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
Edwin Chen 2.1 1087
Saxer Lin 36.1 1088 === 3.3.4 Set Power Output Duration ===
1089
Xiaoling 43.52 1090
Saxer Lin 36.1 1091 Control the output duration 5V . Before each sampling, device will
1092
1093 ~1. first enable the power output to external sensor,
1094
1095 2. keep it on as per duration, read sensor value and construct uplink payload
1096
1097 3. final, close the power output.
1098
1099 (% style="color:blue" %)**AT Command: AT+5VT**
1100
1101 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1102 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1103 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1104 500(default)
1105 OK
1106 )))
1107 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1108 Close after a delay of 1000 milliseconds.
1109 )))|(% style="width:157px" %)OK
1110
1111 (% style="color:blue" %)**Downlink Command: 0x07**
1112
1113 Format: Command Code (0x07) followed by 2 bytes.
1114
1115 The first and second bytes are the time to turn on.
1116
Saxer Lin 40.1 1117 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1118 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 1119
1120 === 3.3.5 Set Weighing parameters ===
1121
Xiaoling 43.52 1122
Saxer Lin 37.1 1123 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 1124
1125 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1126
1127 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1128 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 37.1 1129 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1130 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1131 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 1132
1133 (% style="color:blue" %)**Downlink Command: 0x08**
1134
Saxer Lin 37.1 1135 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 1136
Saxer Lin 37.1 1137 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 1138
Saxer Lin 37.1 1139 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 1140
Saxer Lin 37.1 1141 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1142 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1143 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1144
Saxer Lin 36.1 1145 === 3.3.6 Set Digital pulse count value ===
1146
Xiaoling 43.52 1147
Saxer Lin 36.1 1148 Feature: Set the pulse count value.
1149
Saxer Lin 37.1 1150 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1151
Saxer Lin 36.1 1152 (% style="color:blue" %)**AT Command: AT+SETCNT**
1153
1154 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1155 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1156 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1157 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1158
1159 (% style="color:blue" %)**Downlink Command: 0x09**
1160
1161 Format: Command Code (0x09) followed by 5 bytes.
1162
1163 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1164
1165 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 1166 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 1167
1168 === 3.3.7 Set Workmode ===
1169
Xiaoling 43.52 1170
Saxer Lin 37.1 1171 Feature: Switch working mode.
Saxer Lin 36.1 1172
1173 (% style="color:blue" %)**AT Command: AT+MOD**
1174
1175 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1176 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1177 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1178 OK
1179 )))
1180 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1181 OK
1182 Attention:Take effect after ATZ
1183 )))
1184
1185 (% style="color:blue" %)**Downlink Command: 0x0A**
1186
1187 Format: Command Code (0x0A) followed by 1 bytes.
1188
1189 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1190 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1191
Mengting Qiu 77.1 1192 (% id="H3.3.8PWMsetting" %)
Saxer Lin 72.1 1193 === 3.3.8 PWM setting ===
1194
Xiaoling 74.5 1195
Mengting Qiu 77.1 1196 (% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
Saxer Lin 72.1 1197
1198 (% style="color:blue" %)**AT Command: AT+PWMSET**
1199
1200 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Mengting Qiu 77.1 1201 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1202 |(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
Saxer Lin 72.1 1203 0(default)
1204
1205 OK
1206 )))
Mengting Qiu 77.1 1207 |(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
Saxer Lin 72.1 1208 OK
1209
1210 )))
Mengting Qiu 77.1 1211 |(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
Saxer Lin 72.1 1212
1213 (% style="color:blue" %)**Downlink Command: 0x0C**
1214
1215 Format: Command Code (0x0C) followed by 1 bytes.
1216
1217 * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1218 * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1219
Mengting Qiu 79.1 1220 (% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
Mengting Qiu 77.1 1221
Mengting Qiu 76.1 1222 (% style="color:blue" %)**AT Command: AT+PWMOUT**
Mengting Qiu 75.1 1223
Mengting Qiu 77.1 1224 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1225 |=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1226 |(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
Mengting Qiu 76.1 1227 0,0,0(default)
Mengting Qiu 75.1 1228
Mengting Qiu 76.1 1229 OK
1230 )))
Mengting Qiu 77.1 1231 |(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
Mengting Qiu 76.1 1232 OK
1233
1234 )))
Mengting Qiu 77.1 1235 |(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1236 The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
Mengting Qiu 75.1 1237
Mengting Qiu 77.1 1238
1239 )))|(% style="width:137px" %)(((
1240 OK
1241 )))
1242
1243 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1244 |=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1245 |(% colspan="1" rowspan="3" style="width:155px" %)(((
1246 AT+PWMOUT=a,b,c
1247
1248
1249 )))|(% colspan="1" rowspan="3" style="width:112px" %)(((
Mengting Qiu 79.1 1250 Set PWM output time, output frequency and output duty cycle.
1251
1252 (((
Mengting Qiu 77.1 1253
1254 )))
1255
1256 (((
1257
1258 )))
1259 )))|(% style="width:242px" %)(((
Mengting Qiu 76.1 1260 a: Output time (unit: seconds)
Mengting Qiu 75.1 1261
Mengting Qiu 77.1 1262 The value ranges from 0 to 65535.
1263
1264 When a=65535, PWM will always output.
1265 )))
1266 |(% style="width:242px" %)(((
Mengting Qiu 76.1 1267 b: Output frequency (unit: HZ)
Mengting Qiu 77.1 1268 )))
1269 |(% style="width:242px" %)(((
1270 c: Output duty cycle (unit: %)
Mengting Qiu 76.1 1271
Mengting Qiu 77.1 1272 The value ranges from 0 to 100.
Mengting Qiu 76.1 1273 )))
1274
Mengting Qiu 77.1 1275 (% style="color:blue" %)**Downlink Command: 0x0B01**
Mengting Qiu 76.1 1276
Mengting Qiu 77.1 1277 Format: Command Code (0x0B01) followed by 6 bytes.
Mengting Qiu 76.1 1278
Mengting Qiu 77.1 1279 Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
Mengting Qiu 76.1 1280
Mengting Qiu 77.1 1281 * Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1282 * Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
Mengting Qiu 76.1 1283
Mengting Qiu 79.1 1284 = 4. Battery & Power Cons =
1285
1286
Edwin Chen 11.1 1287 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1288
1289 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1290
1291
1292 = 5. OTA Firmware update =
1293
1294
1295 (% class="wikigeneratedid" %)
Xiaoling 44.4 1296 **User can change firmware SN50v3-LB to:**
Edwin Chen 2.1 1297
1298 * Change Frequency band/ region.
1299 * Update with new features.
1300 * Fix bugs.
1301
Xiaoling 52.2 1302 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
Edwin Chen 2.1 1303
Xiaoling 44.4 1304 **Methods to Update Firmware:**
Edwin Chen 2.1 1305
Xiaoling 53.3 1306 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1307 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
Edwin Chen 2.1 1308
1309 = 6. FAQ =
1310
Edwin Chen 17.1 1311 == 6.1 Where can i find source code of SN50v3-LB? ==
Edwin Chen 2.1 1312
Xiaoling 43.52 1313
Edwin Chen 17.1 1314 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1315 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
Edwin Chen 2.1 1316
Xiaoling 55.2 1317 == 6.2 How to generate PWM Output in SN50v3-LB? ==
1318
1319
Edwin Chen 55.1 1320 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1321
1322
Edwin Chen 57.1 1323 == 6.3 How to put several sensors to a SN50v3-LB? ==
1324
Xiaoling 57.2 1325
Edwin Chen 57.1 1326 When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1327
1328 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1329
1330 [[image:image-20230810121434-1.png||height="242" width="656"]]
1331
1332
Edwin Chen 2.1 1333 = 7. Order Info =
1334
1335
Edwin Chen 10.1 1336 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
Edwin Chen 2.1 1337
1338 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1339
Edwin Chen 2.1 1340 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1341 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1342 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1343 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1344 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1345 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1346 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1347 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1348
Edwin Chen 10.1 1349 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1350
Edwin Chen 10.1 1351 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1352 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1353 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1354 * (% style="color:red" %)**NH**(%%): No Hole
1355
Edwin Chen 2.1 1356 = 8. ​Packing Info =
1357
Xiaoling 43.52 1358
Edwin Chen 2.1 1359 (% style="color:#037691" %)**Package Includes**:
1360
Edwin Chen 10.1 1361 * SN50v3-LB LoRaWAN Generic Node
Edwin Chen 2.1 1362
1363 (% style="color:#037691" %)**Dimension and weight**:
1364
1365 * Device Size: cm
1366 * Device Weight: g
1367 * Package Size / pcs : cm
1368 * Weight / pcs : g
1369
1370 = 9. Support =
1371
1372
1373 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 43.10 1374
Xiaoling 41.4 1375 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]