Version 87.26 by Xiaoling on 2024/01/03 15:02

Hide last authors
Xiaoling 87.2 1
2
Xiaoling 41.2 3 (% style="text-align:center" %)
Xiaoling 87.2 4 [[image:image-20240103095714-2.png]]
Edwin Chen 2.1 5
6
7
Xiaoling 87.2 8
9
10
Xiaoling 79.3 11 **Table of Contents:**
Edwin Chen 2.1 12
13 {{toc/}}
14
15
16
17
18
19
20 = 1. Introduction =
21
Xiaoling 87.3 22 == 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
Edwin Chen 2.1 23
Xiaoling 43.2 24
Xiaoling 87.4 25 (% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 26
Xiaoling 87.3 27 (% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
Edwin Chen 2.1 28
Xiaoling 87.3 29 SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
Edwin Chen 2.1 30
Xiaoling 87.3 31 SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 32
Xiaoling 87.3 33 SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 34
35 == 1.2 ​Features ==
36
Xiaoling 43.44 37
Edwin Chen 2.1 38 * LoRaWAN 1.0.3 Class A
39 * Ultra-low power consumption
Edwin Chen 5.1 40 * Open-Source hardware/software
Edwin Chen 2.1 41 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
42 * Support Bluetooth v5.1 and LoRaWAN remote configure
43 * Support wireless OTA update firmware
44 * Uplink on periodically
45 * Downlink to change configure
Xiaoling 87.26 46 * 8500mAh Li/SOCl2 Battery (SN50v3-LB)
Xiaoling 87.5 47 * Solar panel + 3000mAh Li-on battery (SN50v3-LS)
Edwin Chen 2.1 48
49 == 1.3 Specification ==
50
Xiaoling 43.4 51
Edwin Chen 2.1 52 (% style="color:#037691" %)**Common DC Characteristics:**
53
Xiaoling 87.26 54 * Supply Voltage: Built- in Battery , 2.5v ~~ 3.6v
Edwin Chen 2.1 55 * Operating Temperature: -40 ~~ 85°C
56
Edwin Chen 5.1 57 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 58
Edwin Chen 5.1 59 * Battery output (2.6v ~~ 3.6v depends on battery)
60 * +5v controllable output
61 * 3 x Interrupt or Digital IN/OUT pins
62 * 3 x one-wire interfaces
63 * 1 x UART Interface
64 * 1 x I2C Interface
Edwin Chen 2.1 65
66 (% style="color:#037691" %)**LoRa Spec:**
67
68 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
69 * Max +22 dBm constant RF output vs.
70 * RX sensitivity: down to -139 dBm.
71 * Excellent blocking immunity
72
73 (% style="color:#037691" %)**Battery:**
74
75 * Li/SOCI2 un-chargeable battery
76 * Capacity: 8500mAh
77 * Self-Discharge: <1% / Year @ 25°C
78 * Max continuously current: 130mA
79 * Max boost current: 2A, 1 second
80
81 (% style="color:#037691" %)**Power Consumption**
82
83 * Sleep Mode: 5uA @ 3.3v
84 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
85
86 == 1.4 Sleep mode and working mode ==
87
Xiaoling 43.4 88
Edwin Chen 2.1 89 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
90
91 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
92
93
94 == 1.5 Button & LEDs ==
95
96
Edwin Chen 82.1 97 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
Edwin Chen 2.1 98
99
100 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 101 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
Edwin Chen 2.1 102 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
103 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
104 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
105 )))
106 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
107 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
108 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
109 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
110 )))
111 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
112
113 == 1.6 BLE connection ==
114
115
Xiaoling 87.4 116 SN50v3-LB/LS supports BLE remote configure.
Edwin Chen 2.1 117
118
119 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
120
121 * Press button to send an uplink
122 * Press button to active device.
123 * Device Power on or reset.
124
125 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
126
127
Edwin Chen 6.1 128 == 1.7 Pin Definitions ==
Edwin Chen 2.1 129
130
Saxer Lin 49.1 131 [[image:image-20230610163213-1.png||height="404" width="699"]]
Edwin Chen 2.1 132
133
134 == 1.8 Mechanical ==
135
Edwin Chen 85.1 136 === 1.8.1 for LB version ===
Edwin Chen 2.1 137
138
Edwin Chen 84.1 139 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
Edwin Chen 2.1 140
Edwin Chen 84.1 141
Edwin Chen 2.1 142 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
143
Edwin Chen 85.1 144 === 1.8.2 for LS version ===
Edwin Chen 2.1 145
Edwin Chen 84.1 146 [[image:image-20231231203439-3.png||height="385" width="886"]]
147
148
Saxer Lin 44.5 149 == 1.9 Hole Option ==
Edwin Chen 5.1 150
Xiaoling 43.4 151
Xiaoling 87.4 152 SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
Edwin Chen 5.1 153
154 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
155
156 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
157
158
Xiaoling 87.4 159 = 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
Edwin Chen 2.1 160
161 == 2.1 How it works ==
162
163
Xiaoling 87.4 164 The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 165
166
167 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
168
169
170 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
171
Xiaoling 44.3 172 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
Edwin Chen 2.1 173
174
Xiaoling 87.4 175 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
Edwin Chen 2.1 176
Xiaoling 87.4 177 Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 178
Edwin Chen 11.2 179 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 2.1 180
181
182 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
183
184
185 (% style="color:blue" %)**Register the device**
186
187 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
188
189
190 (% style="color:blue" %)**Add APP EUI and DEV EUI**
191
192 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
193
194
195 (% style="color:blue" %)**Add APP EUI in the application**
196
197
198 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
199
200
201 (% style="color:blue" %)**Add APP KEY**
202
203 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
204
205
Xiaoling 87.4 206 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
Edwin Chen 2.1 207
208
Xiaoling 87.4 209 Press the button for 5 seconds to activate the SN50v3-LB/LS.
Edwin Chen 2.1 210
211 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
212
213 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
214
215
216 == 2.3 ​Uplink Payload ==
217
218 === 2.3.1 Device Status, FPORT~=5 ===
219
220
Xiaoling 87.4 221 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 222
223 The Payload format is as below.
224
225
226 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.24 227 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
Edwin Chen 2.1 228 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
Xiaoling 45.4 229 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
Edwin Chen 2.1 230
231 Example parse in TTNv3
232
233
Xiaoling 87.4 234 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
Edwin Chen 2.1 235
236 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
237
238 (% style="color:#037691" %)**Frequency Band**:
239
Xiaoling 53.2 240 0x01: EU868
Edwin Chen 2.1 241
Xiaoling 53.2 242 0x02: US915
Edwin Chen 2.1 243
Xiaoling 53.2 244 0x03: IN865
Edwin Chen 2.1 245
Xiaoling 53.2 246 0x04: AU915
Edwin Chen 2.1 247
Xiaoling 53.2 248 0x05: KZ865
Edwin Chen 2.1 249
Xiaoling 53.2 250 0x06: RU864
Edwin Chen 2.1 251
Xiaoling 53.2 252 0x07: AS923
Edwin Chen 2.1 253
Xiaoling 53.2 254 0x08: AS923-1
Edwin Chen 2.1 255
Xiaoling 53.2 256 0x09: AS923-2
Edwin Chen 2.1 257
Xiaoling 53.2 258 0x0a: AS923-3
Edwin Chen 2.1 259
Xiaoling 53.2 260 0x0b: CN470
Edwin Chen 2.1 261
Xiaoling 53.2 262 0x0c: EU433
Edwin Chen 2.1 263
Xiaoling 53.2 264 0x0d: KR920
Edwin Chen 2.1 265
Xiaoling 53.2 266 0x0e: MA869
Edwin Chen 2.1 267
268
269 (% style="color:#037691" %)**Sub-Band**:
270
271 AU915 and US915:value 0x00 ~~ 0x08
272
273 CN470: value 0x0B ~~ 0x0C
274
275 Other Bands: Always 0x00
276
277
278 (% style="color:#037691" %)**Battery Info**:
279
280 Check the battery voltage.
281
282 Ex1: 0x0B45 = 2885mV
283
284 Ex2: 0x0B49 = 2889mV
285
286
Edwin Chen 12.1 287 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 288
289
Xiaoling 87.4 290 SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
Edwin Chen 12.1 291
292 For example:
293
Xiaoling 44.2 294 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
Edwin Chen 12.1 295
296
Edwin Chen 13.1 297 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 298
Xiaoling 87.4 299 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
Edwin Chen 12.1 300
Xiaoling 44.2 301 2. All modes share the same Payload Explanation from HERE.
Xiaoling 43.53 302
Xiaoling 44.2 303 3. By default, the device will send an uplink message every 20 minutes.
304
305
Edwin Chen 13.1 306 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 307
Xiaoling 43.5 308
Edwin Chen 12.1 309 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
310
Xiaoling 43.5 311 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 87.24 312 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**2**
Xiaoling 45.4 313 |Value|Bat|(% style="width:191px" %)(((
Xiaoling 43.12 314 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 315 )))|(% style="width:78px" %)(((
Xiaoling 43.12 316 ADC(PA4)
Saxer Lin 26.2 317 )))|(% style="width:216px" %)(((
Xiaoling 43.13 318 Digital in(PB15)&Digital Interrupt(PA8)
Saxer Lin 40.1 319 )))|(% style="width:308px" %)(((
Xiaoling 43.12 320 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 321 )))|(% style="width:154px" %)(((
Xiaoling 43.12 322 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 323 )))
324
Edwin Chen 12.1 325 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
326
327
Edwin Chen 13.1 328 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
329
Xiaoling 43.45 330
Edwin Chen 12.1 331 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
332
Xiaoling 43.14 333 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 87.24 334 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
Xiaoling 45.4 335 |Value|BAT|(% style="width:196px" %)(((
Xiaoling 43.16 336 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 337 )))|(% style="width:87px" %)(((
Xiaoling 43.16 338 ADC(PA4)
Saxer Lin 40.1 339 )))|(% style="width:189px" %)(((
Xiaoling 43.16 340 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 341 )))|(% style="width:208px" %)(((
Xiaoling 53.2 342 Distance measure by: 1) LIDAR-Lite V3HP
343 Or 2) Ultrasonic Sensor
Saxer Lin 40.1 344 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 345
346 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
347
Xiaoling 43.45 348
Xiaoling 43.17 349 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
Edwin Chen 12.1 350
Saxer Lin 26.2 351 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 352
Xiaoling 43.45 353
Xiaoling 43.17 354 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
Edwin Chen 12.1 355
Ellie Zhang 44.1 356 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
Saxer Lin 36.1 357
Saxer Lin 26.2 358 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 359
Xiaoling 43.45 360
Edwin Chen 12.1 361 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
362
Xiaoling 43.19 363 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 87.24 364 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**2**
Xiaoling 45.5 365 |Value|BAT|(% style="width:183px" %)(((
Xiaoling 43.19 366 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 367 )))|(% style="width:173px" %)(((
Xiaoling 43.19 368 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 369 )))|(% style="width:84px" %)(((
Xiaoling 43.19 370 ADC(PA4)
Saxer Lin 40.1 371 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 372 Distance measure by:1)TF-Mini plus LiDAR
Xiaoling 53.3 373 Or 2) TF-Luna LiDAR
Saxer Lin 40.1 374 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 375
376 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
377
Xiaoling 43.45 378
Edwin Chen 12.1 379 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
380
Ellie Zhang 44.1 381 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 382
Saxer Lin 26.2 383 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 384
Xiaoling 43.45 385
Edwin Chen 12.1 386 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
387
Ellie Zhang 44.1 388 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 389
Saxer Lin 52.1 390 [[image:image-20230610170047-1.png||height="452" width="799"]]
Edwin Chen 12.1 391
392
Edwin Chen 13.1 393 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
394
Xiaoling 43.45 395
Edwin Chen 12.1 396 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
397
Xiaoling 43.21 398 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 87.11 399 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Xiaoling 43.25 400 **Size(bytes)**
Xiaoling 87.11 401 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
Xiaoling 45.4 402 |Value|(% style="width:68px" %)(((
Xiaoling 43.23 403 ADC1(PA4)
Saxer Lin 26.2 404 )))|(% style="width:75px" %)(((
Xiaoling 43.23 405 ADC2(PA5)
Saxer Lin 36.1 406 )))|(((
Xiaoling 43.23 407 ADC3(PA8)
Saxer Lin 36.1 408 )))|(((
409 Digital Interrupt(PB15)
410 )))|(% style="width:304px" %)(((
Xiaoling 43.23 411 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 36.1 412 )))|(% style="width:163px" %)(((
Xiaoling 43.23 413 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 414 )))|(% style="width:53px" %)Bat
415
416 [[image:image-20230513110214-6.png]]
417
418
Edwin Chen 13.1 419 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
420
Edwin Chen 12.1 421
Saxer Lin 26.2 422 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 423
Xiaoling 43.26 424 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 87.24 425 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**
Xiaoling 45.4 426 |Value|BAT|(% style="width:186px" %)(((
Xiaoling 43.27 427 Temperature1(DS18B20)(PC13)
Saxer Lin 26.2 428 )))|(% style="width:82px" %)(((
Xiaoling 43.27 429 ADC(PA4)
Saxer Lin 26.2 430 )))|(% style="width:210px" %)(((
Xiaoling 43.27 431 Digital in(PB15) & Digital Interrupt(PA8) 
Saxer Lin 26.2 432 )))|(% style="width:191px" %)Temperature2(DS18B20)
Xiaoling 43.27 433 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
Edwin Chen 12.1 434
435 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
436
Xiaoling 44.4 437
Saxer Lin 39.2 438 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 439
Saxer Lin 39.1 440
Edwin Chen 13.1 441 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
442
Xiaoling 43.45 443
Saxer Lin 26.2 444 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 445
446 Each HX711 need to be calibrated before used. User need to do below two steps:
447
Xiaoling 44.2 448 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
449 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
Edwin Chen 12.1 450 1. (((
Saxer Lin 26.2 451 Weight has 4 bytes, the unit is g.
Xiaoling 43.53 452
453
454
Edwin Chen 12.1 455 )))
456
457 For example:
458
Xiaoling 44.2 459 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
Edwin Chen 12.1 460
461 Response:  Weight is 401 g
462
463 Check the response of this command and adjust the value to match the real value for thing.
464
Xiaoling 43.29 465 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 87.11 466 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Edwin Chen 12.1 467 **Size(bytes)**
Xiaoling 87.11 468 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**
Xiaoling 45.4 469 |Value|BAT|(% style="width:193px" %)(((
Xiaoling 43.55 470 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 471 )))|(% style="width:85px" %)(((
Xiaoling 43.31 472 ADC(PA4)
Saxer Lin 40.1 473 )))|(% style="width:186px" %)(((
Xiaoling 43.55 474 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 475 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 476
Edwin Chen 12.1 477 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
478
479
Edwin Chen 13.1 480 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
481
Xiaoling 43.45 482
Edwin Chen 12.1 483 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
484
485 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
486
Saxer Lin 26.2 487 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 488
Xiaoling 43.53 489
Xiaoling 43.45 490 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
Edwin Chen 12.1 491
Xiaoling 43.38 492 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 87.11 493 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4**
Xiaoling 45.4 494 |Value|BAT|(% style="width:256px" %)(((
Xiaoling 43.31 495 Temperature(DS18B20)(PC13)
Saxer Lin 36.1 496 )))|(% style="width:108px" %)(((
Xiaoling 43.31 497 ADC(PA4)
Saxer Lin 36.1 498 )))|(% style="width:126px" %)(((
Xiaoling 43.31 499 Digital in(PB15)
Saxer Lin 36.1 500 )))|(% style="width:145px" %)(((
Xiaoling 43.31 501 Count(PA8)
Saxer Lin 36.1 502 )))
503
Edwin Chen 12.1 504 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
505
506
Edwin Chen 13.1 507 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
508
Xiaoling 43.45 509
Xiaoling 43.38 510 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 87.11 511 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Edwin Chen 12.1 512 **Size(bytes)**
Xiaoling 87.11 513 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
Xiaoling 45.4 514 |Value|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 515 Temperature(DS18B20)
516 (PC13)
Saxer Lin 40.1 517 )))|(% style="width:83px" %)(((
Xiaoling 43.35 518 ADC(PA5)
Saxer Lin 40.1 519 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 520 Digital Interrupt1(PA8)
Saxer Lin 40.1 521 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 522
523 [[image:image-20230513111203-7.png||height="324" width="975"]]
524
Xiaoling 43.45 525
Edwin Chen 13.1 526 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
527
Xiaoling 43.45 528
Xiaoling 43.38 529 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 87.11 530 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Edwin Chen 12.1 531 **Size(bytes)**
Xiaoling 87.11 532 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2
Xiaoling 45.4 533 |Value|BAT|(% style="width:207px" %)(((
Saxer Lin 36.1 534 Temperature(DS18B20)
535 (PC13)
536 )))|(% style="width:94px" %)(((
Xiaoling 43.36 537 ADC1(PA4)
Saxer Lin 36.1 538 )))|(% style="width:198px" %)(((
539 Digital Interrupt(PB15)
540 )))|(% style="width:84px" %)(((
Xiaoling 43.36 541 ADC2(PA5)
Saxer Lin 40.1 542 )))|(% style="width:82px" %)(((
Xiaoling 43.36 543 ADC3(PA8)
Edwin Chen 12.1 544 )))
545
Saxer Lin 36.1 546 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 547
548
Edwin Chen 13.1 549 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
550
Xiaoling 43.45 551
Xiaoling 43.38 552 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 87.11 553 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Edwin Chen 12.1 554 **Size(bytes)**
Xiaoling 87.11 555 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4
Xiaoling 45.4 556 |Value|BAT|(((
Xiaoling 43.58 557 Temperature
558 (DS18B20)(PC13)
Edwin Chen 12.1 559 )))|(((
Xiaoling 43.58 560 Temperature2
561 (DS18B20)(PB9)
Edwin Chen 12.1 562 )))|(((
Saxer Lin 36.1 563 Digital Interrupt
564 (PB15)
565 )))|(% style="width:193px" %)(((
Xiaoling 43.58 566 Temperature3
567 (DS18B20)(PB8)
Saxer Lin 36.1 568 )))|(% style="width:78px" %)(((
Xiaoling 43.39 569 Count1(PA8)
Saxer Lin 36.1 570 )))|(% style="width:78px" %)(((
Xiaoling 43.39 571 Count2(PA4)
Edwin Chen 12.1 572 )))
573
Saxer Lin 36.1 574 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 575
Xiaoling 43.40 576 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
Edwin Chen 12.1 577
Xiaoling 43.44 578 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
Edwin Chen 12.1 579
Xiaoling 43.44 580 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
Edwin Chen 12.1 581
Xiaoling 43.44 582 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
Edwin Chen 12.1 583
584
Xiaoling 43.41 585 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
586
Saxer Lin 36.1 587 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 588
Saxer Lin 36.1 589 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 590
591
Xiaoling 87.10 592 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
Saxer Lin 65.1 593
Xiaoling 87.10 594
Mengting Qiu 74.8 595 (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
Xiaoling 74.3 596
Saxer Lin 65.1 597 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
598
Xiaoling 74.3 599 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
Saxer Lin 65.1 600
Saxer Lin 69.1 601
Saxer Lin 65.1 602 ===== 2.3.2.10.a  Uplink, PWM input capture =====
603
Xiaoling 74.3 604
Saxer Lin 65.1 605 [[image:image-20230817172209-2.png||height="439" width="683"]]
606
Xiaoling 79.2 607 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
Xiaoling 87.24 608 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
Saxer Lin 65.1 609 |Value|Bat|(% style="width:191px" %)(((
610 Temperature(DS18B20)(PC13)
611 )))|(% style="width:78px" %)(((
612 ADC(PA4)
613 )))|(% style="width:135px" %)(((
614 PWM_Setting
615 &Digital Interrupt(PA8)
616 )))|(% style="width:70px" %)(((
617 Pulse period
618 )))|(% style="width:89px" %)(((
619 Duration of high level
620 )))
621
622 [[image:image-20230817170702-1.png||height="161" width="1044"]]
623
624
Saxer Lin 72.1 625 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
Saxer Lin 65.1 626
Xiaoling 74.4 627 **Frequency:**
Saxer Lin 65.1 628
Saxer Lin 72.1 629 (% class="MsoNormal" %)
Xiaoling 74.4 630 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
Saxer Lin 65.1 631
Saxer Lin 72.1 632 (% class="MsoNormal" %)
Xiaoling 74.4 633 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
Saxer Lin 72.1 634
Xiaoling 74.4 635
Saxer Lin 72.1 636 (% class="MsoNormal" %)
Xiaoling 74.4 637 **Duty cycle:**
Saxer Lin 72.1 638
639 Duty cycle= Duration of high level/ Pulse period*100 ~(%).
640
641 [[image:image-20230818092200-1.png||height="344" width="627"]]
642
Xiaoling 87.10 643
Mengting Qiu 77.1 644 ===== 2.3.2.10.b  Uplink, PWM output =====
Saxer Lin 72.1 645
Xiaoling 87.10 646
Mengting Qiu 77.1 647 [[image:image-20230817172209-2.png||height="439" width="683"]]
Saxer Lin 65.1 648
Mengting Qiu 79.1 649 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
Xiaoling 74.3 650
Mengting Qiu 79.1 651 a is the time delay of the output, the unit is ms.
Mengting Qiu 75.1 652
Mengting Qiu 79.1 653 b is the output frequency, the unit is HZ.
Mengting Qiu 75.1 654
Mengting Qiu 79.1 655 c is the duty cycle of the output, the unit is %.
Mengting Qiu 75.1 656
Mengting Qiu 79.1 657 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
Mengting Qiu 75.1 658
Mengting Qiu 79.1 659 aa is the time delay of the output, the unit is ms.
660
661 bb is the output frequency, the unit is HZ.
662
663 cc is the duty cycle of the output, the unit is %.
664
665
666 For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
667
668 The oscilloscope displays as follows:
669
Xiaoling 87.10 670 [[image:image-20231213102404-1.jpeg||height="688" width="821"]]
Mengting Qiu 79.1 671
672
Mengting Qiu 75.1 673 ===== 2.3.2.10.c  Downlink, PWM output =====
674
675
Saxer Lin 65.1 676 [[image:image-20230817173800-3.png||height="412" width="685"]]
677
678 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
679
680 xx xx xx is the output frequency, the unit is HZ.
681
682 yy is the duty cycle of the output, the unit is %.
683
684 zz zz is the time delay of the output, the unit is ms.
685
686
687 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
688
689 The oscilloscope displays as follows:
690
Xiaoling 87.10 691 [[image:image-20230817173858-5.png||height="634" width="843"]]
Saxer Lin 65.1 692
693
Edwin Chen 14.1 694 === 2.3.3  ​Decode payload ===
695
Xiaoling 43.45 696
Edwin Chen 12.1 697 While using TTN V3 network, you can add the payload format to decode the payload.
698
699 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
700
701 The payload decoder function for TTN V3 are here:
702
Xiaoling 87.4 703 SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 704
705
Edwin Chen 14.1 706 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 707
Xiaoling 43.45 708
Xiaoling 87.4 709 Check the battery voltage for SN50v3-LB/LS.
Edwin Chen 2.1 710
711 Ex1: 0x0B45 = 2885mV
712
713 Ex2: 0x0B49 = 2889mV
714
715
Edwin Chen 14.1 716 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 717
Xiaoling 43.45 718
Saxer Lin 42.1 719 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 720
Xiaoling 43.45 721 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
Edwin Chen 14.1 722
Xiaoling 43.41 723 (% style="color:blue" %)**Connection:**
Edwin Chen 14.1 724
Saxer Lin 26.2 725 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 726
Xiaoling 43.46 727
Xiaoling 43.41 728 (% style="color:blue" %)**Example**:
Edwin Chen 2.1 729
730 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
731
732 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
733
734 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
735
736
Edwin Chen 14.1 737 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 738
Xiaoling 43.46 739
Saxer Lin 26.2 740 The digital input for pin PB15,
Edwin Chen 2.1 741
Saxer Lin 26.2 742 * When PB15 is high, the bit 1 of payload byte 6 is 1.
743 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 744
Saxer Lin 26.2 745 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
746 (((
Saxer Lin 36.1 747 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
748
Xiaoling 43.46 749 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
750
751
Saxer Lin 26.2 752 )))
753
Edwin Chen 14.1 754 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 755
Xiaoling 43.46 756
Saxer Lin 53.1 757 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 758
Saxer Lin 53.1 759 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 760
Saxer Lin 26.2 761 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 762
Xiaoling 44.2 763
Xiaoling 43.46 764 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
Edwin Chen 14.1 765
Saxer Lin 43.1 766
Saxer Lin 59.1 767 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
768
769 [[image:image-20230811113449-1.png||height="370" width="608"]]
770
Xiaoling 87.10 771
772
Edwin Chen 14.1 773 ==== 2.3.3.5 Digital Interrupt ====
774
Xiaoling 43.46 775
Xiaoling 87.4 776 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
Edwin Chen 14.1 777
Xiaoling 43.44 778 (% style="color:blue" %)** Interrupt connection method:**
Edwin Chen 14.1 779
Saxer Lin 36.1 780 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 781
Xiaoling 43.46 782
Xiaoling 43.8 783 (% style="color:blue" %)**Example to use with door sensor :**
Edwin Chen 14.1 784
785 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
786
787 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
788
Xiaoling 87.4 789 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 790
791
Xiaoling 43.46 792 (% style="color:blue" %)**Below is the installation example:**
793
Xiaoling 87.4 794 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
Edwin Chen 14.1 795
796 * (((
Xiaoling 87.4 797 One pin to SN50v3-LB/LS's PA8 pin
Edwin Chen 14.1 798 )))
799 * (((
Xiaoling 87.4 800 The other pin to SN50v3-LB/LS's VDD pin
Edwin Chen 14.1 801 )))
802
Saxer Lin 36.1 803 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 804
Xiaoling 43.46 805 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
Edwin Chen 14.1 806
Saxer Lin 36.1 807 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 808
809 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
810
811 The above photos shows the two parts of the magnetic switch fitted to a door.
812
813 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
814
815 The command is:
816
Xiaoling 44.2 817 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 818
819 Below shows some screen captures in TTN V3:
820
821 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
822
Xiaoling 43.47 823
Xiaoling 44.4 824 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
Edwin Chen 14.1 825
826 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
827
828
Saxer Lin 26.2 829 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 830
Xiaoling 43.47 831
Saxer Lin 26.2 832 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 833
Saxer Lin 40.1 834 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 835
Xiaoling 87.4 836 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
Edwin Chen 14.1 837
Xiaoling 44.2 838
Edwin Chen 14.1 839 Below is the connection to SHT20/ SHT31. The connection is as below:
840
Saxer Lin 52.1 841 [[image:image-20230610170152-2.png||height="501" width="846"]]
Saxer Lin 36.1 842
Xiaoling 44.4 843
Edwin Chen 14.1 844 The device will be able to get the I2C sensor data now and upload to IoT Server.
845
846 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
847
848 Convert the read byte to decimal and divide it by ten.
849
Edwin Chen 2.1 850 **Example:**
851
Edwin Chen 14.1 852 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 853
Edwin Chen 14.1 854 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 855
Edwin Chen 14.1 856 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 857
858
Edwin Chen 14.1 859 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 860
Xiaoling 43.48 861
Xiaoling 43.42 862 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
Edwin Chen 14.1 863
864
865 ==== 2.3.3.8 Ultrasonic Sensor ====
866
Xiaoling 43.48 867
Saxer Lin 26.2 868 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 869
Xiaoling 87.4 870 The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 871
Xiaoling 43.44 872 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
Saxer Lin 36.1 873
Edwin Chen 14.1 874 The picture below shows the connection:
875
Saxer Lin 36.1 876 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 877
Xiaoling 43.50 878
Xiaoling 87.4 879 Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 880
881 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
882
883 **Example:**
884
885 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
886
887
888 ==== 2.3.3.9  Battery Output - BAT pin ====
889
Xiaoling 43.50 890
Xiaoling 87.4 891 The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
Edwin Chen 14.1 892
893
894 ==== 2.3.3.10  +5V Output ====
895
Xiaoling 43.50 896
Xiaoling 87.4 897 SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
Edwin Chen 14.1 898
899 The 5V output time can be controlled by AT Command.
900
Xiaoling 43.9 901 (% style="color:blue" %)**AT+5VT=1000**
Edwin Chen 14.1 902
903 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
904
Xiaoling 44.4 905 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
Edwin Chen 14.1 906
907
908 ==== 2.3.3.11  BH1750 Illumination Sensor ====
909
Xiaoling 43.50 910
Edwin Chen 14.1 911 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
912
Saxer Lin 40.1 913 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 914
Xiaoling 43.51 915
Saxer Lin 40.1 916 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 917
918
Saxer Lin 65.1 919 ==== 2.3.3.12  PWM MOD ====
Edwin Chen 14.1 920
Xiaoling 43.51 921
Saxer Lin 69.1 922 * (((
923 The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
924 )))
925 * (((
926 If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
927 )))
928
929 [[image:image-20230817183249-3.png||height="320" width="417"]]
930
931 * (((
932 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
933 )))
934 * (((
Xiaoling 74.2 935 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
Mengting Qiu 74.8 936 )))
937 * (((
Mengting Qiu 76.1 938 PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
Saxer Lin 70.1 939
Mengting Qiu 74.8 940 For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
Xiaoling 74.5 941
Xiaoling 87.4 942 a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
Mengting Qiu 74.8 943
Mengting Qiu 76.1 944 b) If the output duration is more than 30 seconds, better to use external power source. 
Xiaoling 87.4 945 )))
Mengting Qiu 74.8 946
Saxer Lin 65.1 947 ==== 2.3.3.13  Working MOD ====
948
949
Edwin Chen 14.1 950 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
951
952 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
953
954 Case 7^^th^^ Byte >> 2 & 0x1f:
955
956 * 0: MOD1
957 * 1: MOD2
958 * 2: MOD3
959 * 3: MOD4
960 * 4: MOD5
961 * 5: MOD6
Saxer Lin 36.1 962 * 6: MOD7
963 * 7: MOD8
964 * 8: MOD9
Saxer Lin 65.1 965 * 9: MOD10
Edwin Chen 14.1 966
Edwin Chen 2.1 967 == 2.4 Payload Decoder file ==
968
969
970 In TTN, use can add a custom payload so it shows friendly reading
971
972 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
973
Saxer Lin 40.1 974 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 975
976
Edwin Chen 15.1 977 == 2.5 Frequency Plans ==
Edwin Chen 2.1 978
979
Xiaoling 87.4 980 The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 2.1 981
982 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
983
984
Xiaoling 87.4 985 = 3. Configure SN50v3-LB/LS =
Edwin Chen 2.1 986
987 == 3.1 Configure Methods ==
988
989
Xiaoling 87.4 990 SN50v3-LB/LS supports below configure method:
Edwin Chen 2.1 991
992 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
993 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
994 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
995
996 == 3.2 General Commands ==
997
998
999 These commands are to configure:
1000
1001 * General system settings like: uplink interval.
1002 * LoRaWAN protocol & radio related command.
1003
1004 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
1005
1006 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1007
1008
Xiaoling 87.4 1009 == 3.3 Commands special design for SN50v3-LB/LS ==
Edwin Chen 2.1 1010
1011
Xiaoling 87.4 1012 These commands only valid for SN50v3-LB/LS, as below:
Edwin Chen 2.1 1013
1014
1015 === 3.3.1 Set Transmit Interval Time ===
1016
Xiaoling 43.51 1017
Edwin Chen 2.1 1018 Feature: Change LoRaWAN End Node Transmit Interval.
1019
1020 (% style="color:blue" %)**AT Command: AT+TDC**
1021
1022 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1023 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
Edwin Chen 2.1 1024 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1025 30000
1026 OK
1027 the interval is 30000ms = 30s
1028 )))
1029 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
1030 OK
1031 Set transmit interval to 60000ms = 60 seconds
1032 )))
1033
1034 (% style="color:blue" %)**Downlink Command: 0x01**
1035
1036 Format: Command Code (0x01) followed by 3 bytes time value.
1037
1038 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1039
1040 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1041 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1042
1043 === 3.3.2 Get Device Status ===
1044
Xiaoling 43.52 1045
Saxer Lin 40.1 1046 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 1047
Xiaoling 44.4 1048 (% style="color:blue" %)**Downlink Payload: 0x26 01**
Edwin Chen 2.1 1049
Xiaoling 44.4 1050 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
Edwin Chen 2.1 1051
1052
Saxer Lin 36.1 1053 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 1054
Xiaoling 43.52 1055
Edwin Chen 2.1 1056 Feature, Set Interrupt mode for GPIO_EXIT.
1057
Xiaoling 87.15 1058 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
Edwin Chen 2.1 1059
1060 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1061 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 36.1 1062 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
Edwin Chen 2.1 1063 0
1064 OK
1065 the mode is 0 =Disable Interrupt
1066 )))
Saxer Lin 36.1 1067 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
Edwin Chen 2.1 1068 Set Transmit Interval
1069 0. (Disable Interrupt),
1070 ~1. (Trigger by rising and falling edge)
1071 2. (Trigger by falling edge)
1072 3. (Trigger by rising edge)
1073 )))|(% style="width:157px" %)OK
Saxer Lin 36.1 1074 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1075 Set Transmit Interval
1076 trigger by rising edge.
1077 )))|(% style="width:157px" %)OK
1078 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1079
Edwin Chen 2.1 1080 (% style="color:blue" %)**Downlink Command: 0x06**
1081
1082 Format: Command Code (0x06) followed by 3 bytes.
1083
1084 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1085
Saxer Lin 36.1 1086 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1087 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1088 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1089 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
Edwin Chen 2.1 1090
Saxer Lin 36.1 1091 === 3.3.4 Set Power Output Duration ===
1092
Xiaoling 43.52 1093
Saxer Lin 36.1 1094 Control the output duration 5V . Before each sampling, device will
1095
1096 ~1. first enable the power output to external sensor,
1097
1098 2. keep it on as per duration, read sensor value and construct uplink payload
1099
1100 3. final, close the power output.
1101
1102 (% style="color:blue" %)**AT Command: AT+5VT**
1103
1104 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1105 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 36.1 1106 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1107 500(default)
1108 OK
1109 )))
1110 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1111 Close after a delay of 1000 milliseconds.
1112 )))|(% style="width:157px" %)OK
1113
1114 (% style="color:blue" %)**Downlink Command: 0x07**
1115
1116 Format: Command Code (0x07) followed by 2 bytes.
1117
1118 The first and second bytes are the time to turn on.
1119
Saxer Lin 40.1 1120 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1121 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 1122
1123 === 3.3.5 Set Weighing parameters ===
1124
Xiaoling 43.52 1125
Saxer Lin 37.1 1126 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 1127
1128 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1129
1130 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1131 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 37.1 1132 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
Xiaoling 87.16 1133 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
Saxer Lin 37.1 1134 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 1135
1136 (% style="color:blue" %)**Downlink Command: 0x08**
1137
Saxer Lin 37.1 1138 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 1139
Saxer Lin 37.1 1140 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 1141
Saxer Lin 37.1 1142 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 1143
Saxer Lin 37.1 1144 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1145 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1146 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1147
Saxer Lin 36.1 1148 === 3.3.6 Set Digital pulse count value ===
1149
Xiaoling 43.52 1150
Saxer Lin 36.1 1151 Feature: Set the pulse count value.
1152
Saxer Lin 37.1 1153 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1154
Saxer Lin 36.1 1155 (% style="color:blue" %)**AT Command: AT+SETCNT**
1156
1157 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1158 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 36.1 1159 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1160 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1161
1162 (% style="color:blue" %)**Downlink Command: 0x09**
1163
1164 Format: Command Code (0x09) followed by 5 bytes.
1165
1166 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1167
1168 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 1169 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 1170
1171 === 3.3.7 Set Workmode ===
1172
Xiaoling 43.52 1173
Saxer Lin 37.1 1174 Feature: Switch working mode.
Saxer Lin 36.1 1175
1176 (% style="color:blue" %)**AT Command: AT+MOD**
1177
1178 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1179 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 36.1 1180 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1181 OK
1182 )))
1183 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1184 OK
1185 Attention:Take effect after ATZ
1186 )))
1187
1188 (% style="color:blue" %)**Downlink Command: 0x0A**
1189
1190 Format: Command Code (0x0A) followed by 1 bytes.
1191
1192 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1193 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1194
Saxer Lin 72.1 1195 === 3.3.8 PWM setting ===
1196
Xiaoling 74.5 1197
Xiaoling 87.24 1198 Feature: Set the time acquisition unit for PWM input capture.
Saxer Lin 72.1 1199
1200 (% style="color:blue" %)**AT Command: AT+PWMSET**
1201
1202 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.17 1203 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
Mengting Qiu 77.1 1204 |(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
Saxer Lin 72.1 1205 0(default)
1206 OK
1207 )))
Mengting Qiu 77.1 1208 |(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
Saxer Lin 72.1 1209 OK
1210
1211 )))
Mengting Qiu 77.1 1212 |(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
Saxer Lin 72.1 1213
1214 (% style="color:blue" %)**Downlink Command: 0x0C**
1215
1216 Format: Command Code (0x0C) followed by 1 bytes.
1217
1218 * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1219 * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1220
Xiaoling 87.24 1221 **Feature: Set PWM output time, output frequency and output duty cycle.**
1222
Mengting Qiu 76.1 1223 (% style="color:blue" %)**AT Command: AT+PWMOUT**
Mengting Qiu 75.1 1224
Mengting Qiu 77.1 1225 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.21 1226 |=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
Mengting Qiu 77.1 1227 |(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
Mengting Qiu 76.1 1228 0,0,0(default)
1229 OK
1230 )))
Mengting Qiu 77.1 1231 |(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
Mengting Qiu 76.1 1232 OK
1233
1234 )))
Mengting Qiu 77.1 1235 |(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1236 The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
Mengting Qiu 75.1 1237
Mengting Qiu 77.1 1238
1239 )))|(% style="width:137px" %)(((
1240 OK
1241 )))
1242
1243 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.18 1244 |=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
Mengting Qiu 77.1 1245 |(% colspan="1" rowspan="3" style="width:155px" %)(((
1246 AT+PWMOUT=a,b,c
1247
1248
1249 )))|(% colspan="1" rowspan="3" style="width:112px" %)(((
Mengting Qiu 79.1 1250 Set PWM output time, output frequency and output duty cycle.
1251
1252 (((
Mengting Qiu 77.1 1253
1254 )))
1255
1256 (((
1257
1258 )))
1259 )))|(% style="width:242px" %)(((
Mengting Qiu 76.1 1260 a: Output time (unit: seconds)
Mengting Qiu 77.1 1261 The value ranges from 0 to 65535.
1262 When a=65535, PWM will always output.
1263 )))
1264 |(% style="width:242px" %)(((
Mengting Qiu 76.1 1265 b: Output frequency (unit: HZ)
Mengting Qiu 77.1 1266 )))
1267 |(% style="width:242px" %)(((
1268 c: Output duty cycle (unit: %)
1269 The value ranges from 0 to 100.
Mengting Qiu 76.1 1270 )))
1271
Mengting Qiu 77.1 1272 (% style="color:blue" %)**Downlink Command: 0x0B01**
Mengting Qiu 76.1 1273
Mengting Qiu 77.1 1274 Format: Command Code (0x0B01) followed by 6 bytes.
Mengting Qiu 76.1 1275
Xiaoling 87.19 1276 Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
Mengting Qiu 76.1 1277
Mengting Qiu 77.1 1278 * Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1279 * Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
Mengting Qiu 76.1 1280
Mengting Qiu 79.1 1281 = 4. Battery & Power Cons =
1282
1283
Xiaoling 87.6 1284 SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1285
1286 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1287
1288
1289 = 5. OTA Firmware update =
1290
1291
1292 (% class="wikigeneratedid" %)
Xiaoling 87.4 1293 **User can change firmware SN50v3-LB/LS to:**
Edwin Chen 2.1 1294
1295 * Change Frequency band/ region.
1296 * Update with new features.
1297 * Fix bugs.
1298
Xiaoling 52.2 1299 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
Edwin Chen 2.1 1300
Xiaoling 44.4 1301 **Methods to Update Firmware:**
Edwin Chen 2.1 1302
Xiaoling 53.3 1303 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1304 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
Edwin Chen 2.1 1305
1306 = 6. FAQ =
1307
Xiaoling 87.4 1308 == 6.1 Where can i find source code of SN50v3-LB/LS? ==
Edwin Chen 2.1 1309
Xiaoling 43.52 1310
Edwin Chen 17.1 1311 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1312 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
Edwin Chen 2.1 1313
Xiaoling 87.4 1314 == 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
Xiaoling 55.2 1315
1316
Edwin Chen 55.1 1317 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1318
1319
Xiaoling 87.4 1320 == 6.3 How to put several sensors to a SN50v3-LB/LS? ==
Edwin Chen 57.1 1321
Xiaoling 57.2 1322
Xiaoling 87.4 1323 When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
Edwin Chen 57.1 1324
1325 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1326
1327 [[image:image-20230810121434-1.png||height="242" width="656"]]
1328
1329
Edwin Chen 2.1 1330 = 7. Order Info =
1331
1332
Xiaoling 87.9 1333 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
Edwin Chen 2.1 1334
1335 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1336
Edwin Chen 2.1 1337 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1338 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1339 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1340 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1341 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1342 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1343 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1344 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1345
Edwin Chen 10.1 1346 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1347
Edwin Chen 10.1 1348 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1349 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1350 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1351 * (% style="color:red" %)**NH**(%%): No Hole
1352
Edwin Chen 2.1 1353 = 8. ​Packing Info =
1354
Xiaoling 43.52 1355
Edwin Chen 2.1 1356 (% style="color:#037691" %)**Package Includes**:
1357
Xiaoling 87.4 1358 * SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
Edwin Chen 2.1 1359
1360 (% style="color:#037691" %)**Dimension and weight**:
1361
1362 * Device Size: cm
1363 * Device Weight: g
1364 * Package Size / pcs : cm
1365 * Weight / pcs : g
1366
1367 = 9. Support =
1368
1369
1370 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 43.10 1371
Xiaoling 41.4 1372 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]