Version 79.3 by Xiaoling on 2023/12/14 09:10

Hide last authors
Xiaoling 41.2 1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
Edwin Chen 2.1 3
4
5
Xiaoling 79.3 6 **Table of Contents:**
Edwin Chen 2.1 7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
Edwin Chen 5.1 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
Edwin Chen 2.1 18
Xiaoling 43.2 19
Edwin Chen 4.1 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 21
Xiaoling 74.7 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
Edwin Chen 2.1 23
Edwin Chen 4.1 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
Edwin Chen 2.1 25
Edwin Chen 4.1 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 27
Edwin Chen 4.1 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 29
30 == 1.2 ​Features ==
31
Xiaoling 43.44 32
Edwin Chen 2.1 33 * LoRaWAN 1.0.3 Class A
34 * Ultra-low power consumption
Edwin Chen 5.1 35 * Open-Source hardware/software
Edwin Chen 2.1 36 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
37 * Support Bluetooth v5.1 and LoRaWAN remote configure
38 * Support wireless OTA update firmware
39 * Uplink on periodically
40 * Downlink to change configure
41 * 8500mAh Battery for long term use
42
43 == 1.3 Specification ==
44
Xiaoling 43.4 45
Edwin Chen 2.1 46 (% style="color:#037691" %)**Common DC Characteristics:**
47
48 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
49 * Operating Temperature: -40 ~~ 85°C
50
Edwin Chen 5.1 51 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 52
Edwin Chen 5.1 53 * Battery output (2.6v ~~ 3.6v depends on battery)
54 * +5v controllable output
55 * 3 x Interrupt or Digital IN/OUT pins
56 * 3 x one-wire interfaces
57 * 1 x UART Interface
58 * 1 x I2C Interface
Edwin Chen 2.1 59
60 (% style="color:#037691" %)**LoRa Spec:**
61
62 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
63 * Max +22 dBm constant RF output vs.
64 * RX sensitivity: down to -139 dBm.
65 * Excellent blocking immunity
66
67 (% style="color:#037691" %)**Battery:**
68
69 * Li/SOCI2 un-chargeable battery
70 * Capacity: 8500mAh
71 * Self-Discharge: <1% / Year @ 25°C
72 * Max continuously current: 130mA
73 * Max boost current: 2A, 1 second
74
75 (% style="color:#037691" %)**Power Consumption**
76
77 * Sleep Mode: 5uA @ 3.3v
78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79
80 == 1.4 Sleep mode and working mode ==
81
Xiaoling 43.4 82
Edwin Chen 2.1 83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84
85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
86
87
88 == 1.5 Button & LEDs ==
89
90
91 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
92
93
94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
96 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
97 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
98 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
99 )))
100 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
101 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
102 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
103 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
104 )))
105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106
107 == 1.6 BLE connection ==
108
109
Edwin Chen 5.1 110 SN50v3-LB supports BLE remote configure.
Edwin Chen 2.1 111
112
113 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
114
115 * Press button to send an uplink
116 * Press button to active device.
117 * Device Power on or reset.
118
119 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
120
121
Edwin Chen 6.1 122 == 1.7 Pin Definitions ==
Edwin Chen 2.1 123
124
Saxer Lin 49.1 125 [[image:image-20230610163213-1.png||height="404" width="699"]]
Edwin Chen 2.1 126
127
128 == 1.8 Mechanical ==
129
130
131 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132
133 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134
135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136
137
Saxer Lin 44.5 138 == 1.9 Hole Option ==
Edwin Chen 5.1 139
Xiaoling 43.4 140
Edwin Chen 5.1 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142
143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
144
145 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
146
147
Edwin Chen 10.1 148 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
Edwin Chen 2.1 149
150 == 2.1 How it works ==
151
152
Xiaoling 44.3 153 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 154
155
156 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
157
158
159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160
Xiaoling 44.3 161 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
Edwin Chen 2.1 162
163
Edwin Chen 11.2 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
Edwin Chen 2.1 165
Edwin Chen 11.2 166 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 167
Edwin Chen 11.2 168 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 2.1 169
170
171 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
172
173
174 (% style="color:blue" %)**Register the device**
175
176 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
177
178
179 (% style="color:blue" %)**Add APP EUI and DEV EUI**
180
181 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
182
183
184 (% style="color:blue" %)**Add APP EUI in the application**
185
186
187 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
188
189
190 (% style="color:blue" %)**Add APP KEY**
191
192 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
193
194
Edwin Chen 11.2 195 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
Edwin Chen 2.1 196
197
Edwin Chen 11.2 198 Press the button for 5 seconds to activate the SN50v3-LB.
Edwin Chen 2.1 199
200 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
201
202 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
203
204
205 == 2.3 ​Uplink Payload ==
206
207 === 2.3.1 Device Status, FPORT~=5 ===
208
209
Xiaoling 44.3 210 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 211
212 The Payload format is as below.
213
214
215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
Xiaoling 45.4 218 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
Edwin Chen 2.1 219
220 Example parse in TTNv3
221
222
Xiaoling 44.3 223 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
Edwin Chen 2.1 224
225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226
227 (% style="color:#037691" %)**Frequency Band**:
228
Xiaoling 53.2 229 0x01: EU868
Edwin Chen 2.1 230
Xiaoling 53.2 231 0x02: US915
Edwin Chen 2.1 232
Xiaoling 53.2 233 0x03: IN865
Edwin Chen 2.1 234
Xiaoling 53.2 235 0x04: AU915
Edwin Chen 2.1 236
Xiaoling 53.2 237 0x05: KZ865
Edwin Chen 2.1 238
Xiaoling 53.2 239 0x06: RU864
Edwin Chen 2.1 240
Xiaoling 53.2 241 0x07: AS923
Edwin Chen 2.1 242
Xiaoling 53.2 243 0x08: AS923-1
Edwin Chen 2.1 244
Xiaoling 53.2 245 0x09: AS923-2
Edwin Chen 2.1 246
Xiaoling 53.2 247 0x0a: AS923-3
Edwin Chen 2.1 248
Xiaoling 53.2 249 0x0b: CN470
Edwin Chen 2.1 250
Xiaoling 53.2 251 0x0c: EU433
Edwin Chen 2.1 252
Xiaoling 53.2 253 0x0d: KR920
Edwin Chen 2.1 254
Xiaoling 53.2 255 0x0e: MA869
Edwin Chen 2.1 256
257
258 (% style="color:#037691" %)**Sub-Band**:
259
260 AU915 and US915:value 0x00 ~~ 0x08
261
262 CN470: value 0x0B ~~ 0x0C
263
264 Other Bands: Always 0x00
265
266
267 (% style="color:#037691" %)**Battery Info**:
268
269 Check the battery voltage.
270
271 Ex1: 0x0B45 = 2885mV
272
273 Ex2: 0x0B49 = 2889mV
274
275
Edwin Chen 12.1 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 277
278
Xiaoling 44.2 279 SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
Edwin Chen 12.1 280
281 For example:
282
Xiaoling 44.2 283 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
Edwin Chen 12.1 284
285
Edwin Chen 13.1 286 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 287
Xiaoling 44.3 288 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
Edwin Chen 12.1 289
Xiaoling 44.2 290 2. All modes share the same Payload Explanation from HERE.
Xiaoling 43.53 291
Xiaoling 44.2 292 3. By default, the device will send an uplink message every 20 minutes.
293
294
Edwin Chen 13.1 295 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 296
Xiaoling 43.5 297
Edwin Chen 12.1 298 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
299
Xiaoling 43.5 300 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.54 301 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
Xiaoling 45.4 302 |Value|Bat|(% style="width:191px" %)(((
Xiaoling 43.12 303 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 304 )))|(% style="width:78px" %)(((
Xiaoling 43.12 305 ADC(PA4)
Saxer Lin 26.2 306 )))|(% style="width:216px" %)(((
Xiaoling 43.13 307 Digital in(PB15)&Digital Interrupt(PA8)
Saxer Lin 40.1 308 )))|(% style="width:308px" %)(((
Xiaoling 43.12 309 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 310 )))|(% style="width:154px" %)(((
Xiaoling 43.12 311 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 312 )))
313
Edwin Chen 12.1 314 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
315
316
Edwin Chen 13.1 317 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
318
Xiaoling 43.45 319
Edwin Chen 12.1 320 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
321
Xiaoling 43.14 322 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.54 323 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
Xiaoling 45.4 324 |Value|BAT|(% style="width:196px" %)(((
Xiaoling 43.16 325 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 326 )))|(% style="width:87px" %)(((
Xiaoling 43.16 327 ADC(PA4)
Saxer Lin 40.1 328 )))|(% style="width:189px" %)(((
Xiaoling 43.16 329 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 330 )))|(% style="width:208px" %)(((
Xiaoling 53.2 331 Distance measure by: 1) LIDAR-Lite V3HP
332 Or 2) Ultrasonic Sensor
Saxer Lin 40.1 333 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 334
335 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
336
Xiaoling 43.45 337
Xiaoling 43.17 338 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
Edwin Chen 12.1 339
Saxer Lin 26.2 340 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 341
Xiaoling 43.45 342
Xiaoling 43.17 343 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
Edwin Chen 12.1 344
Ellie Zhang 44.1 345 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
Saxer Lin 36.1 346
Saxer Lin 26.2 347 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 348
Xiaoling 43.45 349
Edwin Chen 12.1 350 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
351
Xiaoling 43.19 352 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 353 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
Xiaoling 45.5 354 |Value|BAT|(% style="width:183px" %)(((
Xiaoling 43.19 355 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 356 )))|(% style="width:173px" %)(((
Xiaoling 43.19 357 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 358 )))|(% style="width:84px" %)(((
Xiaoling 43.19 359 ADC(PA4)
Saxer Lin 40.1 360 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 361 Distance measure by:1)TF-Mini plus LiDAR
Xiaoling 53.3 362 Or 2) TF-Luna LiDAR
Saxer Lin 40.1 363 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 364
365 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
366
Xiaoling 43.45 367
Edwin Chen 12.1 368 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
369
Ellie Zhang 44.1 370 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 371
Saxer Lin 26.2 372 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 373
Xiaoling 43.45 374
Edwin Chen 12.1 375 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
376
Ellie Zhang 44.1 377 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 378
Saxer Lin 52.1 379 [[image:image-20230610170047-1.png||height="452" width="799"]]
Edwin Chen 12.1 380
381
Edwin Chen 13.1 382 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
383
Xiaoling 43.45 384
Edwin Chen 12.1 385 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
386
Xiaoling 43.21 387 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.25 388 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
389 **Size(bytes)**
Xiaoling 43.54 390 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
Xiaoling 45.4 391 |Value|(% style="width:68px" %)(((
Xiaoling 43.23 392 ADC1(PA4)
Saxer Lin 26.2 393 )))|(% style="width:75px" %)(((
Xiaoling 43.23 394 ADC2(PA5)
Saxer Lin 36.1 395 )))|(((
Xiaoling 43.23 396 ADC3(PA8)
Saxer Lin 36.1 397 )))|(((
398 Digital Interrupt(PB15)
399 )))|(% style="width:304px" %)(((
Xiaoling 43.23 400 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 36.1 401 )))|(% style="width:163px" %)(((
Xiaoling 43.23 402 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 403 )))|(% style="width:53px" %)Bat
404
405 [[image:image-20230513110214-6.png]]
406
407
Edwin Chen 13.1 408 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
409
Edwin Chen 12.1 410
Saxer Lin 26.2 411 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 412
Xiaoling 43.26 413 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 414 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
Xiaoling 45.4 415 |Value|BAT|(% style="width:186px" %)(((
Xiaoling 43.27 416 Temperature1(DS18B20)(PC13)
Saxer Lin 26.2 417 )))|(% style="width:82px" %)(((
Xiaoling 43.27 418 ADC(PA4)
Saxer Lin 26.2 419 )))|(% style="width:210px" %)(((
Xiaoling 43.27 420 Digital in(PB15) & Digital Interrupt(PA8) 
Saxer Lin 26.2 421 )))|(% style="width:191px" %)Temperature2(DS18B20)
Xiaoling 43.27 422 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
Edwin Chen 12.1 423
424 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
425
Xiaoling 44.4 426
Saxer Lin 39.2 427 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 428
Saxer Lin 39.1 429
Edwin Chen 13.1 430 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
431
Xiaoling 43.45 432
Saxer Lin 26.2 433 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 434
435 Each HX711 need to be calibrated before used. User need to do below two steps:
436
Xiaoling 44.2 437 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
438 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
Edwin Chen 12.1 439 1. (((
Saxer Lin 26.2 440 Weight has 4 bytes, the unit is g.
Xiaoling 43.53 441
442
443
Edwin Chen 12.1 444 )))
445
446 For example:
447
Xiaoling 44.2 448 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
Edwin Chen 12.1 449
450 Response:  Weight is 401 g
451
452 Check the response of this command and adjust the value to match the real value for thing.
453
Xiaoling 43.29 454 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
455 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 456 **Size(bytes)**
Xiaoling 43.30 457 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
Xiaoling 45.4 458 |Value|BAT|(% style="width:193px" %)(((
Xiaoling 43.55 459 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 460 )))|(% style="width:85px" %)(((
Xiaoling 43.31 461 ADC(PA4)
Saxer Lin 40.1 462 )))|(% style="width:186px" %)(((
Xiaoling 43.55 463 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 464 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 465
Edwin Chen 12.1 466 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
467
468
Edwin Chen 13.1 469 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
470
Xiaoling 43.45 471
Edwin Chen 12.1 472 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
473
474 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
475
Saxer Lin 26.2 476 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 477
Xiaoling 43.53 478
Xiaoling 43.45 479 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
Edwin Chen 12.1 480
Xiaoling 43.38 481 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.57 482 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
Xiaoling 45.4 483 |Value|BAT|(% style="width:256px" %)(((
Xiaoling 43.31 484 Temperature(DS18B20)(PC13)
Saxer Lin 36.1 485 )))|(% style="width:108px" %)(((
Xiaoling 43.31 486 ADC(PA4)
Saxer Lin 36.1 487 )))|(% style="width:126px" %)(((
Xiaoling 43.31 488 Digital in(PB15)
Saxer Lin 36.1 489 )))|(% style="width:145px" %)(((
Xiaoling 43.31 490 Count(PA8)
Saxer Lin 36.1 491 )))
492
Edwin Chen 12.1 493 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
494
495
Edwin Chen 13.1 496 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
497
Xiaoling 43.45 498
Xiaoling 43.38 499 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.33 500 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 501 **Size(bytes)**
Xiaoling 43.34 502 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
Xiaoling 45.4 503 |Value|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 504 Temperature(DS18B20)
505 (PC13)
Saxer Lin 40.1 506 )))|(% style="width:83px" %)(((
Xiaoling 43.35 507 ADC(PA5)
Saxer Lin 40.1 508 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 509 Digital Interrupt1(PA8)
Saxer Lin 40.1 510 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 511
512 [[image:image-20230513111203-7.png||height="324" width="975"]]
513
Xiaoling 43.45 514
Edwin Chen 13.1 515 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
516
Xiaoling 43.45 517
Xiaoling 43.38 518 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.35 519 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 520 **Size(bytes)**
Xiaoling 43.55 521 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
Xiaoling 45.4 522 |Value|BAT|(% style="width:207px" %)(((
Saxer Lin 36.1 523 Temperature(DS18B20)
524 (PC13)
525 )))|(% style="width:94px" %)(((
Xiaoling 43.36 526 ADC1(PA4)
Saxer Lin 36.1 527 )))|(% style="width:198px" %)(((
528 Digital Interrupt(PB15)
529 )))|(% style="width:84px" %)(((
Xiaoling 43.36 530 ADC2(PA5)
Saxer Lin 40.1 531 )))|(% style="width:82px" %)(((
Xiaoling 43.36 532 ADC3(PA8)
Edwin Chen 12.1 533 )))
534
Saxer Lin 36.1 535 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 536
537
Edwin Chen 13.1 538 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
539
Xiaoling 43.45 540
Xiaoling 43.38 541 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
542 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 543 **Size(bytes)**
Xiaoling 43.56 544 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
Xiaoling 45.4 545 |Value|BAT|(((
Xiaoling 43.58 546 Temperature
547 (DS18B20)(PC13)
Edwin Chen 12.1 548 )))|(((
Xiaoling 43.58 549 Temperature2
550 (DS18B20)(PB9)
Edwin Chen 12.1 551 )))|(((
Saxer Lin 36.1 552 Digital Interrupt
553 (PB15)
554 )))|(% style="width:193px" %)(((
Xiaoling 43.58 555 Temperature3
556 (DS18B20)(PB8)
Saxer Lin 36.1 557 )))|(% style="width:78px" %)(((
Xiaoling 43.39 558 Count1(PA8)
Saxer Lin 36.1 559 )))|(% style="width:78px" %)(((
Xiaoling 43.39 560 Count2(PA4)
Edwin Chen 12.1 561 )))
562
Saxer Lin 36.1 563 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 564
Xiaoling 43.40 565 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
Edwin Chen 12.1 566
Xiaoling 43.44 567 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
Edwin Chen 12.1 568
Xiaoling 43.44 569 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
Edwin Chen 12.1 570
Xiaoling 43.44 571 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
Edwin Chen 12.1 572
573
Xiaoling 43.41 574 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
575
Saxer Lin 36.1 576 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 577
Saxer Lin 36.1 578 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 579
580
Saxer Lin 65.1 581 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
582
Mengting Qiu 74.8 583 (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
Xiaoling 74.3 584
Saxer Lin 65.1 585 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586
Xiaoling 74.3 587 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
Saxer Lin 65.1 588
Saxer Lin 69.1 589
Saxer Lin 65.1 590 ===== 2.3.2.10.a  Uplink, PWM input capture =====
591
Xiaoling 74.3 592
Saxer Lin 65.1 593 [[image:image-20230817172209-2.png||height="439" width="683"]]
594
Xiaoling 79.2 595 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
596 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
Saxer Lin 65.1 597 |Value|Bat|(% style="width:191px" %)(((
598 Temperature(DS18B20)(PC13)
599 )))|(% style="width:78px" %)(((
600 ADC(PA4)
601 )))|(% style="width:135px" %)(((
602 PWM_Setting
603 &Digital Interrupt(PA8)
604 )))|(% style="width:70px" %)(((
605 Pulse period
606 )))|(% style="width:89px" %)(((
607 Duration of high level
608 )))
609
610 [[image:image-20230817170702-1.png||height="161" width="1044"]]
611
612
Saxer Lin 72.1 613 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
Saxer Lin 65.1 614
Xiaoling 74.4 615 **Frequency:**
Saxer Lin 65.1 616
Saxer Lin 72.1 617 (% class="MsoNormal" %)
Xiaoling 74.4 618 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
Saxer Lin 65.1 619
Saxer Lin 72.1 620 (% class="MsoNormal" %)
Xiaoling 74.4 621 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
Saxer Lin 72.1 622
Xiaoling 74.4 623
Saxer Lin 72.1 624 (% class="MsoNormal" %)
Xiaoling 74.4 625 **Duty cycle:**
Saxer Lin 72.1 626
627 Duty cycle= Duration of high level/ Pulse period*100 ~(%).
628
629 [[image:image-20230818092200-1.png||height="344" width="627"]]
630
Mengting Qiu 77.1 631 ===== 2.3.2.10.b  Uplink, PWM output =====
Saxer Lin 72.1 632
Mengting Qiu 77.1 633 [[image:image-20230817172209-2.png||height="439" width="683"]]
Saxer Lin 65.1 634
Mengting Qiu 79.1 635 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
Xiaoling 74.3 636
Mengting Qiu 79.1 637 a is the time delay of the output, the unit is ms.
Mengting Qiu 75.1 638
Mengting Qiu 79.1 639 b is the output frequency, the unit is HZ.
Mengting Qiu 75.1 640
Mengting Qiu 79.1 641 c is the duty cycle of the output, the unit is %.
Mengting Qiu 75.1 642
Mengting Qiu 79.1 643 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
Mengting Qiu 75.1 644
Mengting Qiu 79.1 645 aa is the time delay of the output, the unit is ms.
646
647 bb is the output frequency, the unit is HZ.
648
649 cc is the duty cycle of the output, the unit is %.
650
651
652 For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
653
654 The oscilloscope displays as follows:
655
656 [[image:image-20231213102404-1.jpeg||height="780" width="932"]]
657
658
Mengting Qiu 75.1 659 ===== 2.3.2.10.c  Downlink, PWM output =====
660
661
Saxer Lin 65.1 662 [[image:image-20230817173800-3.png||height="412" width="685"]]
663
664 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
665
666 xx xx xx is the output frequency, the unit is HZ.
667
668 yy is the duty cycle of the output, the unit is %.
669
670 zz zz is the time delay of the output, the unit is ms.
671
672
673 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
674
675 The oscilloscope displays as follows:
676
677 [[image:image-20230817173858-5.png||height="694" width="921"]]
678
679
Edwin Chen 14.1 680 === 2.3.3  ​Decode payload ===
681
Xiaoling 43.45 682
Edwin Chen 12.1 683 While using TTN V3 network, you can add the payload format to decode the payload.
684
685 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
686
687 The payload decoder function for TTN V3 are here:
688
Xiaoling 44.2 689 SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 690
691
Edwin Chen 14.1 692 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 693
Xiaoling 43.45 694
Xiaoling 44.2 695 Check the battery voltage for SN50v3-LB.
Edwin Chen 2.1 696
697 Ex1: 0x0B45 = 2885mV
698
699 Ex2: 0x0B49 = 2889mV
700
701
Edwin Chen 14.1 702 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 703
Xiaoling 43.45 704
Saxer Lin 42.1 705 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 706
Xiaoling 43.45 707 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
Edwin Chen 14.1 708
Xiaoling 43.41 709 (% style="color:blue" %)**Connection:**
Edwin Chen 14.1 710
Saxer Lin 26.2 711 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 712
Xiaoling 43.46 713
Xiaoling 43.41 714 (% style="color:blue" %)**Example**:
Edwin Chen 2.1 715
716 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
717
718 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
719
720 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
721
722
Edwin Chen 14.1 723 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 724
Xiaoling 43.46 725
Saxer Lin 26.2 726 The digital input for pin PB15,
Edwin Chen 2.1 727
Saxer Lin 26.2 728 * When PB15 is high, the bit 1 of payload byte 6 is 1.
729 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 730
Saxer Lin 26.2 731 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
732 (((
Saxer Lin 36.1 733 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
734
Xiaoling 43.46 735 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
736
737
Saxer Lin 26.2 738 )))
739
Edwin Chen 14.1 740 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 741
Xiaoling 43.46 742
Saxer Lin 53.1 743 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 744
Saxer Lin 53.1 745 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 746
Saxer Lin 26.2 747 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 748
Xiaoling 44.2 749
Xiaoling 43.46 750 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
Edwin Chen 14.1 751
Saxer Lin 43.1 752
Saxer Lin 59.1 753 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
754
755 [[image:image-20230811113449-1.png||height="370" width="608"]]
756
Edwin Chen 14.1 757 ==== 2.3.3.5 Digital Interrupt ====
758
Xiaoling 43.46 759
Xiaoling 44.2 760 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
Edwin Chen 14.1 761
Xiaoling 43.44 762 (% style="color:blue" %)** Interrupt connection method:**
Edwin Chen 14.1 763
Saxer Lin 36.1 764 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 765
Xiaoling 43.46 766
Xiaoling 43.8 767 (% style="color:blue" %)**Example to use with door sensor :**
Edwin Chen 14.1 768
769 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
770
771 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
772
Xiaoling 44.2 773 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 774
775
Xiaoling 43.46 776 (% style="color:blue" %)**Below is the installation example:**
777
Xiaoling 44.2 778 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
Edwin Chen 14.1 779
780 * (((
Xiaoling 44.2 781 One pin to SN50v3-LB's PA8 pin
Edwin Chen 14.1 782 )))
783 * (((
Xiaoling 44.2 784 The other pin to SN50v3-LB's VDD pin
Edwin Chen 14.1 785 )))
786
Saxer Lin 36.1 787 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 788
Xiaoling 43.46 789 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
Edwin Chen 14.1 790
Saxer Lin 36.1 791 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 792
793 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
794
795 The above photos shows the two parts of the magnetic switch fitted to a door.
796
797 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
798
799 The command is:
800
Xiaoling 44.2 801 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 802
803 Below shows some screen captures in TTN V3:
804
805 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
806
Xiaoling 43.47 807
Xiaoling 44.4 808 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
Edwin Chen 14.1 809
810 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
811
812
Saxer Lin 26.2 813 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 814
Xiaoling 43.47 815
Saxer Lin 26.2 816 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 817
Saxer Lin 40.1 818 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 819
Xiaoling 44.2 820 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
Edwin Chen 14.1 821
Xiaoling 44.2 822
Edwin Chen 14.1 823 Below is the connection to SHT20/ SHT31. The connection is as below:
824
Saxer Lin 52.1 825 [[image:image-20230610170152-2.png||height="501" width="846"]]
Saxer Lin 36.1 826
Xiaoling 44.4 827
Edwin Chen 14.1 828 The device will be able to get the I2C sensor data now and upload to IoT Server.
829
830 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
831
832 Convert the read byte to decimal and divide it by ten.
833
Edwin Chen 2.1 834 **Example:**
835
Edwin Chen 14.1 836 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 837
Edwin Chen 14.1 838 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 839
Edwin Chen 14.1 840 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 841
842
Edwin Chen 14.1 843 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 844
Xiaoling 43.48 845
Xiaoling 43.42 846 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
Edwin Chen 14.1 847
848
849 ==== 2.3.3.8 Ultrasonic Sensor ====
850
Xiaoling 43.48 851
Saxer Lin 26.2 852 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 853
Xiaoling 44.2 854 The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 855
Xiaoling 43.44 856 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
Saxer Lin 36.1 857
Edwin Chen 14.1 858 The picture below shows the connection:
859
Saxer Lin 36.1 860 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 861
Xiaoling 43.50 862
Xiaoling 44.2 863 Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 864
865 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
866
867 **Example:**
868
869 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
870
871
872 ==== 2.3.3.9  Battery Output - BAT pin ====
873
Xiaoling 43.50 874
Xiaoling 44.4 875 The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
Edwin Chen 14.1 876
877
878 ==== 2.3.3.10  +5V Output ====
879
Xiaoling 43.50 880
Xiaoling 44.2 881 SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
Edwin Chen 14.1 882
883 The 5V output time can be controlled by AT Command.
884
Xiaoling 43.9 885 (% style="color:blue" %)**AT+5VT=1000**
Edwin Chen 14.1 886
887 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
888
Xiaoling 44.4 889 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
Edwin Chen 14.1 890
891
892 ==== 2.3.3.11  BH1750 Illumination Sensor ====
893
Xiaoling 43.50 894
Edwin Chen 14.1 895 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
896
Saxer Lin 40.1 897 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 898
Xiaoling 43.51 899
Saxer Lin 40.1 900 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 901
902
Saxer Lin 65.1 903 ==== 2.3.3.12  PWM MOD ====
Edwin Chen 14.1 904
Xiaoling 43.51 905
Saxer Lin 69.1 906 * (((
907 The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
908 )))
909 * (((
910 If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
911 )))
912
913 [[image:image-20230817183249-3.png||height="320" width="417"]]
914
915 * (((
916 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
917 )))
918 * (((
Xiaoling 74.2 919 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
Mengting Qiu 74.8 920 )))
921 * (((
Mengting Qiu 76.1 922 PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
Saxer Lin 70.1 923
Mengting Qiu 74.8 924 For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
Xiaoling 74.5 925
Mengting Qiu 76.1 926 a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
Mengting Qiu 74.8 927
Mengting Qiu 76.1 928 b) If the output duration is more than 30 seconds, better to use external power source. 
Mengting Qiu 74.8 929
930
Saxer Lin 70.1 931
Saxer Lin 69.1 932 )))
933
Saxer Lin 65.1 934 ==== 2.3.3.13  Working MOD ====
935
936
Edwin Chen 14.1 937 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
938
939 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
940
941 Case 7^^th^^ Byte >> 2 & 0x1f:
942
943 * 0: MOD1
944 * 1: MOD2
945 * 2: MOD3
946 * 3: MOD4
947 * 4: MOD5
948 * 5: MOD6
Saxer Lin 36.1 949 * 6: MOD7
950 * 7: MOD8
951 * 8: MOD9
Saxer Lin 65.1 952 * 9: MOD10
Edwin Chen 14.1 953
Edwin Chen 2.1 954 == 2.4 Payload Decoder file ==
955
956
957 In TTN, use can add a custom payload so it shows friendly reading
958
959 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
960
Saxer Lin 40.1 961 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 962
963
Edwin Chen 15.1 964 == 2.5 Frequency Plans ==
Edwin Chen 2.1 965
966
Edwin Chen 15.1 967 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 2.1 968
969 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
970
971
Edwin Chen 16.1 972 = 3. Configure SN50v3-LB =
Edwin Chen 2.1 973
974 == 3.1 Configure Methods ==
975
976
Edwin Chen 16.1 977 SN50v3-LB supports below configure method:
Edwin Chen 2.1 978
979 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
980 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
981 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
982
983 == 3.2 General Commands ==
984
985
986 These commands are to configure:
987
988 * General system settings like: uplink interval.
989 * LoRaWAN protocol & radio related command.
990
991 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
992
993 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
994
995
Edwin Chen 16.1 996 == 3.3 Commands special design for SN50v3-LB ==
Edwin Chen 2.1 997
998
Xiaoling 44.2 999 These commands only valid for SN50v3-LB, as below:
Edwin Chen 2.1 1000
1001
1002 === 3.3.1 Set Transmit Interval Time ===
1003
Xiaoling 43.51 1004
Edwin Chen 2.1 1005 Feature: Change LoRaWAN End Node Transmit Interval.
1006
1007 (% style="color:blue" %)**AT Command: AT+TDC**
1008
1009 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.2 1010 |=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
Edwin Chen 2.1 1011 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1012 30000
1013 OK
1014 the interval is 30000ms = 30s
1015 )))
1016 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
1017 OK
1018 Set transmit interval to 60000ms = 60 seconds
1019 )))
1020
1021 (% style="color:blue" %)**Downlink Command: 0x01**
1022
1023 Format: Command Code (0x01) followed by 3 bytes time value.
1024
1025 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1026
1027 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1028 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1029
1030 === 3.3.2 Get Device Status ===
1031
Xiaoling 43.52 1032
Saxer Lin 40.1 1033 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 1034
Xiaoling 44.4 1035 (% style="color:blue" %)**Downlink Payload: 0x26 01**
Edwin Chen 2.1 1036
Xiaoling 44.4 1037 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
Edwin Chen 2.1 1038
1039
Saxer Lin 36.1 1040 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 1041
Xiaoling 43.52 1042
Edwin Chen 2.1 1043 Feature, Set Interrupt mode for GPIO_EXIT.
1044
Saxer Lin 36.1 1045 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
Edwin Chen 2.1 1046
1047 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1048 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1049 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
Edwin Chen 2.1 1050 0
1051 OK
1052 the mode is 0 =Disable Interrupt
1053 )))
Saxer Lin 36.1 1054 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
Edwin Chen 2.1 1055 Set Transmit Interval
1056 0. (Disable Interrupt),
1057 ~1. (Trigger by rising and falling edge)
1058 2. (Trigger by falling edge)
1059 3. (Trigger by rising edge)
1060 )))|(% style="width:157px" %)OK
Saxer Lin 36.1 1061 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1062 Set Transmit Interval
1063 trigger by rising edge.
1064 )))|(% style="width:157px" %)OK
1065 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1066
Edwin Chen 2.1 1067 (% style="color:blue" %)**Downlink Command: 0x06**
1068
1069 Format: Command Code (0x06) followed by 3 bytes.
1070
1071 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1072
Saxer Lin 36.1 1073 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1074 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1075 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1076 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
Edwin Chen 2.1 1077
Saxer Lin 36.1 1078 === 3.3.4 Set Power Output Duration ===
1079
Xiaoling 43.52 1080
Saxer Lin 36.1 1081 Control the output duration 5V . Before each sampling, device will
1082
1083 ~1. first enable the power output to external sensor,
1084
1085 2. keep it on as per duration, read sensor value and construct uplink payload
1086
1087 3. final, close the power output.
1088
1089 (% style="color:blue" %)**AT Command: AT+5VT**
1090
1091 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1092 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1093 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1094 500(default)
1095 OK
1096 )))
1097 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1098 Close after a delay of 1000 milliseconds.
1099 )))|(% style="width:157px" %)OK
1100
1101 (% style="color:blue" %)**Downlink Command: 0x07**
1102
1103 Format: Command Code (0x07) followed by 2 bytes.
1104
1105 The first and second bytes are the time to turn on.
1106
Saxer Lin 40.1 1107 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1108 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 1109
1110 === 3.3.5 Set Weighing parameters ===
1111
Xiaoling 43.52 1112
Saxer Lin 37.1 1113 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 1114
1115 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1116
1117 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1118 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 37.1 1119 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1120 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1121 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 1122
1123 (% style="color:blue" %)**Downlink Command: 0x08**
1124
Saxer Lin 37.1 1125 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 1126
Saxer Lin 37.1 1127 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 1128
Saxer Lin 37.1 1129 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 1130
Saxer Lin 37.1 1131 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1132 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1133 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1134
Saxer Lin 36.1 1135 === 3.3.6 Set Digital pulse count value ===
1136
Xiaoling 43.52 1137
Saxer Lin 36.1 1138 Feature: Set the pulse count value.
1139
Saxer Lin 37.1 1140 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1141
Saxer Lin 36.1 1142 (% style="color:blue" %)**AT Command: AT+SETCNT**
1143
1144 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1145 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1146 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1147 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1148
1149 (% style="color:blue" %)**Downlink Command: 0x09**
1150
1151 Format: Command Code (0x09) followed by 5 bytes.
1152
1153 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1154
1155 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 1156 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 1157
1158 === 3.3.7 Set Workmode ===
1159
Xiaoling 43.52 1160
Saxer Lin 37.1 1161 Feature: Switch working mode.
Saxer Lin 36.1 1162
1163 (% style="color:blue" %)**AT Command: AT+MOD**
1164
1165 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1166 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1167 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1168 OK
1169 )))
1170 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1171 OK
1172 Attention:Take effect after ATZ
1173 )))
1174
1175 (% style="color:blue" %)**Downlink Command: 0x0A**
1176
1177 Format: Command Code (0x0A) followed by 1 bytes.
1178
1179 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1180 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1181
Mengting Qiu 77.1 1182 (% id="H3.3.8PWMsetting" %)
Saxer Lin 72.1 1183 === 3.3.8 PWM setting ===
1184
Xiaoling 74.5 1185
Mengting Qiu 77.1 1186 (% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
Saxer Lin 72.1 1187
1188 (% style="color:blue" %)**AT Command: AT+PWMSET**
1189
1190 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Mengting Qiu 77.1 1191 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1192 |(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
Saxer Lin 72.1 1193 0(default)
1194
1195 OK
1196 )))
Mengting Qiu 77.1 1197 |(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
Saxer Lin 72.1 1198 OK
1199
1200 )))
Mengting Qiu 77.1 1201 |(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
Saxer Lin 72.1 1202
1203 (% style="color:blue" %)**Downlink Command: 0x0C**
1204
1205 Format: Command Code (0x0C) followed by 1 bytes.
1206
1207 * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1208 * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1209
Mengting Qiu 79.1 1210 (% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
Mengting Qiu 77.1 1211
Mengting Qiu 76.1 1212 (% style="color:blue" %)**AT Command: AT+PWMOUT**
Mengting Qiu 75.1 1213
Mengting Qiu 77.1 1214 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1215 |=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1216 |(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
Mengting Qiu 76.1 1217 0,0,0(default)
Mengting Qiu 75.1 1218
Mengting Qiu 76.1 1219 OK
1220 )))
Mengting Qiu 77.1 1221 |(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
Mengting Qiu 76.1 1222 OK
1223
1224 )))
Mengting Qiu 77.1 1225 |(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1226 The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
Mengting Qiu 75.1 1227
Mengting Qiu 77.1 1228
1229 )))|(% style="width:137px" %)(((
1230 OK
1231 )))
1232
1233 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1234 |=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1235 |(% colspan="1" rowspan="3" style="width:155px" %)(((
1236 AT+PWMOUT=a,b,c
1237
1238
1239 )))|(% colspan="1" rowspan="3" style="width:112px" %)(((
Mengting Qiu 79.1 1240 Set PWM output time, output frequency and output duty cycle.
1241
1242 (((
Mengting Qiu 77.1 1243
1244 )))
1245
1246 (((
1247
1248 )))
1249 )))|(% style="width:242px" %)(((
Mengting Qiu 76.1 1250 a: Output time (unit: seconds)
Mengting Qiu 75.1 1251
Mengting Qiu 77.1 1252 The value ranges from 0 to 65535.
1253
1254 When a=65535, PWM will always output.
1255 )))
1256 |(% style="width:242px" %)(((
Mengting Qiu 76.1 1257 b: Output frequency (unit: HZ)
Mengting Qiu 77.1 1258 )))
1259 |(% style="width:242px" %)(((
1260 c: Output duty cycle (unit: %)
Mengting Qiu 76.1 1261
Mengting Qiu 77.1 1262 The value ranges from 0 to 100.
Mengting Qiu 76.1 1263 )))
1264
Mengting Qiu 77.1 1265 (% style="color:blue" %)**Downlink Command: 0x0B01**
Mengting Qiu 76.1 1266
Mengting Qiu 77.1 1267 Format: Command Code (0x0B01) followed by 6 bytes.
Mengting Qiu 76.1 1268
Mengting Qiu 77.1 1269 Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
Mengting Qiu 76.1 1270
Mengting Qiu 77.1 1271 * Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1272 * Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
Mengting Qiu 76.1 1273
1274
Mengting Qiu 79.1 1275 = 4. Battery & Power Cons =
1276
1277
Edwin Chen 11.1 1278 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1279
1280 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1281
1282
1283 = 5. OTA Firmware update =
1284
1285
1286 (% class="wikigeneratedid" %)
Xiaoling 44.4 1287 **User can change firmware SN50v3-LB to:**
Edwin Chen 2.1 1288
1289 * Change Frequency band/ region.
1290 * Update with new features.
1291 * Fix bugs.
1292
Xiaoling 52.2 1293 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
Edwin Chen 2.1 1294
Xiaoling 44.4 1295 **Methods to Update Firmware:**
Edwin Chen 2.1 1296
Xiaoling 53.3 1297 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1298 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
Edwin Chen 2.1 1299
1300 = 6. FAQ =
1301
Edwin Chen 17.1 1302 == 6.1 Where can i find source code of SN50v3-LB? ==
Edwin Chen 2.1 1303
Xiaoling 43.52 1304
Edwin Chen 17.1 1305 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1306 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
Edwin Chen 2.1 1307
Xiaoling 55.2 1308 == 6.2 How to generate PWM Output in SN50v3-LB? ==
1309
1310
Edwin Chen 55.1 1311 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1312
1313
Edwin Chen 57.1 1314 == 6.3 How to put several sensors to a SN50v3-LB? ==
1315
Xiaoling 57.2 1316
Edwin Chen 57.1 1317 When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1318
1319 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1320
1321 [[image:image-20230810121434-1.png||height="242" width="656"]]
1322
1323
Edwin Chen 2.1 1324 = 7. Order Info =
1325
1326
Edwin Chen 10.1 1327 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
Edwin Chen 2.1 1328
1329 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1330
Edwin Chen 2.1 1331 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1332 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1333 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1334 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1335 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1336 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1337 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1338 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1339
Edwin Chen 10.1 1340 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1341
Edwin Chen 10.1 1342 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1343 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1344 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1345 * (% style="color:red" %)**NH**(%%): No Hole
1346
Edwin Chen 2.1 1347 = 8. ​Packing Info =
1348
Xiaoling 43.52 1349
Edwin Chen 2.1 1350 (% style="color:#037691" %)**Package Includes**:
1351
Edwin Chen 10.1 1352 * SN50v3-LB LoRaWAN Generic Node
Edwin Chen 2.1 1353
1354 (% style="color:#037691" %)**Dimension and weight**:
1355
1356 * Device Size: cm
1357 * Device Weight: g
1358 * Package Size / pcs : cm
1359 * Weight / pcs : g
1360
1361 = 9. Support =
1362
1363
1364 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 43.10 1365
Xiaoling 41.4 1366 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]