Version 85.1 by Edwin Chen on 2023/12/31 20:35

Hide last authors
Xiaoling 41.2 1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
Edwin Chen 2.1 3
4
5
Xiaoling 79.3 6 **Table of Contents:**
Edwin Chen 2.1 7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
Edwin Chen 5.1 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
Edwin Chen 2.1 18
Xiaoling 43.2 19
Edwin Chen 4.1 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 21
Xiaoling 74.7 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
Edwin Chen 2.1 23
Edwin Chen 4.1 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
Edwin Chen 2.1 25
Edwin Chen 4.1 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 27
Edwin Chen 4.1 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 29
30 == 1.2 ​Features ==
31
Xiaoling 43.44 32
Edwin Chen 2.1 33 * LoRaWAN 1.0.3 Class A
34 * Ultra-low power consumption
Edwin Chen 5.1 35 * Open-Source hardware/software
Edwin Chen 2.1 36 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
37 * Support Bluetooth v5.1 and LoRaWAN remote configure
38 * Support wireless OTA update firmware
39 * Uplink on periodically
40 * Downlink to change configure
41 * 8500mAh Battery for long term use
42
43 == 1.3 Specification ==
44
Xiaoling 43.4 45
Edwin Chen 2.1 46 (% style="color:#037691" %)**Common DC Characteristics:**
47
48 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
49 * Operating Temperature: -40 ~~ 85°C
50
Edwin Chen 5.1 51 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 52
Edwin Chen 5.1 53 * Battery output (2.6v ~~ 3.6v depends on battery)
54 * +5v controllable output
55 * 3 x Interrupt or Digital IN/OUT pins
56 * 3 x one-wire interfaces
57 * 1 x UART Interface
58 * 1 x I2C Interface
Edwin Chen 2.1 59
60 (% style="color:#037691" %)**LoRa Spec:**
61
62 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
63 * Max +22 dBm constant RF output vs.
64 * RX sensitivity: down to -139 dBm.
65 * Excellent blocking immunity
66
67 (% style="color:#037691" %)**Battery:**
68
69 * Li/SOCI2 un-chargeable battery
70 * Capacity: 8500mAh
71 * Self-Discharge: <1% / Year @ 25°C
72 * Max continuously current: 130mA
73 * Max boost current: 2A, 1 second
74
75 (% style="color:#037691" %)**Power Consumption**
76
77 * Sleep Mode: 5uA @ 3.3v
78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79
80 == 1.4 Sleep mode and working mode ==
81
Xiaoling 43.4 82
Edwin Chen 2.1 83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84
85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
86
87
88 == 1.5 Button & LEDs ==
89
90
Edwin Chen 82.1 91 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
Edwin Chen 2.1 92
93
94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
96 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
97 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
98 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
99 )))
100 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
101 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
102 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
103 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
104 )))
105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106
107 == 1.6 BLE connection ==
108
109
Edwin Chen 5.1 110 SN50v3-LB supports BLE remote configure.
Edwin Chen 2.1 111
112
113 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
114
115 * Press button to send an uplink
116 * Press button to active device.
117 * Device Power on or reset.
118
119 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
120
121
Edwin Chen 6.1 122 == 1.7 Pin Definitions ==
Edwin Chen 2.1 123
124
Saxer Lin 49.1 125 [[image:image-20230610163213-1.png||height="404" width="699"]]
Edwin Chen 2.1 126
127
128 == 1.8 Mechanical ==
129
Edwin Chen 85.1 130 === 1.8.1 for LB version ===
Edwin Chen 2.1 131
132
Edwin Chen 84.1 133 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
Edwin Chen 2.1 134
Edwin Chen 84.1 135
Edwin Chen 2.1 136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137
Edwin Chen 85.1 138 === 1.8.2 for LS version ===
Edwin Chen 2.1 139
Edwin Chen 84.1 140 [[image:image-20231231203439-3.png||height="385" width="886"]]
141
142
Saxer Lin 44.5 143 == 1.9 Hole Option ==
Edwin Chen 5.1 144
Xiaoling 43.4 145
Edwin Chen 5.1 146 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
147
148 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
149
150 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
151
152
Edwin Chen 10.1 153 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
Edwin Chen 2.1 154
155 == 2.1 How it works ==
156
157
Xiaoling 44.3 158 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 159
160
161 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
162
163
164 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
165
Xiaoling 44.3 166 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
Edwin Chen 2.1 167
168
Edwin Chen 11.2 169 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
Edwin Chen 2.1 170
Edwin Chen 11.2 171 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 172
Edwin Chen 11.2 173 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 2.1 174
175
176 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
177
178
179 (% style="color:blue" %)**Register the device**
180
181 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
182
183
184 (% style="color:blue" %)**Add APP EUI and DEV EUI**
185
186 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
187
188
189 (% style="color:blue" %)**Add APP EUI in the application**
190
191
192 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
193
194
195 (% style="color:blue" %)**Add APP KEY**
196
197 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
198
199
Edwin Chen 11.2 200 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
Edwin Chen 2.1 201
202
Edwin Chen 11.2 203 Press the button for 5 seconds to activate the SN50v3-LB.
Edwin Chen 2.1 204
205 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
206
207 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
208
209
210 == 2.3 ​Uplink Payload ==
211
212 === 2.3.1 Device Status, FPORT~=5 ===
213
214
Xiaoling 44.3 215 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 216
217 The Payload format is as below.
218
219
220 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
221 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
222 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
Xiaoling 45.4 223 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
Edwin Chen 2.1 224
225 Example parse in TTNv3
226
227
Xiaoling 44.3 228 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
Edwin Chen 2.1 229
230 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
231
232 (% style="color:#037691" %)**Frequency Band**:
233
Xiaoling 53.2 234 0x01: EU868
Edwin Chen 2.1 235
Xiaoling 53.2 236 0x02: US915
Edwin Chen 2.1 237
Xiaoling 53.2 238 0x03: IN865
Edwin Chen 2.1 239
Xiaoling 53.2 240 0x04: AU915
Edwin Chen 2.1 241
Xiaoling 53.2 242 0x05: KZ865
Edwin Chen 2.1 243
Xiaoling 53.2 244 0x06: RU864
Edwin Chen 2.1 245
Xiaoling 53.2 246 0x07: AS923
Edwin Chen 2.1 247
Xiaoling 53.2 248 0x08: AS923-1
Edwin Chen 2.1 249
Xiaoling 53.2 250 0x09: AS923-2
Edwin Chen 2.1 251
Xiaoling 53.2 252 0x0a: AS923-3
Edwin Chen 2.1 253
Xiaoling 53.2 254 0x0b: CN470
Edwin Chen 2.1 255
Xiaoling 53.2 256 0x0c: EU433
Edwin Chen 2.1 257
Xiaoling 53.2 258 0x0d: KR920
Edwin Chen 2.1 259
Xiaoling 53.2 260 0x0e: MA869
Edwin Chen 2.1 261
262
263 (% style="color:#037691" %)**Sub-Band**:
264
265 AU915 and US915:value 0x00 ~~ 0x08
266
267 CN470: value 0x0B ~~ 0x0C
268
269 Other Bands: Always 0x00
270
271
272 (% style="color:#037691" %)**Battery Info**:
273
274 Check the battery voltage.
275
276 Ex1: 0x0B45 = 2885mV
277
278 Ex2: 0x0B49 = 2889mV
279
280
Edwin Chen 12.1 281 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 282
283
Xiaoling 44.2 284 SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
Edwin Chen 12.1 285
286 For example:
287
Xiaoling 44.2 288 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
Edwin Chen 12.1 289
290
Edwin Chen 13.1 291 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 292
Xiaoling 44.3 293 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
Edwin Chen 12.1 294
Xiaoling 44.2 295 2. All modes share the same Payload Explanation from HERE.
Xiaoling 43.53 296
Xiaoling 44.2 297 3. By default, the device will send an uplink message every 20 minutes.
298
299
Edwin Chen 13.1 300 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 301
Xiaoling 43.5 302
Edwin Chen 12.1 303 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
304
Xiaoling 43.5 305 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.54 306 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
Xiaoling 45.4 307 |Value|Bat|(% style="width:191px" %)(((
Xiaoling 43.12 308 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 309 )))|(% style="width:78px" %)(((
Xiaoling 43.12 310 ADC(PA4)
Saxer Lin 26.2 311 )))|(% style="width:216px" %)(((
Xiaoling 43.13 312 Digital in(PB15)&Digital Interrupt(PA8)
Saxer Lin 40.1 313 )))|(% style="width:308px" %)(((
Xiaoling 43.12 314 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 315 )))|(% style="width:154px" %)(((
Xiaoling 43.12 316 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 317 )))
318
Edwin Chen 12.1 319 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
320
321
Edwin Chen 13.1 322 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
323
Xiaoling 43.45 324
Edwin Chen 12.1 325 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
326
Xiaoling 43.14 327 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.54 328 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
Xiaoling 45.4 329 |Value|BAT|(% style="width:196px" %)(((
Xiaoling 43.16 330 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 331 )))|(% style="width:87px" %)(((
Xiaoling 43.16 332 ADC(PA4)
Saxer Lin 40.1 333 )))|(% style="width:189px" %)(((
Xiaoling 43.16 334 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 335 )))|(% style="width:208px" %)(((
Xiaoling 53.2 336 Distance measure by: 1) LIDAR-Lite V3HP
337 Or 2) Ultrasonic Sensor
Saxer Lin 40.1 338 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 339
340 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
341
Xiaoling 43.45 342
Xiaoling 43.17 343 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
Edwin Chen 12.1 344
Saxer Lin 26.2 345 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 346
Xiaoling 43.45 347
Xiaoling 43.17 348 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
Edwin Chen 12.1 349
Ellie Zhang 44.1 350 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
Saxer Lin 36.1 351
Saxer Lin 26.2 352 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 353
Xiaoling 43.45 354
Edwin Chen 12.1 355 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
356
Xiaoling 43.19 357 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 358 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
Xiaoling 45.5 359 |Value|BAT|(% style="width:183px" %)(((
Xiaoling 43.19 360 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 361 )))|(% style="width:173px" %)(((
Xiaoling 43.19 362 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 363 )))|(% style="width:84px" %)(((
Xiaoling 43.19 364 ADC(PA4)
Saxer Lin 40.1 365 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 366 Distance measure by:1)TF-Mini plus LiDAR
Xiaoling 53.3 367 Or 2) TF-Luna LiDAR
Saxer Lin 40.1 368 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 369
370 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
371
Xiaoling 43.45 372
Edwin Chen 12.1 373 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
374
Ellie Zhang 44.1 375 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 376
Saxer Lin 26.2 377 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 378
Xiaoling 43.45 379
Edwin Chen 12.1 380 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
381
Ellie Zhang 44.1 382 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 383
Saxer Lin 52.1 384 [[image:image-20230610170047-1.png||height="452" width="799"]]
Edwin Chen 12.1 385
386
Edwin Chen 13.1 387 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
388
Xiaoling 43.45 389
Edwin Chen 12.1 390 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
391
Xiaoling 43.21 392 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.25 393 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
394 **Size(bytes)**
Xiaoling 43.54 395 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
Xiaoling 45.4 396 |Value|(% style="width:68px" %)(((
Xiaoling 43.23 397 ADC1(PA4)
Saxer Lin 26.2 398 )))|(% style="width:75px" %)(((
Xiaoling 43.23 399 ADC2(PA5)
Saxer Lin 36.1 400 )))|(((
Xiaoling 43.23 401 ADC3(PA8)
Saxer Lin 36.1 402 )))|(((
403 Digital Interrupt(PB15)
404 )))|(% style="width:304px" %)(((
Xiaoling 43.23 405 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 36.1 406 )))|(% style="width:163px" %)(((
Xiaoling 43.23 407 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 408 )))|(% style="width:53px" %)Bat
409
410 [[image:image-20230513110214-6.png]]
411
412
Edwin Chen 13.1 413 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
414
Edwin Chen 12.1 415
Saxer Lin 26.2 416 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 417
Xiaoling 43.26 418 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 419 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
Xiaoling 45.4 420 |Value|BAT|(% style="width:186px" %)(((
Xiaoling 43.27 421 Temperature1(DS18B20)(PC13)
Saxer Lin 26.2 422 )))|(% style="width:82px" %)(((
Xiaoling 43.27 423 ADC(PA4)
Saxer Lin 26.2 424 )))|(% style="width:210px" %)(((
Xiaoling 43.27 425 Digital in(PB15) & Digital Interrupt(PA8) 
Saxer Lin 26.2 426 )))|(% style="width:191px" %)Temperature2(DS18B20)
Xiaoling 43.27 427 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
Edwin Chen 12.1 428
429 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
430
Xiaoling 44.4 431
Saxer Lin 39.2 432 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 433
Saxer Lin 39.1 434
Edwin Chen 13.1 435 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
436
Xiaoling 43.45 437
Saxer Lin 26.2 438 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 439
440 Each HX711 need to be calibrated before used. User need to do below two steps:
441
Xiaoling 44.2 442 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
443 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
Edwin Chen 12.1 444 1. (((
Saxer Lin 26.2 445 Weight has 4 bytes, the unit is g.
Xiaoling 43.53 446
447
448
Edwin Chen 12.1 449 )))
450
451 For example:
452
Xiaoling 44.2 453 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
Edwin Chen 12.1 454
455 Response:  Weight is 401 g
456
457 Check the response of this command and adjust the value to match the real value for thing.
458
Xiaoling 43.29 459 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
460 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 461 **Size(bytes)**
Xiaoling 43.30 462 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
Xiaoling 45.4 463 |Value|BAT|(% style="width:193px" %)(((
Xiaoling 43.55 464 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 465 )))|(% style="width:85px" %)(((
Xiaoling 43.31 466 ADC(PA4)
Saxer Lin 40.1 467 )))|(% style="width:186px" %)(((
Xiaoling 43.55 468 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 469 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 470
Edwin Chen 12.1 471 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
472
473
Edwin Chen 13.1 474 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
475
Xiaoling 43.45 476
Edwin Chen 12.1 477 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
478
479 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
480
Saxer Lin 26.2 481 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 482
Xiaoling 43.53 483
Xiaoling 43.45 484 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
Edwin Chen 12.1 485
Xiaoling 43.38 486 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.57 487 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
Xiaoling 45.4 488 |Value|BAT|(% style="width:256px" %)(((
Xiaoling 43.31 489 Temperature(DS18B20)(PC13)
Saxer Lin 36.1 490 )))|(% style="width:108px" %)(((
Xiaoling 43.31 491 ADC(PA4)
Saxer Lin 36.1 492 )))|(% style="width:126px" %)(((
Xiaoling 43.31 493 Digital in(PB15)
Saxer Lin 36.1 494 )))|(% style="width:145px" %)(((
Xiaoling 43.31 495 Count(PA8)
Saxer Lin 36.1 496 )))
497
Edwin Chen 12.1 498 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
499
500
Edwin Chen 13.1 501 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
502
Xiaoling 43.45 503
Xiaoling 43.38 504 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.33 505 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 506 **Size(bytes)**
Xiaoling 43.34 507 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
Xiaoling 45.4 508 |Value|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 509 Temperature(DS18B20)
510 (PC13)
Saxer Lin 40.1 511 )))|(% style="width:83px" %)(((
Xiaoling 43.35 512 ADC(PA5)
Saxer Lin 40.1 513 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 514 Digital Interrupt1(PA8)
Saxer Lin 40.1 515 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 516
517 [[image:image-20230513111203-7.png||height="324" width="975"]]
518
Xiaoling 43.45 519
Edwin Chen 13.1 520 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
521
Xiaoling 43.45 522
Xiaoling 43.38 523 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.35 524 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 525 **Size(bytes)**
Xiaoling 43.55 526 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
Xiaoling 45.4 527 |Value|BAT|(% style="width:207px" %)(((
Saxer Lin 36.1 528 Temperature(DS18B20)
529 (PC13)
530 )))|(% style="width:94px" %)(((
Xiaoling 43.36 531 ADC1(PA4)
Saxer Lin 36.1 532 )))|(% style="width:198px" %)(((
533 Digital Interrupt(PB15)
534 )))|(% style="width:84px" %)(((
Xiaoling 43.36 535 ADC2(PA5)
Saxer Lin 40.1 536 )))|(% style="width:82px" %)(((
Xiaoling 43.36 537 ADC3(PA8)
Edwin Chen 12.1 538 )))
539
Saxer Lin 36.1 540 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 541
542
Edwin Chen 13.1 543 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
544
Xiaoling 43.45 545
Xiaoling 43.38 546 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
547 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 548 **Size(bytes)**
Xiaoling 43.56 549 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
Xiaoling 45.4 550 |Value|BAT|(((
Xiaoling 43.58 551 Temperature
552 (DS18B20)(PC13)
Edwin Chen 12.1 553 )))|(((
Xiaoling 43.58 554 Temperature2
555 (DS18B20)(PB9)
Edwin Chen 12.1 556 )))|(((
Saxer Lin 36.1 557 Digital Interrupt
558 (PB15)
559 )))|(% style="width:193px" %)(((
Xiaoling 43.58 560 Temperature3
561 (DS18B20)(PB8)
Saxer Lin 36.1 562 )))|(% style="width:78px" %)(((
Xiaoling 43.39 563 Count1(PA8)
Saxer Lin 36.1 564 )))|(% style="width:78px" %)(((
Xiaoling 43.39 565 Count2(PA4)
Edwin Chen 12.1 566 )))
567
Saxer Lin 36.1 568 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 569
Xiaoling 43.40 570 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
Edwin Chen 12.1 571
Xiaoling 43.44 572 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
Edwin Chen 12.1 573
Xiaoling 43.44 574 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
Edwin Chen 12.1 575
Xiaoling 43.44 576 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
Edwin Chen 12.1 577
578
Xiaoling 43.41 579 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
580
Saxer Lin 36.1 581 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 582
Saxer Lin 36.1 583 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 584
585
Saxer Lin 65.1 586 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
587
Mengting Qiu 74.8 588 (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
Xiaoling 74.3 589
Saxer Lin 65.1 590 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
591
Xiaoling 74.3 592 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
Saxer Lin 65.1 593
Saxer Lin 69.1 594
Saxer Lin 65.1 595 ===== 2.3.2.10.a  Uplink, PWM input capture =====
596
Xiaoling 74.3 597
Saxer Lin 65.1 598 [[image:image-20230817172209-2.png||height="439" width="683"]]
599
Xiaoling 79.2 600 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
601 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
Saxer Lin 65.1 602 |Value|Bat|(% style="width:191px" %)(((
603 Temperature(DS18B20)(PC13)
604 )))|(% style="width:78px" %)(((
605 ADC(PA4)
606 )))|(% style="width:135px" %)(((
607 PWM_Setting
608 &Digital Interrupt(PA8)
609 )))|(% style="width:70px" %)(((
610 Pulse period
611 )))|(% style="width:89px" %)(((
612 Duration of high level
613 )))
614
615 [[image:image-20230817170702-1.png||height="161" width="1044"]]
616
617
Saxer Lin 72.1 618 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
Saxer Lin 65.1 619
Xiaoling 74.4 620 **Frequency:**
Saxer Lin 65.1 621
Saxer Lin 72.1 622 (% class="MsoNormal" %)
Xiaoling 74.4 623 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
Saxer Lin 65.1 624
Saxer Lin 72.1 625 (% class="MsoNormal" %)
Xiaoling 74.4 626 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
Saxer Lin 72.1 627
Xiaoling 74.4 628
Saxer Lin 72.1 629 (% class="MsoNormal" %)
Xiaoling 74.4 630 **Duty cycle:**
Saxer Lin 72.1 631
632 Duty cycle= Duration of high level/ Pulse period*100 ~(%).
633
634 [[image:image-20230818092200-1.png||height="344" width="627"]]
635
Mengting Qiu 77.1 636 ===== 2.3.2.10.b  Uplink, PWM output =====
Saxer Lin 72.1 637
Mengting Qiu 77.1 638 [[image:image-20230817172209-2.png||height="439" width="683"]]
Saxer Lin 65.1 639
Mengting Qiu 79.1 640 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
Xiaoling 74.3 641
Mengting Qiu 79.1 642 a is the time delay of the output, the unit is ms.
Mengting Qiu 75.1 643
Mengting Qiu 79.1 644 b is the output frequency, the unit is HZ.
Mengting Qiu 75.1 645
Mengting Qiu 79.1 646 c is the duty cycle of the output, the unit is %.
Mengting Qiu 75.1 647
Mengting Qiu 79.1 648 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
Mengting Qiu 75.1 649
Mengting Qiu 79.1 650 aa is the time delay of the output, the unit is ms.
651
652 bb is the output frequency, the unit is HZ.
653
654 cc is the duty cycle of the output, the unit is %.
655
656
657 For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
658
659 The oscilloscope displays as follows:
660
661 [[image:image-20231213102404-1.jpeg||height="780" width="932"]]
662
663
Mengting Qiu 75.1 664 ===== 2.3.2.10.c  Downlink, PWM output =====
665
666
Saxer Lin 65.1 667 [[image:image-20230817173800-3.png||height="412" width="685"]]
668
669 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
670
671 xx xx xx is the output frequency, the unit is HZ.
672
673 yy is the duty cycle of the output, the unit is %.
674
675 zz zz is the time delay of the output, the unit is ms.
676
677
678 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
679
680 The oscilloscope displays as follows:
681
682 [[image:image-20230817173858-5.png||height="694" width="921"]]
683
684
Edwin Chen 14.1 685 === 2.3.3  ​Decode payload ===
686
Xiaoling 43.45 687
Edwin Chen 12.1 688 While using TTN V3 network, you can add the payload format to decode the payload.
689
690 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
691
692 The payload decoder function for TTN V3 are here:
693
Xiaoling 44.2 694 SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 695
696
Edwin Chen 14.1 697 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 698
Xiaoling 43.45 699
Xiaoling 44.2 700 Check the battery voltage for SN50v3-LB.
Edwin Chen 2.1 701
702 Ex1: 0x0B45 = 2885mV
703
704 Ex2: 0x0B49 = 2889mV
705
706
Edwin Chen 14.1 707 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 708
Xiaoling 43.45 709
Saxer Lin 42.1 710 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 711
Xiaoling 43.45 712 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
Edwin Chen 14.1 713
Xiaoling 43.41 714 (% style="color:blue" %)**Connection:**
Edwin Chen 14.1 715
Saxer Lin 26.2 716 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 717
Xiaoling 43.46 718
Xiaoling 43.41 719 (% style="color:blue" %)**Example**:
Edwin Chen 2.1 720
721 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
722
723 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
724
725 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
726
727
Edwin Chen 14.1 728 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 729
Xiaoling 43.46 730
Saxer Lin 26.2 731 The digital input for pin PB15,
Edwin Chen 2.1 732
Saxer Lin 26.2 733 * When PB15 is high, the bit 1 of payload byte 6 is 1.
734 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 735
Saxer Lin 26.2 736 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
737 (((
Saxer Lin 36.1 738 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
739
Xiaoling 43.46 740 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
741
742
Saxer Lin 26.2 743 )))
744
Edwin Chen 14.1 745 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 746
Xiaoling 43.46 747
Saxer Lin 53.1 748 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 749
Saxer Lin 53.1 750 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 751
Saxer Lin 26.2 752 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 753
Xiaoling 44.2 754
Xiaoling 43.46 755 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
Edwin Chen 14.1 756
Saxer Lin 43.1 757
Saxer Lin 59.1 758 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
759
760 [[image:image-20230811113449-1.png||height="370" width="608"]]
761
Edwin Chen 14.1 762 ==== 2.3.3.5 Digital Interrupt ====
763
Xiaoling 43.46 764
Xiaoling 44.2 765 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
Edwin Chen 14.1 766
Xiaoling 43.44 767 (% style="color:blue" %)** Interrupt connection method:**
Edwin Chen 14.1 768
Saxer Lin 36.1 769 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 770
Xiaoling 43.46 771
Xiaoling 43.8 772 (% style="color:blue" %)**Example to use with door sensor :**
Edwin Chen 14.1 773
774 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
775
776 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
777
Xiaoling 44.2 778 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 779
780
Xiaoling 43.46 781 (% style="color:blue" %)**Below is the installation example:**
782
Xiaoling 44.2 783 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
Edwin Chen 14.1 784
785 * (((
Xiaoling 44.2 786 One pin to SN50v3-LB's PA8 pin
Edwin Chen 14.1 787 )))
788 * (((
Xiaoling 44.2 789 The other pin to SN50v3-LB's VDD pin
Edwin Chen 14.1 790 )))
791
Saxer Lin 36.1 792 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 793
Xiaoling 43.46 794 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
Edwin Chen 14.1 795
Saxer Lin 36.1 796 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 797
798 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
799
800 The above photos shows the two parts of the magnetic switch fitted to a door.
801
802 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
803
804 The command is:
805
Xiaoling 44.2 806 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 807
808 Below shows some screen captures in TTN V3:
809
810 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
811
Xiaoling 43.47 812
Xiaoling 44.4 813 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
Edwin Chen 14.1 814
815 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
816
817
Saxer Lin 26.2 818 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 819
Xiaoling 43.47 820
Saxer Lin 26.2 821 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 822
Saxer Lin 40.1 823 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 824
Xiaoling 44.2 825 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
Edwin Chen 14.1 826
Xiaoling 44.2 827
Edwin Chen 14.1 828 Below is the connection to SHT20/ SHT31. The connection is as below:
829
Saxer Lin 52.1 830 [[image:image-20230610170152-2.png||height="501" width="846"]]
Saxer Lin 36.1 831
Xiaoling 44.4 832
Edwin Chen 14.1 833 The device will be able to get the I2C sensor data now and upload to IoT Server.
834
835 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
836
837 Convert the read byte to decimal and divide it by ten.
838
Edwin Chen 2.1 839 **Example:**
840
Edwin Chen 14.1 841 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 842
Edwin Chen 14.1 843 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 844
Edwin Chen 14.1 845 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 846
847
Edwin Chen 14.1 848 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 849
Xiaoling 43.48 850
Xiaoling 43.42 851 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
Edwin Chen 14.1 852
853
854 ==== 2.3.3.8 Ultrasonic Sensor ====
855
Xiaoling 43.48 856
Saxer Lin 26.2 857 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 858
Xiaoling 44.2 859 The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 860
Xiaoling 43.44 861 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
Saxer Lin 36.1 862
Edwin Chen 14.1 863 The picture below shows the connection:
864
Saxer Lin 36.1 865 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 866
Xiaoling 43.50 867
Xiaoling 44.2 868 Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 869
870 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
871
872 **Example:**
873
874 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
875
876
877 ==== 2.3.3.9  Battery Output - BAT pin ====
878
Xiaoling 43.50 879
Xiaoling 44.4 880 The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
Edwin Chen 14.1 881
882
883 ==== 2.3.3.10  +5V Output ====
884
Xiaoling 43.50 885
Xiaoling 44.2 886 SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
Edwin Chen 14.1 887
888 The 5V output time can be controlled by AT Command.
889
Xiaoling 43.9 890 (% style="color:blue" %)**AT+5VT=1000**
Edwin Chen 14.1 891
892 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
893
Xiaoling 44.4 894 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
Edwin Chen 14.1 895
896
897 ==== 2.3.3.11  BH1750 Illumination Sensor ====
898
Xiaoling 43.50 899
Edwin Chen 14.1 900 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
901
Saxer Lin 40.1 902 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 903
Xiaoling 43.51 904
Saxer Lin 40.1 905 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 906
907
Saxer Lin 65.1 908 ==== 2.3.3.12  PWM MOD ====
Edwin Chen 14.1 909
Xiaoling 43.51 910
Saxer Lin 69.1 911 * (((
912 The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
913 )))
914 * (((
915 If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
916 )))
917
918 [[image:image-20230817183249-3.png||height="320" width="417"]]
919
920 * (((
921 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
922 )))
923 * (((
Xiaoling 74.2 924 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
Mengting Qiu 74.8 925 )))
926 * (((
Mengting Qiu 76.1 927 PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
Saxer Lin 70.1 928
Mengting Qiu 74.8 929 For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
Xiaoling 74.5 930
Mengting Qiu 76.1 931 a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
Mengting Qiu 74.8 932
Mengting Qiu 76.1 933 b) If the output duration is more than 30 seconds, better to use external power source. 
Mengting Qiu 74.8 934
935
Saxer Lin 70.1 936
Saxer Lin 69.1 937 )))
938
Saxer Lin 65.1 939 ==== 2.3.3.13  Working MOD ====
940
941
Edwin Chen 14.1 942 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
943
944 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
945
946 Case 7^^th^^ Byte >> 2 & 0x1f:
947
948 * 0: MOD1
949 * 1: MOD2
950 * 2: MOD3
951 * 3: MOD4
952 * 4: MOD5
953 * 5: MOD6
Saxer Lin 36.1 954 * 6: MOD7
955 * 7: MOD8
956 * 8: MOD9
Saxer Lin 65.1 957 * 9: MOD10
Edwin Chen 14.1 958
Edwin Chen 2.1 959 == 2.4 Payload Decoder file ==
960
961
962 In TTN, use can add a custom payload so it shows friendly reading
963
964 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
965
Saxer Lin 40.1 966 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 967
968
Edwin Chen 15.1 969 == 2.5 Frequency Plans ==
Edwin Chen 2.1 970
971
Edwin Chen 15.1 972 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 2.1 973
974 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
975
976
Edwin Chen 16.1 977 = 3. Configure SN50v3-LB =
Edwin Chen 2.1 978
979 == 3.1 Configure Methods ==
980
981
Edwin Chen 16.1 982 SN50v3-LB supports below configure method:
Edwin Chen 2.1 983
984 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
985 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
986 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
987
988 == 3.2 General Commands ==
989
990
991 These commands are to configure:
992
993 * General system settings like: uplink interval.
994 * LoRaWAN protocol & radio related command.
995
996 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
997
998 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
999
1000
Edwin Chen 16.1 1001 == 3.3 Commands special design for SN50v3-LB ==
Edwin Chen 2.1 1002
1003
Xiaoling 44.2 1004 These commands only valid for SN50v3-LB, as below:
Edwin Chen 2.1 1005
1006
1007 === 3.3.1 Set Transmit Interval Time ===
1008
Xiaoling 43.51 1009
Edwin Chen 2.1 1010 Feature: Change LoRaWAN End Node Transmit Interval.
1011
1012 (% style="color:blue" %)**AT Command: AT+TDC**
1013
1014 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.2 1015 |=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
Edwin Chen 2.1 1016 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1017 30000
1018 OK
1019 the interval is 30000ms = 30s
1020 )))
1021 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
1022 OK
1023 Set transmit interval to 60000ms = 60 seconds
1024 )))
1025
1026 (% style="color:blue" %)**Downlink Command: 0x01**
1027
1028 Format: Command Code (0x01) followed by 3 bytes time value.
1029
1030 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1031
1032 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1033 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1034
1035 === 3.3.2 Get Device Status ===
1036
Xiaoling 43.52 1037
Saxer Lin 40.1 1038 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 1039
Xiaoling 44.4 1040 (% style="color:blue" %)**Downlink Payload: 0x26 01**
Edwin Chen 2.1 1041
Xiaoling 44.4 1042 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
Edwin Chen 2.1 1043
1044
Saxer Lin 36.1 1045 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 1046
Xiaoling 43.52 1047
Edwin Chen 2.1 1048 Feature, Set Interrupt mode for GPIO_EXIT.
1049
Saxer Lin 36.1 1050 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
Edwin Chen 2.1 1051
1052 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1053 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1054 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
Edwin Chen 2.1 1055 0
1056 OK
1057 the mode is 0 =Disable Interrupt
1058 )))
Saxer Lin 36.1 1059 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
Edwin Chen 2.1 1060 Set Transmit Interval
1061 0. (Disable Interrupt),
1062 ~1. (Trigger by rising and falling edge)
1063 2. (Trigger by falling edge)
1064 3. (Trigger by rising edge)
1065 )))|(% style="width:157px" %)OK
Saxer Lin 36.1 1066 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1067 Set Transmit Interval
1068 trigger by rising edge.
1069 )))|(% style="width:157px" %)OK
1070 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1071
Edwin Chen 2.1 1072 (% style="color:blue" %)**Downlink Command: 0x06**
1073
1074 Format: Command Code (0x06) followed by 3 bytes.
1075
1076 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1077
Saxer Lin 36.1 1078 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1079 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1080 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1081 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
Edwin Chen 2.1 1082
Saxer Lin 36.1 1083 === 3.3.4 Set Power Output Duration ===
1084
Xiaoling 43.52 1085
Saxer Lin 36.1 1086 Control the output duration 5V . Before each sampling, device will
1087
1088 ~1. first enable the power output to external sensor,
1089
1090 2. keep it on as per duration, read sensor value and construct uplink payload
1091
1092 3. final, close the power output.
1093
1094 (% style="color:blue" %)**AT Command: AT+5VT**
1095
1096 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1097 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1098 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1099 500(default)
1100 OK
1101 )))
1102 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1103 Close after a delay of 1000 milliseconds.
1104 )))|(% style="width:157px" %)OK
1105
1106 (% style="color:blue" %)**Downlink Command: 0x07**
1107
1108 Format: Command Code (0x07) followed by 2 bytes.
1109
1110 The first and second bytes are the time to turn on.
1111
Saxer Lin 40.1 1112 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1113 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 1114
1115 === 3.3.5 Set Weighing parameters ===
1116
Xiaoling 43.52 1117
Saxer Lin 37.1 1118 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 1119
1120 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1121
1122 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1123 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 37.1 1124 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1125 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1126 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 1127
1128 (% style="color:blue" %)**Downlink Command: 0x08**
1129
Saxer Lin 37.1 1130 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 1131
Saxer Lin 37.1 1132 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 1133
Saxer Lin 37.1 1134 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 1135
Saxer Lin 37.1 1136 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1137 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1138 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1139
Saxer Lin 36.1 1140 === 3.3.6 Set Digital pulse count value ===
1141
Xiaoling 43.52 1142
Saxer Lin 36.1 1143 Feature: Set the pulse count value.
1144
Saxer Lin 37.1 1145 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1146
Saxer Lin 36.1 1147 (% style="color:blue" %)**AT Command: AT+SETCNT**
1148
1149 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1150 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1151 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1152 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1153
1154 (% style="color:blue" %)**Downlink Command: 0x09**
1155
1156 Format: Command Code (0x09) followed by 5 bytes.
1157
1158 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1159
1160 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 1161 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 1162
1163 === 3.3.7 Set Workmode ===
1164
Xiaoling 43.52 1165
Saxer Lin 37.1 1166 Feature: Switch working mode.
Saxer Lin 36.1 1167
1168 (% style="color:blue" %)**AT Command: AT+MOD**
1169
1170 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1171 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1172 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1173 OK
1174 )))
1175 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1176 OK
1177 Attention:Take effect after ATZ
1178 )))
1179
1180 (% style="color:blue" %)**Downlink Command: 0x0A**
1181
1182 Format: Command Code (0x0A) followed by 1 bytes.
1183
1184 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1185 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1186
Mengting Qiu 77.1 1187 (% id="H3.3.8PWMsetting" %)
Saxer Lin 72.1 1188 === 3.3.8 PWM setting ===
1189
Xiaoling 74.5 1190
Mengting Qiu 77.1 1191 (% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
Saxer Lin 72.1 1192
1193 (% style="color:blue" %)**AT Command: AT+PWMSET**
1194
1195 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Mengting Qiu 77.1 1196 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1197 |(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
Saxer Lin 72.1 1198 0(default)
1199
1200 OK
1201 )))
Mengting Qiu 77.1 1202 |(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
Saxer Lin 72.1 1203 OK
1204
1205 )))
Mengting Qiu 77.1 1206 |(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
Saxer Lin 72.1 1207
1208 (% style="color:blue" %)**Downlink Command: 0x0C**
1209
1210 Format: Command Code (0x0C) followed by 1 bytes.
1211
1212 * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1213 * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1214
Mengting Qiu 79.1 1215 (% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
Mengting Qiu 77.1 1216
Mengting Qiu 76.1 1217 (% style="color:blue" %)**AT Command: AT+PWMOUT**
Mengting Qiu 75.1 1218
Mengting Qiu 77.1 1219 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1220 |=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1221 |(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
Mengting Qiu 76.1 1222 0,0,0(default)
Mengting Qiu 75.1 1223
Mengting Qiu 76.1 1224 OK
1225 )))
Mengting Qiu 77.1 1226 |(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
Mengting Qiu 76.1 1227 OK
1228
1229 )))
Mengting Qiu 77.1 1230 |(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1231 The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
Mengting Qiu 75.1 1232
Mengting Qiu 77.1 1233
1234 )))|(% style="width:137px" %)(((
1235 OK
1236 )))
1237
1238 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1239 |=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1240 |(% colspan="1" rowspan="3" style="width:155px" %)(((
1241 AT+PWMOUT=a,b,c
1242
1243
1244 )))|(% colspan="1" rowspan="3" style="width:112px" %)(((
Mengting Qiu 79.1 1245 Set PWM output time, output frequency and output duty cycle.
1246
1247 (((
Mengting Qiu 77.1 1248
1249 )))
1250
1251 (((
1252
1253 )))
1254 )))|(% style="width:242px" %)(((
Mengting Qiu 76.1 1255 a: Output time (unit: seconds)
Mengting Qiu 75.1 1256
Mengting Qiu 77.1 1257 The value ranges from 0 to 65535.
1258
1259 When a=65535, PWM will always output.
1260 )))
1261 |(% style="width:242px" %)(((
Mengting Qiu 76.1 1262 b: Output frequency (unit: HZ)
Mengting Qiu 77.1 1263 )))
1264 |(% style="width:242px" %)(((
1265 c: Output duty cycle (unit: %)
Mengting Qiu 76.1 1266
Mengting Qiu 77.1 1267 The value ranges from 0 to 100.
Mengting Qiu 76.1 1268 )))
1269
Mengting Qiu 77.1 1270 (% style="color:blue" %)**Downlink Command: 0x0B01**
Mengting Qiu 76.1 1271
Mengting Qiu 77.1 1272 Format: Command Code (0x0B01) followed by 6 bytes.
Mengting Qiu 76.1 1273
Mengting Qiu 77.1 1274 Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
Mengting Qiu 76.1 1275
Mengting Qiu 77.1 1276 * Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1277 * Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
Mengting Qiu 76.1 1278
Mengting Qiu 79.1 1279 = 4. Battery & Power Cons =
1280
1281
Edwin Chen 11.1 1282 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1283
1284 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1285
1286
1287 = 5. OTA Firmware update =
1288
1289
1290 (% class="wikigeneratedid" %)
Xiaoling 44.4 1291 **User can change firmware SN50v3-LB to:**
Edwin Chen 2.1 1292
1293 * Change Frequency band/ region.
1294 * Update with new features.
1295 * Fix bugs.
1296
Xiaoling 52.2 1297 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
Edwin Chen 2.1 1298
Xiaoling 44.4 1299 **Methods to Update Firmware:**
Edwin Chen 2.1 1300
Xiaoling 53.3 1301 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1302 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
Edwin Chen 2.1 1303
1304 = 6. FAQ =
1305
Edwin Chen 17.1 1306 == 6.1 Where can i find source code of SN50v3-LB? ==
Edwin Chen 2.1 1307
Xiaoling 43.52 1308
Edwin Chen 17.1 1309 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1310 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
Edwin Chen 2.1 1311
Xiaoling 55.2 1312 == 6.2 How to generate PWM Output in SN50v3-LB? ==
1313
1314
Edwin Chen 55.1 1315 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1316
1317
Edwin Chen 57.1 1318 == 6.3 How to put several sensors to a SN50v3-LB? ==
1319
Xiaoling 57.2 1320
Edwin Chen 57.1 1321 When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1322
1323 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1324
1325 [[image:image-20230810121434-1.png||height="242" width="656"]]
1326
1327
Edwin Chen 2.1 1328 = 7. Order Info =
1329
1330
Edwin Chen 10.1 1331 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
Edwin Chen 2.1 1332
1333 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1334
Edwin Chen 2.1 1335 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1336 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1337 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1338 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1339 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1340 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1341 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1342 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1343
Edwin Chen 10.1 1344 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1345
Edwin Chen 10.1 1346 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1347 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1348 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1349 * (% style="color:red" %)**NH**(%%): No Hole
1350
Edwin Chen 2.1 1351 = 8. ​Packing Info =
1352
Xiaoling 43.52 1353
Edwin Chen 2.1 1354 (% style="color:#037691" %)**Package Includes**:
1355
Edwin Chen 10.1 1356 * SN50v3-LB LoRaWAN Generic Node
Edwin Chen 2.1 1357
1358 (% style="color:#037691" %)**Dimension and weight**:
1359
1360 * Device Size: cm
1361 * Device Weight: g
1362 * Package Size / pcs : cm
1363 * Weight / pcs : g
1364
1365 = 9. Support =
1366
1367
1368 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 43.10 1369
Xiaoling 41.4 1370 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]