Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18
19
20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21
22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23
24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25
26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27
28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29
30 == 1.2 ​Features ==
31
32
33 * LoRaWAN 1.0.3 Class A
34 * Ultra-low power consumption
35 * Open-Source hardware/software
36 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
37 * Support Bluetooth v5.1 and LoRaWAN remote configure
38 * Support wireless OTA update firmware
39 * Uplink on periodically
40 * Downlink to change configure
41 * 8500mAh Battery for long term use
42
43 == 1.3 Specification ==
44
45
46 (% style="color:#037691" %)**Common DC Characteristics:**
47
48 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
49 * Operating Temperature: -40 ~~ 85°C
50
51 (% style="color:#037691" %)**I/O Interface:**
52
53 * Battery output (2.6v ~~ 3.6v depends on battery)
54 * +5v controllable output
55 * 3 x Interrupt or Digital IN/OUT pins
56 * 3 x one-wire interfaces
57 * 1 x UART Interface
58 * 1 x I2C Interface
59
60 (% style="color:#037691" %)**LoRa Spec:**
61
62 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
63 * Max +22 dBm constant RF output vs.
64 * RX sensitivity: down to -139 dBm.
65 * Excellent blocking immunity
66
67 (% style="color:#037691" %)**Battery:**
68
69 * Li/SOCI2 un-chargeable battery
70 * Capacity: 8500mAh
71 * Self-Discharge: <1% / Year @ 25°C
72 * Max continuously current: 130mA
73 * Max boost current: 2A, 1 second
74
75 (% style="color:#037691" %)**Power Consumption**
76
77 * Sleep Mode: 5uA @ 3.3v
78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79
80 == 1.4 Sleep mode and working mode ==
81
82
83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84
85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
86
87
88 == 1.5 Button & LEDs ==
89
90
91 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
92
93
94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
96 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
97 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
98 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
99 )))
100 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
101 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
102 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
103 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
104 )))
105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106
107 == 1.6 BLE connection ==
108
109
110 SN50v3-LB supports BLE remote configure.
111
112
113 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
114
115 * Press button to send an uplink
116 * Press button to active device.
117 * Device Power on or reset.
118
119 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
120
121
122 == 1.7 Pin Definitions ==
123
124
125 [[image:image-20230610163213-1.png||height="404" width="699"]]
126
127
128 == 1.8 Mechanical ==
129
130
131 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132
133 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134
135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136
137
138 == 1.9 Hole Option ==
139
140
141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142
143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
144
145 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
146
147
148 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
149
150 == 2.1 How it works ==
151
152
153 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154
155
156 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
157
158
159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160
161 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162
163
164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
165
166 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
167
168 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
169
170
171 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
172
173
174 (% style="color:blue" %)**Register the device**
175
176 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
177
178
179 (% style="color:blue" %)**Add APP EUI and DEV EUI**
180
181 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
182
183
184 (% style="color:blue" %)**Add APP EUI in the application**
185
186
187 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
188
189
190 (% style="color:blue" %)**Add APP KEY**
191
192 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
193
194
195 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
196
197
198 Press the button for 5 seconds to activate the SN50v3-LB.
199
200 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
201
202 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
203
204
205 == 2.3 ​Uplink Payload ==
206
207 === 2.3.1 Device Status, FPORT~=5 ===
208
209
210 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
211
212 The Payload format is as below.
213
214
215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219
220 Example parse in TTNv3
221
222
223 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
224
225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226
227 (% style="color:#037691" %)**Frequency Band**:
228
229 0x01: EU868
230
231 0x02: US915
232
233 0x03: IN865
234
235 0x04: AU915
236
237 0x05: KZ865
238
239 0x06: RU864
240
241 0x07: AS923
242
243 0x08: AS923-1
244
245 0x09: AS923-2
246
247 0x0a: AS923-3
248
249 0x0b: CN470
250
251 0x0c: EU433
252
253 0x0d: KR920
254
255 0x0e: MA869
256
257
258 (% style="color:#037691" %)**Sub-Band**:
259
260 AU915 and US915:value 0x00 ~~ 0x08
261
262 CN470: value 0x0B ~~ 0x0C
263
264 Other Bands: Always 0x00
265
266
267 (% style="color:#037691" %)**Battery Info**:
268
269 Check the battery voltage.
270
271 Ex1: 0x0B45 = 2885mV
272
273 Ex2: 0x0B49 = 2889mV
274
275
276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277
278
279 SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
280
281 For example:
282
283 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284
285
286 (% style="color:red" %) **Important Notice:**
287
288 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
289
290 2. All modes share the same Payload Explanation from HERE.
291
292 3. By default, the device will send an uplink message every 20 minutes.
293
294
295 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
296
297
298 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
299
300 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
301 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
302 |Value|Bat|(% style="width:191px" %)(((
303 Temperature(DS18B20)(PC13)
304 )))|(% style="width:78px" %)(((
305 ADC(PA4)
306 )))|(% style="width:216px" %)(((
307 Digital in(PB15)&Digital Interrupt(PA8)
308 )))|(% style="width:308px" %)(((
309 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
310 )))|(% style="width:154px" %)(((
311 Humidity(SHT20 or SHT31)
312 )))
313
314 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
315
316
317 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
318
319
320 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
321
322 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
323 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
324 |Value|BAT|(% style="width:196px" %)(((
325 Temperature(DS18B20)(PC13)
326 )))|(% style="width:87px" %)(((
327 ADC(PA4)
328 )))|(% style="width:189px" %)(((
329 Digital in(PB15) & Digital Interrupt(PA8)
330 )))|(% style="width:208px" %)(((
331 Distance measure by: 1) LIDAR-Lite V3HP
332 Or 2) Ultrasonic Sensor
333 )))|(% style="width:117px" %)Reserved
334
335 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
336
337
338 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
339
340 [[image:image-20230512173758-5.png||height="563" width="712"]]
341
342
343 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
344
345 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
346
347 [[image:image-20230512173903-6.png||height="596" width="715"]]
348
349
350 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
351
352 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
353 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
354 |Value|BAT|(% style="width:183px" %)(((
355 Temperature(DS18B20)(PC13)
356 )))|(% style="width:173px" %)(((
357 Digital in(PB15) & Digital Interrupt(PA8)
358 )))|(% style="width:84px" %)(((
359 ADC(PA4)
360 )))|(% style="width:323px" %)(((
361 Distance measure by:1)TF-Mini plus LiDAR
362 Or 2) TF-Luna LiDAR
363 )))|(% style="width:188px" %)Distance signal  strength
364
365 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
366
367
368 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
369
370 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
371
372 [[image:image-20230512180609-7.png||height="555" width="802"]]
373
374
375 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
376
377 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
378
379 [[image:image-20230610170047-1.png||height="452" width="799"]]
380
381
382 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
383
384
385 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
386
387 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
388 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
389 **Size(bytes)**
390 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
391 |Value|(% style="width:68px" %)(((
392 ADC1(PA4)
393 )))|(% style="width:75px" %)(((
394 ADC2(PA5)
395 )))|(((
396 ADC3(PA8)
397 )))|(((
398 Digital Interrupt(PB15)
399 )))|(% style="width:304px" %)(((
400 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
401 )))|(% style="width:163px" %)(((
402 Humidity(SHT20 or SHT31)
403 )))|(% style="width:53px" %)Bat
404
405 [[image:image-20230513110214-6.png]]
406
407
408 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
409
410
411 This mode has total 11 bytes. As shown below:
412
413 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
414 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
415 |Value|BAT|(% style="width:186px" %)(((
416 Temperature1(DS18B20)(PC13)
417 )))|(% style="width:82px" %)(((
418 ADC(PA4)
419 )))|(% style="width:210px" %)(((
420 Digital in(PB15) & Digital Interrupt(PA8) 
421 )))|(% style="width:191px" %)Temperature2(DS18B20)
422 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
423
424 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
425
426
427 [[image:image-20230513134006-1.png||height="559" width="736"]]
428
429
430 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
431
432
433 [[image:image-20230512164658-2.png||height="532" width="729"]]
434
435 Each HX711 need to be calibrated before used. User need to do below two steps:
436
437 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
438 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
439 1. (((
440 Weight has 4 bytes, the unit is g.
441
442
443
444 )))
445
446 For example:
447
448 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
449
450 Response:  Weight is 401 g
451
452 Check the response of this command and adjust the value to match the real value for thing.
453
454 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
455 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
456 **Size(bytes)**
457 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
458 |Value|BAT|(% style="width:193px" %)(((
459 Temperature(DS18B20)(PC13)
460 )))|(% style="width:85px" %)(((
461 ADC(PA4)
462 )))|(% style="width:186px" %)(((
463 Digital in(PB15) & Digital Interrupt(PA8)
464 )))|(% style="width:100px" %)Weight
465
466 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
467
468
469 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
470
471
472 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
473
474 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
475
476 [[image:image-20230512181814-9.png||height="543" width="697"]]
477
478
479 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
480
481 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
482 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
483 |Value|BAT|(% style="width:256px" %)(((
484 Temperature(DS18B20)(PC13)
485 )))|(% style="width:108px" %)(((
486 ADC(PA4)
487 )))|(% style="width:126px" %)(((
488 Digital in(PB15)
489 )))|(% style="width:145px" %)(((
490 Count(PA8)
491 )))
492
493 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
494
495
496 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
497
498
499 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
500 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
501 **Size(bytes)**
502 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
503 |Value|BAT|(% style="width:188px" %)(((
504 Temperature(DS18B20)
505 (PC13)
506 )))|(% style="width:83px" %)(((
507 ADC(PA5)
508 )))|(% style="width:184px" %)(((
509 Digital Interrupt1(PA8)
510 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
511
512 [[image:image-20230513111203-7.png||height="324" width="975"]]
513
514
515 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
516
517
518 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
519 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
520 **Size(bytes)**
521 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
522 |Value|BAT|(% style="width:207px" %)(((
523 Temperature(DS18B20)
524 (PC13)
525 )))|(% style="width:94px" %)(((
526 ADC1(PA4)
527 )))|(% style="width:198px" %)(((
528 Digital Interrupt(PB15)
529 )))|(% style="width:84px" %)(((
530 ADC2(PA5)
531 )))|(% style="width:82px" %)(((
532 ADC3(PA8)
533 )))
534
535 [[image:image-20230513111231-8.png||height="335" width="900"]]
536
537
538 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
539
540
541 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
542 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
543 **Size(bytes)**
544 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
545 |Value|BAT|(((
546 Temperature
547 (DS18B20)(PC13)
548 )))|(((
549 Temperature2
550 (DS18B20)(PB9)
551 )))|(((
552 Digital Interrupt
553 (PB15)
554 )))|(% style="width:193px" %)(((
555 Temperature3
556 (DS18B20)(PB8)
557 )))|(% style="width:78px" %)(((
558 Count1(PA8)
559 )))|(% style="width:78px" %)(((
560 Count2(PA4)
561 )))
562
563 [[image:image-20230513111255-9.png||height="341" width="899"]]
564
565 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
566
567 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
568
569 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
570
571 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
572
573
574 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
575
576 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
577
578 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
579
580
581 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
582
583 (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584
585 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586
587 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
588
589
590 ===== 2.3.2.10.a  Uplink, PWM input capture =====
591
592
593 [[image:image-20230817172209-2.png||height="439" width="683"]]
594
595 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
596 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
597 |Value|Bat|(% style="width:191px" %)(((
598 Temperature(DS18B20)(PC13)
599 )))|(% style="width:78px" %)(((
600 ADC(PA4)
601 )))|(% style="width:135px" %)(((
602 PWM_Setting
603
604 &Digital Interrupt(PA8)
605 )))|(% style="width:70px" %)(((
606 Pulse period
607 )))|(% style="width:89px" %)(((
608 Duration of high level
609 )))
610
611 [[image:image-20230817170702-1.png||height="161" width="1044"]]
612
613
614 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
615
616 **Frequency:**
617
618 (% class="MsoNormal" %)
619 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
620
621 (% class="MsoNormal" %)
622 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
623
624
625 (% class="MsoNormal" %)
626 **Duty cycle:**
627
628 Duty cycle= Duration of high level/ Pulse period*100 ~(%).
629
630 [[image:image-20230818092200-1.png||height="344" width="627"]]
631
632
633 ===== 2.3.2.10.b  Downlink, PWM output =====
634
635
636 [[image:image-20230817173800-3.png||height="412" width="685"]]
637
638 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
639
640 xx xx xx is the output frequency, the unit is HZ.
641
642 yy is the duty cycle of the output, the unit is %.
643
644 zz zz is the time delay of the output, the unit is ms.
645
646
647 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
648
649 The oscilloscope displays as follows:
650
651 [[image:image-20230817173858-5.png||height="694" width="921"]]
652
653
654 === 2.3.3  ​Decode payload ===
655
656
657 While using TTN V3 network, you can add the payload format to decode the payload.
658
659 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
660
661 The payload decoder function for TTN V3 are here:
662
663 SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
664
665
666 ==== 2.3.3.1 Battery Info ====
667
668
669 Check the battery voltage for SN50v3-LB.
670
671 Ex1: 0x0B45 = 2885mV
672
673 Ex2: 0x0B49 = 2889mV
674
675
676 ==== 2.3.3.2  Temperature (DS18B20) ====
677
678
679 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
680
681 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
682
683 (% style="color:blue" %)**Connection:**
684
685 [[image:image-20230512180718-8.png||height="538" width="647"]]
686
687
688 (% style="color:blue" %)**Example**:
689
690 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
691
692 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
693
694 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
695
696
697 ==== 2.3.3.3 Digital Input ====
698
699
700 The digital input for pin PB15,
701
702 * When PB15 is high, the bit 1 of payload byte 6 is 1.
703 * When PB15 is low, the bit 1 of payload byte 6 is 0.
704
705 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
706 (((
707 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
708
709 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
710
711
712 )))
713
714 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
715
716
717 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
718
719 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
720
721 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
722
723
724 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
725
726
727 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
728
729 [[image:image-20230811113449-1.png||height="370" width="608"]]
730
731 ==== 2.3.3.5 Digital Interrupt ====
732
733
734 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
735
736 (% style="color:blue" %)** Interrupt connection method:**
737
738 [[image:image-20230513105351-5.png||height="147" width="485"]]
739
740
741 (% style="color:blue" %)**Example to use with door sensor :**
742
743 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
744
745 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
746
747 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
748
749
750 (% style="color:blue" %)**Below is the installation example:**
751
752 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
753
754 * (((
755 One pin to SN50v3-LB's PA8 pin
756 )))
757 * (((
758 The other pin to SN50v3-LB's VDD pin
759 )))
760
761 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
762
763 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
764
765 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
766
767 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
768
769 The above photos shows the two parts of the magnetic switch fitted to a door.
770
771 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
772
773 The command is:
774
775 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
776
777 Below shows some screen captures in TTN V3:
778
779 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
780
781
782 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
783
784 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
785
786
787 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
788
789
790 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
791
792 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
793
794 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
795
796
797 Below is the connection to SHT20/ SHT31. The connection is as below:
798
799 [[image:image-20230610170152-2.png||height="501" width="846"]]
800
801
802 The device will be able to get the I2C sensor data now and upload to IoT Server.
803
804 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
805
806 Convert the read byte to decimal and divide it by ten.
807
808 **Example:**
809
810 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
811
812 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
813
814 If you want to use other I2C device, please refer the SHT20 part source code as reference.
815
816
817 ==== 2.3.3.7  ​Distance Reading ====
818
819
820 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
821
822
823 ==== 2.3.3.8 Ultrasonic Sensor ====
824
825
826 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
827
828 The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
829
830 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
831
832 The picture below shows the connection:
833
834 [[image:image-20230512173903-6.png||height="596" width="715"]]
835
836
837 Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
838
839 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
840
841 **Example:**
842
843 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
844
845
846 ==== 2.3.3.9  Battery Output - BAT pin ====
847
848
849 The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
850
851
852 ==== 2.3.3.10  +5V Output ====
853
854
855 SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
856
857 The 5V output time can be controlled by AT Command.
858
859 (% style="color:blue" %)**AT+5VT=1000**
860
861 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
862
863 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
864
865
866 ==== 2.3.3.11  BH1750 Illumination Sensor ====
867
868
869 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
870
871 [[image:image-20230512172447-4.png||height="416" width="712"]]
872
873
874 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
875
876
877 ==== 2.3.3.12  PWM MOD ====
878
879
880 * (((
881 The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
882 )))
883 * (((
884 If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
885 )))
886
887 [[image:image-20230817183249-3.png||height="320" width="417"]]
888
889 * (((
890 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
891 )))
892 * (((
893 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
894 )))
895 * (((
896 PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to Class C. Power consumption will not be low.
897
898 For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
899
900 a) If needs to realtime control output, SN50v3-LB has be run in CLass C and have to use external power source.
901
902 b) If the output duration is more than 30 seconds, bettert to use external power source. 
903
904
905
906 )))
907
908 ==== 2.3.3.13  Working MOD ====
909
910
911 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
912
913 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
914
915 Case 7^^th^^ Byte >> 2 & 0x1f:
916
917 * 0: MOD1
918 * 1: MOD2
919 * 2: MOD3
920 * 3: MOD4
921 * 4: MOD5
922 * 5: MOD6
923 * 6: MOD7
924 * 7: MOD8
925 * 8: MOD9
926 * 9: MOD10
927
928 == 2.4 Payload Decoder file ==
929
930
931 In TTN, use can add a custom payload so it shows friendly reading
932
933 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
934
935 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
936
937
938 == 2.5 Frequency Plans ==
939
940
941 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
942
943 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
944
945
946 = 3. Configure SN50v3-LB =
947
948 == 3.1 Configure Methods ==
949
950
951 SN50v3-LB supports below configure method:
952
953 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
954 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
955 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
956
957 == 3.2 General Commands ==
958
959
960 These commands are to configure:
961
962 * General system settings like: uplink interval.
963 * LoRaWAN protocol & radio related command.
964
965 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
966
967 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
968
969
970 == 3.3 Commands special design for SN50v3-LB ==
971
972
973 These commands only valid for SN50v3-LB, as below:
974
975
976 === 3.3.1 Set Transmit Interval Time ===
977
978
979 Feature: Change LoRaWAN End Node Transmit Interval.
980
981 (% style="color:blue" %)**AT Command: AT+TDC**
982
983 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
984 |=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
985 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
986 30000
987 OK
988 the interval is 30000ms = 30s
989 )))
990 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
991 OK
992 Set transmit interval to 60000ms = 60 seconds
993 )))
994
995 (% style="color:blue" %)**Downlink Command: 0x01**
996
997 Format: Command Code (0x01) followed by 3 bytes time value.
998
999 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1000
1001 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1002 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1003
1004 === 3.3.2 Get Device Status ===
1005
1006
1007 Send a LoRaWAN downlink to ask the device to send its status.
1008
1009 (% style="color:blue" %)**Downlink Payload: 0x26 01**
1010
1011 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
1012
1013
1014 === 3.3.3 Set Interrupt Mode ===
1015
1016
1017 Feature, Set Interrupt mode for GPIO_EXIT.
1018
1019 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1020
1021 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1022 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1023 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1024 0
1025 OK
1026 the mode is 0 =Disable Interrupt
1027 )))
1028 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
1029 Set Transmit Interval
1030 0. (Disable Interrupt),
1031 ~1. (Trigger by rising and falling edge)
1032 2. (Trigger by falling edge)
1033 3. (Trigger by rising edge)
1034 )))|(% style="width:157px" %)OK
1035 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1036 Set Transmit Interval
1037 trigger by rising edge.
1038 )))|(% style="width:157px" %)OK
1039 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1040
1041 (% style="color:blue" %)**Downlink Command: 0x06**
1042
1043 Format: Command Code (0x06) followed by 3 bytes.
1044
1045 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1046
1047 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1048 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1049 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1050 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1051
1052 === 3.3.4 Set Power Output Duration ===
1053
1054
1055 Control the output duration 5V . Before each sampling, device will
1056
1057 ~1. first enable the power output to external sensor,
1058
1059 2. keep it on as per duration, read sensor value and construct uplink payload
1060
1061 3. final, close the power output.
1062
1063 (% style="color:blue" %)**AT Command: AT+5VT**
1064
1065 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1066 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1067 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1068 500(default)
1069 OK
1070 )))
1071 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1072 Close after a delay of 1000 milliseconds.
1073 )))|(% style="width:157px" %)OK
1074
1075 (% style="color:blue" %)**Downlink Command: 0x07**
1076
1077 Format: Command Code (0x07) followed by 2 bytes.
1078
1079 The first and second bytes are the time to turn on.
1080
1081 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1082 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1083
1084 === 3.3.5 Set Weighing parameters ===
1085
1086
1087 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1088
1089 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1090
1091 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1092 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1093 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1094 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1095 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1096
1097 (% style="color:blue" %)**Downlink Command: 0x08**
1098
1099 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1100
1101 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1102
1103 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1104
1105 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1106 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1107 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1108
1109 === 3.3.6 Set Digital pulse count value ===
1110
1111
1112 Feature: Set the pulse count value.
1113
1114 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1115
1116 (% style="color:blue" %)**AT Command: AT+SETCNT**
1117
1118 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1119 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1120 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1121 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1122
1123 (% style="color:blue" %)**Downlink Command: 0x09**
1124
1125 Format: Command Code (0x09) followed by 5 bytes.
1126
1127 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1128
1129 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1130 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1131
1132 === 3.3.7 Set Workmode ===
1133
1134
1135 Feature: Switch working mode.
1136
1137 (% style="color:blue" %)**AT Command: AT+MOD**
1138
1139 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1140 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1141 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1142 OK
1143 )))
1144 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1145 OK
1146 Attention:Take effect after ATZ
1147 )))
1148
1149 (% style="color:blue" %)**Downlink Command: 0x0A**
1150
1151 Format: Command Code (0x0A) followed by 1 bytes.
1152
1153 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1154 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1155
1156 === 3.3.8 PWM setting ===
1157
1158
1159 Feature: Set the time acquisition unit for PWM input capture.
1160
1161 (% style="color:blue" %)**AT Command: AT+PWMSET**
1162
1163 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1164 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1165 |(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1166 0(default)
1167
1168 OK
1169 )))
1170 |(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1171 OK
1172
1173 )))
1174 |(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1175
1176 (% style="color:blue" %)**Downlink Command: 0x0C**
1177
1178 Format: Command Code (0x0C) followed by 1 bytes.
1179
1180 * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1181 * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1182
1183 = 4. Battery & Power Consumption =
1184
1185
1186 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1187
1188 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1189
1190
1191 = 5. OTA Firmware update =
1192
1193
1194 (% class="wikigeneratedid" %)
1195 **User can change firmware SN50v3-LB to:**
1196
1197 * Change Frequency band/ region.
1198 * Update with new features.
1199 * Fix bugs.
1200
1201 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1202
1203 **Methods to Update Firmware:**
1204
1205 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1206 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1207
1208 = 6. FAQ =
1209
1210 == 6.1 Where can i find source code of SN50v3-LB? ==
1211
1212
1213 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1214 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1215
1216 == 6.2 How to generate PWM Output in SN50v3-LB? ==
1217
1218
1219 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1220
1221
1222 == 6.3 How to put several sensors to a SN50v3-LB? ==
1223
1224
1225 When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1226
1227 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1228
1229 [[image:image-20230810121434-1.png||height="242" width="656"]]
1230
1231
1232 = 7. Order Info =
1233
1234
1235 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1236
1237 (% style="color:red" %)**XX**(%%): The default frequency band
1238
1239 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1240 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1241 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1242 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1243 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1244 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1245 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1246 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1247
1248 (% style="color:red" %)**YY: ** (%%)Hole Option
1249
1250 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1251 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1252 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1253 * (% style="color:red" %)**NH**(%%): No Hole
1254
1255 = 8. ​Packing Info =
1256
1257
1258 (% style="color:#037691" %)**Package Includes**:
1259
1260 * SN50v3-LB LoRaWAN Generic Node
1261
1262 (% style="color:#037691" %)**Dimension and weight**:
1263
1264 * Device Size: cm
1265 * Device Weight: g
1266 * Package Size / pcs : cm
1267 * Weight / pcs : g
1268
1269 = 9. Support =
1270
1271
1272 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1273
1274 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0