Version 74.6 by Xiaoling on 2023/09/26 08:50

Hide last authors
Xiaoling 41.2 1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
Edwin Chen 2.1 3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
Edwin Chen 5.1 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
Edwin Chen 2.1 18
Xiaoling 43.2 19
Edwin Chen 4.1 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 21
Xiaoling 74.6 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, and so on.
Edwin Chen 2.1 23
Edwin Chen 4.1 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
Edwin Chen 2.1 25
Edwin Chen 4.1 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 27
Edwin Chen 4.1 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 29
30 == 1.2 ​Features ==
31
Xiaoling 43.44 32
Edwin Chen 2.1 33 * LoRaWAN 1.0.3 Class A
34 * Ultra-low power consumption
Edwin Chen 5.1 35 * Open-Source hardware/software
Edwin Chen 2.1 36 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
37 * Support Bluetooth v5.1 and LoRaWAN remote configure
38 * Support wireless OTA update firmware
39 * Uplink on periodically
40 * Downlink to change configure
41 * 8500mAh Battery for long term use
42
Xiaoling 74.5 43
Edwin Chen 2.1 44 == 1.3 Specification ==
45
Xiaoling 43.4 46
Edwin Chen 2.1 47 (% style="color:#037691" %)**Common DC Characteristics:**
48
49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
50 * Operating Temperature: -40 ~~ 85°C
51
Edwin Chen 5.1 52 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 53
Edwin Chen 5.1 54 * Battery output (2.6v ~~ 3.6v depends on battery)
55 * +5v controllable output
56 * 3 x Interrupt or Digital IN/OUT pins
57 * 3 x one-wire interfaces
58 * 1 x UART Interface
59 * 1 x I2C Interface
Edwin Chen 2.1 60
61 (% style="color:#037691" %)**LoRa Spec:**
62
63 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
64 * Max +22 dBm constant RF output vs.
65 * RX sensitivity: down to -139 dBm.
66 * Excellent blocking immunity
67
68 (% style="color:#037691" %)**Battery:**
69
70 * Li/SOCI2 un-chargeable battery
71 * Capacity: 8500mAh
72 * Self-Discharge: <1% / Year @ 25°C
73 * Max continuously current: 130mA
74 * Max boost current: 2A, 1 second
75
76 (% style="color:#037691" %)**Power Consumption**
77
78 * Sleep Mode: 5uA @ 3.3v
79 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
80
Xiaoling 74.5 81
Edwin Chen 2.1 82 == 1.4 Sleep mode and working mode ==
83
Xiaoling 43.4 84
Edwin Chen 2.1 85 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
86
87 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
88
89
90 == 1.5 Button & LEDs ==
91
92
93 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
94
95
96 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
97 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
98 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
99 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
100 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
101 )))
102 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
103 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
104 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
105 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
106 )))
107 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
108
Xiaoling 74.5 109
Edwin Chen 2.1 110 == 1.6 BLE connection ==
111
112
Edwin Chen 5.1 113 SN50v3-LB supports BLE remote configure.
Edwin Chen 2.1 114
115
116 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
117
118 * Press button to send an uplink
119 * Press button to active device.
120 * Device Power on or reset.
121
122 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
123
124
Edwin Chen 6.1 125 == 1.7 Pin Definitions ==
Edwin Chen 2.1 126
127
Saxer Lin 49.1 128 [[image:image-20230610163213-1.png||height="404" width="699"]]
Edwin Chen 2.1 129
130
131 == 1.8 Mechanical ==
132
133
134 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
135
136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
137
138 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
139
140
Saxer Lin 44.5 141 == 1.9 Hole Option ==
Edwin Chen 5.1 142
Xiaoling 43.4 143
Edwin Chen 5.1 144 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
145
146 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
147
148 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
149
150
Edwin Chen 10.1 151 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
Edwin Chen 2.1 152
153 == 2.1 How it works ==
154
155
Xiaoling 44.3 156 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 157
158
159 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
160
161
162 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
163
Xiaoling 44.3 164 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
Edwin Chen 2.1 165
166
Edwin Chen 11.2 167 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
Edwin Chen 2.1 168
Edwin Chen 11.2 169 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 170
Edwin Chen 11.2 171 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 2.1 172
173
174 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
175
176
177 (% style="color:blue" %)**Register the device**
178
179 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
180
181
182 (% style="color:blue" %)**Add APP EUI and DEV EUI**
183
184 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
185
186
187 (% style="color:blue" %)**Add APP EUI in the application**
188
189
190 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
191
192
193 (% style="color:blue" %)**Add APP KEY**
194
195 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
196
197
Edwin Chen 11.2 198 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
Edwin Chen 2.1 199
200
Edwin Chen 11.2 201 Press the button for 5 seconds to activate the SN50v3-LB.
Edwin Chen 2.1 202
203 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
204
205 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
206
207
208 == 2.3 ​Uplink Payload ==
209
210 === 2.3.1 Device Status, FPORT~=5 ===
211
212
Xiaoling 44.3 213 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 214
215 The Payload format is as below.
216
217
218 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
219 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
220 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
Xiaoling 45.4 221 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
Edwin Chen 2.1 222
223 Example parse in TTNv3
224
225
Xiaoling 44.3 226 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
Edwin Chen 2.1 227
228 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
229
230 (% style="color:#037691" %)**Frequency Band**:
231
Xiaoling 53.2 232 0x01: EU868
Edwin Chen 2.1 233
Xiaoling 53.2 234 0x02: US915
Edwin Chen 2.1 235
Xiaoling 53.2 236 0x03: IN865
Edwin Chen 2.1 237
Xiaoling 53.2 238 0x04: AU915
Edwin Chen 2.1 239
Xiaoling 53.2 240 0x05: KZ865
Edwin Chen 2.1 241
Xiaoling 53.2 242 0x06: RU864
Edwin Chen 2.1 243
Xiaoling 53.2 244 0x07: AS923
Edwin Chen 2.1 245
Xiaoling 53.2 246 0x08: AS923-1
Edwin Chen 2.1 247
Xiaoling 53.2 248 0x09: AS923-2
Edwin Chen 2.1 249
Xiaoling 53.2 250 0x0a: AS923-3
Edwin Chen 2.1 251
Xiaoling 53.2 252 0x0b: CN470
Edwin Chen 2.1 253
Xiaoling 53.2 254 0x0c: EU433
Edwin Chen 2.1 255
Xiaoling 53.2 256 0x0d: KR920
Edwin Chen 2.1 257
Xiaoling 53.2 258 0x0e: MA869
Edwin Chen 2.1 259
260
261 (% style="color:#037691" %)**Sub-Band**:
262
263 AU915 and US915:value 0x00 ~~ 0x08
264
265 CN470: value 0x0B ~~ 0x0C
266
267 Other Bands: Always 0x00
268
269
270 (% style="color:#037691" %)**Battery Info**:
271
272 Check the battery voltage.
273
274 Ex1: 0x0B45 = 2885mV
275
276 Ex2: 0x0B49 = 2889mV
277
278
Edwin Chen 12.1 279 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 280
281
Xiaoling 44.2 282 SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
Edwin Chen 12.1 283
284 For example:
285
Xiaoling 44.2 286 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
Edwin Chen 12.1 287
288
Edwin Chen 13.1 289 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 290
Xiaoling 44.3 291 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
Edwin Chen 12.1 292
Xiaoling 44.2 293 2. All modes share the same Payload Explanation from HERE.
Xiaoling 43.53 294
Xiaoling 44.2 295 3. By default, the device will send an uplink message every 20 minutes.
296
297
Edwin Chen 13.1 298 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 299
Xiaoling 43.5 300
Edwin Chen 12.1 301 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
302
Xiaoling 43.5 303 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.54 304 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
Xiaoling 45.4 305 |Value|Bat|(% style="width:191px" %)(((
Xiaoling 43.12 306 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 307 )))|(% style="width:78px" %)(((
Xiaoling 43.12 308 ADC(PA4)
Saxer Lin 26.2 309 )))|(% style="width:216px" %)(((
Xiaoling 43.13 310 Digital in(PB15)&Digital Interrupt(PA8)
Saxer Lin 40.1 311 )))|(% style="width:308px" %)(((
Xiaoling 43.12 312 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 313 )))|(% style="width:154px" %)(((
Xiaoling 43.12 314 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 315 )))
316
Edwin Chen 12.1 317 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
318
319
Edwin Chen 13.1 320 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
321
Xiaoling 43.45 322
Edwin Chen 12.1 323 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
324
Xiaoling 43.14 325 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.54 326 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
Xiaoling 45.4 327 |Value|BAT|(% style="width:196px" %)(((
Xiaoling 43.16 328 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 329 )))|(% style="width:87px" %)(((
Xiaoling 43.16 330 ADC(PA4)
Saxer Lin 40.1 331 )))|(% style="width:189px" %)(((
Xiaoling 43.16 332 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 333 )))|(% style="width:208px" %)(((
Xiaoling 53.2 334 Distance measure by: 1) LIDAR-Lite V3HP
335 Or 2) Ultrasonic Sensor
Saxer Lin 40.1 336 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 337
338 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
339
Xiaoling 43.45 340
Xiaoling 43.17 341 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
Edwin Chen 12.1 342
Saxer Lin 26.2 343 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 344
Xiaoling 43.45 345
Xiaoling 43.17 346 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
Edwin Chen 12.1 347
Ellie Zhang 44.1 348 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
Saxer Lin 36.1 349
Saxer Lin 26.2 350 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 351
Xiaoling 43.45 352
Edwin Chen 12.1 353 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
354
Xiaoling 43.19 355 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 356 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
Xiaoling 45.5 357 |Value|BAT|(% style="width:183px" %)(((
Xiaoling 43.19 358 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 359 )))|(% style="width:173px" %)(((
Xiaoling 43.19 360 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 361 )))|(% style="width:84px" %)(((
Xiaoling 43.19 362 ADC(PA4)
Saxer Lin 40.1 363 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 364 Distance measure by:1)TF-Mini plus LiDAR
Xiaoling 53.3 365 Or 2) TF-Luna LiDAR
Saxer Lin 40.1 366 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 367
368 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
369
Xiaoling 43.45 370
Edwin Chen 12.1 371 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
372
Ellie Zhang 44.1 373 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 374
Saxer Lin 26.2 375 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 376
Xiaoling 43.45 377
Edwin Chen 12.1 378 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
379
Ellie Zhang 44.1 380 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 381
Saxer Lin 52.1 382 [[image:image-20230610170047-1.png||height="452" width="799"]]
Edwin Chen 12.1 383
384
Edwin Chen 13.1 385 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
386
Xiaoling 43.45 387
Edwin Chen 12.1 388 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
389
Xiaoling 43.21 390 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.25 391 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
392 **Size(bytes)**
Xiaoling 43.54 393 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
Xiaoling 45.4 394 |Value|(% style="width:68px" %)(((
Xiaoling 43.23 395 ADC1(PA4)
Saxer Lin 26.2 396 )))|(% style="width:75px" %)(((
Xiaoling 43.23 397 ADC2(PA5)
Saxer Lin 36.1 398 )))|(((
Xiaoling 43.23 399 ADC3(PA8)
Saxer Lin 36.1 400 )))|(((
401 Digital Interrupt(PB15)
402 )))|(% style="width:304px" %)(((
Xiaoling 43.23 403 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 36.1 404 )))|(% style="width:163px" %)(((
Xiaoling 43.23 405 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 406 )))|(% style="width:53px" %)Bat
407
408 [[image:image-20230513110214-6.png]]
409
410
Edwin Chen 13.1 411 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
412
Edwin Chen 12.1 413
Saxer Lin 26.2 414 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 415
Xiaoling 43.26 416 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 417 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
Xiaoling 45.4 418 |Value|BAT|(% style="width:186px" %)(((
Xiaoling 43.27 419 Temperature1(DS18B20)(PC13)
Saxer Lin 26.2 420 )))|(% style="width:82px" %)(((
Xiaoling 43.27 421 ADC(PA4)
Saxer Lin 26.2 422 )))|(% style="width:210px" %)(((
Xiaoling 43.27 423 Digital in(PB15) & Digital Interrupt(PA8) 
Saxer Lin 26.2 424 )))|(% style="width:191px" %)Temperature2(DS18B20)
Xiaoling 43.27 425 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
Edwin Chen 12.1 426
427 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
428
Xiaoling 44.4 429
Saxer Lin 39.2 430 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 431
Saxer Lin 39.1 432
Edwin Chen 13.1 433 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
434
Xiaoling 43.45 435
Saxer Lin 26.2 436 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 437
438 Each HX711 need to be calibrated before used. User need to do below two steps:
439
Xiaoling 44.2 440 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
441 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
Edwin Chen 12.1 442 1. (((
Saxer Lin 26.2 443 Weight has 4 bytes, the unit is g.
Xiaoling 43.53 444
445
446
Edwin Chen 12.1 447 )))
448
449 For example:
450
Xiaoling 44.2 451 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
Edwin Chen 12.1 452
453 Response:  Weight is 401 g
454
455 Check the response of this command and adjust the value to match the real value for thing.
456
Xiaoling 43.29 457 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
458 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 459 **Size(bytes)**
Xiaoling 43.30 460 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
Xiaoling 45.4 461 |Value|BAT|(% style="width:193px" %)(((
Xiaoling 43.55 462 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 463 )))|(% style="width:85px" %)(((
Xiaoling 43.31 464 ADC(PA4)
Saxer Lin 40.1 465 )))|(% style="width:186px" %)(((
Xiaoling 43.55 466 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 467 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 468
Edwin Chen 12.1 469 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
470
471
Edwin Chen 13.1 472 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
473
Xiaoling 43.45 474
Edwin Chen 12.1 475 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
476
477 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
478
Saxer Lin 26.2 479 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 480
Xiaoling 43.53 481
Xiaoling 43.45 482 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
Edwin Chen 12.1 483
Xiaoling 43.38 484 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.57 485 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
Xiaoling 45.4 486 |Value|BAT|(% style="width:256px" %)(((
Xiaoling 43.31 487 Temperature(DS18B20)(PC13)
Saxer Lin 36.1 488 )))|(% style="width:108px" %)(((
Xiaoling 43.31 489 ADC(PA4)
Saxer Lin 36.1 490 )))|(% style="width:126px" %)(((
Xiaoling 43.31 491 Digital in(PB15)
Saxer Lin 36.1 492 )))|(% style="width:145px" %)(((
Xiaoling 43.31 493 Count(PA8)
Saxer Lin 36.1 494 )))
495
Edwin Chen 12.1 496 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
497
498
Edwin Chen 13.1 499 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
500
Xiaoling 43.45 501
Xiaoling 43.38 502 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.33 503 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 504 **Size(bytes)**
Xiaoling 43.34 505 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
Xiaoling 45.4 506 |Value|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 507 Temperature(DS18B20)
508 (PC13)
Saxer Lin 40.1 509 )))|(% style="width:83px" %)(((
Xiaoling 43.35 510 ADC(PA5)
Saxer Lin 40.1 511 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 512 Digital Interrupt1(PA8)
Saxer Lin 40.1 513 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 514
515 [[image:image-20230513111203-7.png||height="324" width="975"]]
516
Xiaoling 43.45 517
Edwin Chen 13.1 518 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
519
Xiaoling 43.45 520
Xiaoling 43.38 521 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.35 522 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 523 **Size(bytes)**
Xiaoling 43.55 524 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
Xiaoling 45.4 525 |Value|BAT|(% style="width:207px" %)(((
Saxer Lin 36.1 526 Temperature(DS18B20)
527 (PC13)
528 )))|(% style="width:94px" %)(((
Xiaoling 43.36 529 ADC1(PA4)
Saxer Lin 36.1 530 )))|(% style="width:198px" %)(((
531 Digital Interrupt(PB15)
532 )))|(% style="width:84px" %)(((
Xiaoling 43.36 533 ADC2(PA5)
Saxer Lin 40.1 534 )))|(% style="width:82px" %)(((
Xiaoling 43.36 535 ADC3(PA8)
Edwin Chen 12.1 536 )))
537
Saxer Lin 36.1 538 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 539
540
Edwin Chen 13.1 541 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
542
Xiaoling 43.45 543
Xiaoling 43.38 544 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
545 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 546 **Size(bytes)**
Xiaoling 43.56 547 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
Xiaoling 45.4 548 |Value|BAT|(((
Xiaoling 43.58 549 Temperature
550 (DS18B20)(PC13)
Edwin Chen 12.1 551 )))|(((
Xiaoling 43.58 552 Temperature2
553 (DS18B20)(PB9)
Edwin Chen 12.1 554 )))|(((
Saxer Lin 36.1 555 Digital Interrupt
556 (PB15)
557 )))|(% style="width:193px" %)(((
Xiaoling 43.58 558 Temperature3
559 (DS18B20)(PB8)
Saxer Lin 36.1 560 )))|(% style="width:78px" %)(((
Xiaoling 43.39 561 Count1(PA8)
Saxer Lin 36.1 562 )))|(% style="width:78px" %)(((
Xiaoling 43.39 563 Count2(PA4)
Edwin Chen 12.1 564 )))
565
Saxer Lin 36.1 566 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 567
Xiaoling 43.40 568 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
Edwin Chen 12.1 569
Xiaoling 43.44 570 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
Edwin Chen 12.1 571
Xiaoling 43.44 572 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
Edwin Chen 12.1 573
Xiaoling 43.44 574 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
Edwin Chen 12.1 575
576
Xiaoling 43.41 577 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
578
Saxer Lin 36.1 579 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 580
Saxer Lin 36.1 581 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 582
583
Saxer Lin 65.1 584 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
585
Xiaoling 74.3 586
Saxer Lin 65.1 587 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
588
Xiaoling 74.3 589 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
Saxer Lin 65.1 590
Saxer Lin 69.1 591
Saxer Lin 65.1 592 ===== 2.3.2.10.a  Uplink, PWM input capture =====
593
Xiaoling 74.3 594
Saxer Lin 65.1 595 [[image:image-20230817172209-2.png||height="439" width="683"]]
596
597 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
598 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
599 |Value|Bat|(% style="width:191px" %)(((
600 Temperature(DS18B20)(PC13)
601 )))|(% style="width:78px" %)(((
602 ADC(PA4)
603 )))|(% style="width:135px" %)(((
604 PWM_Setting
605
606 &Digital Interrupt(PA8)
607 )))|(% style="width:70px" %)(((
608 Pulse period
609 )))|(% style="width:89px" %)(((
610 Duration of high level
611 )))
612
613 [[image:image-20230817170702-1.png||height="161" width="1044"]]
614
615
Saxer Lin 72.1 616 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
Saxer Lin 65.1 617
Xiaoling 74.4 618 **Frequency:**
Saxer Lin 65.1 619
Saxer Lin 72.1 620 (% class="MsoNormal" %)
Xiaoling 74.4 621 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
Saxer Lin 65.1 622
Saxer Lin 72.1 623 (% class="MsoNormal" %)
Xiaoling 74.4 624 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
Saxer Lin 72.1 625
Xiaoling 74.4 626
Saxer Lin 72.1 627 (% class="MsoNormal" %)
Xiaoling 74.4 628 **Duty cycle:**
Saxer Lin 72.1 629
630 Duty cycle= Duration of high level/ Pulse period*100 ~(%).
631
632 [[image:image-20230818092200-1.png||height="344" width="627"]]
633
634
Saxer Lin 65.1 635 ===== 2.3.2.10.b  Downlink, PWM output =====
636
Xiaoling 74.3 637
Saxer Lin 65.1 638 [[image:image-20230817173800-3.png||height="412" width="685"]]
639
640 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
641
642 xx xx xx is the output frequency, the unit is HZ.
643
644 yy is the duty cycle of the output, the unit is %.
645
646 zz zz is the time delay of the output, the unit is ms.
647
648
649 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
650
651 The oscilloscope displays as follows:
652
653 [[image:image-20230817173858-5.png||height="694" width="921"]]
654
655
Edwin Chen 14.1 656 === 2.3.3  ​Decode payload ===
657
Xiaoling 43.45 658
Edwin Chen 12.1 659 While using TTN V3 network, you can add the payload format to decode the payload.
660
661 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
662
663 The payload decoder function for TTN V3 are here:
664
Xiaoling 44.2 665 SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 666
667
Edwin Chen 14.1 668 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 669
Xiaoling 43.45 670
Xiaoling 44.2 671 Check the battery voltage for SN50v3-LB.
Edwin Chen 2.1 672
673 Ex1: 0x0B45 = 2885mV
674
675 Ex2: 0x0B49 = 2889mV
676
677
Edwin Chen 14.1 678 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 679
Xiaoling 43.45 680
Saxer Lin 42.1 681 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 682
Xiaoling 43.45 683 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
Edwin Chen 14.1 684
Xiaoling 43.41 685 (% style="color:blue" %)**Connection:**
Edwin Chen 14.1 686
Saxer Lin 26.2 687 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 688
Xiaoling 43.46 689
Xiaoling 43.41 690 (% style="color:blue" %)**Example**:
Edwin Chen 2.1 691
692 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
693
694 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
695
696 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
697
698
Edwin Chen 14.1 699 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 700
Xiaoling 43.46 701
Saxer Lin 26.2 702 The digital input for pin PB15,
Edwin Chen 2.1 703
Saxer Lin 26.2 704 * When PB15 is high, the bit 1 of payload byte 6 is 1.
705 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 706
Saxer Lin 26.2 707 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
708 (((
Saxer Lin 36.1 709 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
710
Xiaoling 43.46 711 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
712
713
Saxer Lin 26.2 714 )))
715
Edwin Chen 14.1 716 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 717
Xiaoling 43.46 718
Saxer Lin 53.1 719 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 720
Saxer Lin 53.1 721 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 722
Saxer Lin 26.2 723 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 724
Xiaoling 44.2 725
Xiaoling 43.46 726 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
Edwin Chen 14.1 727
Saxer Lin 43.1 728
Saxer Lin 59.1 729 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
730
731 [[image:image-20230811113449-1.png||height="370" width="608"]]
732
Edwin Chen 14.1 733 ==== 2.3.3.5 Digital Interrupt ====
734
Xiaoling 43.46 735
Xiaoling 44.2 736 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
Edwin Chen 14.1 737
Xiaoling 43.44 738 (% style="color:blue" %)** Interrupt connection method:**
Edwin Chen 14.1 739
Saxer Lin 36.1 740 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 741
Xiaoling 43.46 742
Xiaoling 43.8 743 (% style="color:blue" %)**Example to use with door sensor :**
Edwin Chen 14.1 744
745 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
746
747 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
748
Xiaoling 44.2 749 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 750
751
Xiaoling 43.46 752 (% style="color:blue" %)**Below is the installation example:**
753
Xiaoling 44.2 754 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
Edwin Chen 14.1 755
756 * (((
Xiaoling 44.2 757 One pin to SN50v3-LB's PA8 pin
Edwin Chen 14.1 758 )))
759 * (((
Xiaoling 44.2 760 The other pin to SN50v3-LB's VDD pin
Edwin Chen 14.1 761 )))
762
Saxer Lin 36.1 763 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 764
Xiaoling 43.46 765 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
Edwin Chen 14.1 766
Saxer Lin 36.1 767 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 768
769 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
770
771 The above photos shows the two parts of the magnetic switch fitted to a door.
772
773 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
774
775 The command is:
776
Xiaoling 44.2 777 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 778
779 Below shows some screen captures in TTN V3:
780
781 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
782
Xiaoling 43.47 783
Xiaoling 44.4 784 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
Edwin Chen 14.1 785
786 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
787
788
Saxer Lin 26.2 789 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 790
Xiaoling 43.47 791
Saxer Lin 26.2 792 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 793
Saxer Lin 40.1 794 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 795
Xiaoling 44.2 796 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
Edwin Chen 14.1 797
Xiaoling 44.2 798
Edwin Chen 14.1 799 Below is the connection to SHT20/ SHT31. The connection is as below:
800
Saxer Lin 52.1 801 [[image:image-20230610170152-2.png||height="501" width="846"]]
Saxer Lin 36.1 802
Xiaoling 44.4 803
Edwin Chen 14.1 804 The device will be able to get the I2C sensor data now and upload to IoT Server.
805
806 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
807
808 Convert the read byte to decimal and divide it by ten.
809
Edwin Chen 2.1 810 **Example:**
811
Edwin Chen 14.1 812 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 813
Edwin Chen 14.1 814 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 815
Edwin Chen 14.1 816 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 817
818
Edwin Chen 14.1 819 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 820
Xiaoling 43.48 821
Xiaoling 43.42 822 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
Edwin Chen 14.1 823
824
825 ==== 2.3.3.8 Ultrasonic Sensor ====
826
Xiaoling 43.48 827
Saxer Lin 26.2 828 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 829
Xiaoling 44.2 830 The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 831
Xiaoling 43.44 832 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
Saxer Lin 36.1 833
Edwin Chen 14.1 834 The picture below shows the connection:
835
Saxer Lin 36.1 836 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 837
Xiaoling 43.50 838
Xiaoling 44.2 839 Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 840
841 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
842
843 **Example:**
844
845 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
846
847
848 ==== 2.3.3.9  Battery Output - BAT pin ====
849
Xiaoling 43.50 850
Xiaoling 44.4 851 The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
Edwin Chen 14.1 852
853
854 ==== 2.3.3.10  +5V Output ====
855
Xiaoling 43.50 856
Xiaoling 44.2 857 SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
Edwin Chen 14.1 858
859 The 5V output time can be controlled by AT Command.
860
Xiaoling 43.9 861 (% style="color:blue" %)**AT+5VT=1000**
Edwin Chen 14.1 862
863 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
864
Xiaoling 44.4 865 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
Edwin Chen 14.1 866
867
868 ==== 2.3.3.11  BH1750 Illumination Sensor ====
869
Xiaoling 43.50 870
Edwin Chen 14.1 871 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
872
Saxer Lin 40.1 873 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 874
Xiaoling 43.51 875
Saxer Lin 40.1 876 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 877
878
Saxer Lin 65.1 879 ==== 2.3.3.12  PWM MOD ====
Edwin Chen 14.1 880
Xiaoling 43.51 881
Saxer Lin 69.1 882 * (((
883 The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
884 )))
885 * (((
886 If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
887 )))
888
889 [[image:image-20230817183249-3.png||height="320" width="417"]]
890
891 * (((
892 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
893 )))
894 * (((
Xiaoling 74.2 895 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
Saxer Lin 70.1 896
Xiaoling 74.5 897
Saxer Lin 70.1 898
Saxer Lin 69.1 899 )))
900
Saxer Lin 65.1 901 ==== 2.3.3.13  Working MOD ====
902
903
Edwin Chen 14.1 904 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
905
906 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
907
908 Case 7^^th^^ Byte >> 2 & 0x1f:
909
910 * 0: MOD1
911 * 1: MOD2
912 * 2: MOD3
913 * 3: MOD4
914 * 4: MOD5
915 * 5: MOD6
Saxer Lin 36.1 916 * 6: MOD7
917 * 7: MOD8
918 * 8: MOD9
Saxer Lin 65.1 919 * 9: MOD10
Edwin Chen 14.1 920
Xiaoling 74.5 921
Edwin Chen 2.1 922 == 2.4 Payload Decoder file ==
923
924
925 In TTN, use can add a custom payload so it shows friendly reading
926
927 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
928
Saxer Lin 40.1 929 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 930
931
Edwin Chen 15.1 932 == 2.5 Frequency Plans ==
Edwin Chen 2.1 933
934
Edwin Chen 15.1 935 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 2.1 936
937 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
938
939
Edwin Chen 16.1 940 = 3. Configure SN50v3-LB =
Edwin Chen 2.1 941
942 == 3.1 Configure Methods ==
943
944
Edwin Chen 16.1 945 SN50v3-LB supports below configure method:
Edwin Chen 2.1 946
947 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
948 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
949 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
950
Xiaoling 74.5 951
Edwin Chen 2.1 952 == 3.2 General Commands ==
953
954
955 These commands are to configure:
956
957 * General system settings like: uplink interval.
958 * LoRaWAN protocol & radio related command.
959
960 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
961
962 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
963
964
Edwin Chen 16.1 965 == 3.3 Commands special design for SN50v3-LB ==
Edwin Chen 2.1 966
967
Xiaoling 44.2 968 These commands only valid for SN50v3-LB, as below:
Edwin Chen 2.1 969
970
971 === 3.3.1 Set Transmit Interval Time ===
972
Xiaoling 43.51 973
Edwin Chen 2.1 974 Feature: Change LoRaWAN End Node Transmit Interval.
975
976 (% style="color:blue" %)**AT Command: AT+TDC**
977
978 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.2 979 |=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
Edwin Chen 2.1 980 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
981 30000
982 OK
983 the interval is 30000ms = 30s
984 )))
985 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
986 OK
987 Set transmit interval to 60000ms = 60 seconds
988 )))
989
990 (% style="color:blue" %)**Downlink Command: 0x01**
991
992 Format: Command Code (0x01) followed by 3 bytes time value.
993
994 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
995
996 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
997 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
998
Xiaoling 74.5 999
Edwin Chen 2.1 1000 === 3.3.2 Get Device Status ===
1001
Xiaoling 43.52 1002
Saxer Lin 40.1 1003 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 1004
Xiaoling 44.4 1005 (% style="color:blue" %)**Downlink Payload: 0x26 01**
Edwin Chen 2.1 1006
Xiaoling 44.4 1007 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
Edwin Chen 2.1 1008
1009
Saxer Lin 36.1 1010 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 1011
Xiaoling 43.52 1012
Edwin Chen 2.1 1013 Feature, Set Interrupt mode for GPIO_EXIT.
1014
Saxer Lin 36.1 1015 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
Edwin Chen 2.1 1016
1017 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1018 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1019 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
Edwin Chen 2.1 1020 0
1021 OK
1022 the mode is 0 =Disable Interrupt
1023 )))
Saxer Lin 36.1 1024 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
Edwin Chen 2.1 1025 Set Transmit Interval
1026 0. (Disable Interrupt),
1027 ~1. (Trigger by rising and falling edge)
1028 2. (Trigger by falling edge)
1029 3. (Trigger by rising edge)
1030 )))|(% style="width:157px" %)OK
Saxer Lin 36.1 1031 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1032 Set Transmit Interval
1033 trigger by rising edge.
1034 )))|(% style="width:157px" %)OK
1035 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1036
Edwin Chen 2.1 1037 (% style="color:blue" %)**Downlink Command: 0x06**
1038
1039 Format: Command Code (0x06) followed by 3 bytes.
1040
1041 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1042
Saxer Lin 36.1 1043 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1044 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1045 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1046 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
Edwin Chen 2.1 1047
Xiaoling 74.5 1048
Saxer Lin 36.1 1049 === 3.3.4 Set Power Output Duration ===
1050
Xiaoling 43.52 1051
Saxer Lin 36.1 1052 Control the output duration 5V . Before each sampling, device will
1053
1054 ~1. first enable the power output to external sensor,
1055
1056 2. keep it on as per duration, read sensor value and construct uplink payload
1057
1058 3. final, close the power output.
1059
1060 (% style="color:blue" %)**AT Command: AT+5VT**
1061
1062 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1063 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1064 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1065 500(default)
1066 OK
1067 )))
1068 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1069 Close after a delay of 1000 milliseconds.
1070 )))|(% style="width:157px" %)OK
1071
1072 (% style="color:blue" %)**Downlink Command: 0x07**
1073
1074 Format: Command Code (0x07) followed by 2 bytes.
1075
1076 The first and second bytes are the time to turn on.
1077
Saxer Lin 40.1 1078 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1079 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 1080
Xiaoling 74.5 1081
Saxer Lin 36.1 1082 === 3.3.5 Set Weighing parameters ===
1083
Xiaoling 43.52 1084
Saxer Lin 37.1 1085 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 1086
1087 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1088
1089 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1090 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 37.1 1091 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1092 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1093 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 1094
1095 (% style="color:blue" %)**Downlink Command: 0x08**
1096
Saxer Lin 37.1 1097 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 1098
Saxer Lin 37.1 1099 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 1100
Saxer Lin 37.1 1101 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 1102
Saxer Lin 37.1 1103 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1104 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1105 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1106
Xiaoling 74.5 1107
Saxer Lin 36.1 1108 === 3.3.6 Set Digital pulse count value ===
1109
Xiaoling 43.52 1110
Saxer Lin 36.1 1111 Feature: Set the pulse count value.
1112
Saxer Lin 37.1 1113 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1114
Saxer Lin 36.1 1115 (% style="color:blue" %)**AT Command: AT+SETCNT**
1116
1117 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1118 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1119 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1120 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1121
1122 (% style="color:blue" %)**Downlink Command: 0x09**
1123
1124 Format: Command Code (0x09) followed by 5 bytes.
1125
1126 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1127
1128 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 1129 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 1130
Xiaoling 74.5 1131
Saxer Lin 36.1 1132 === 3.3.7 Set Workmode ===
1133
Xiaoling 43.52 1134
Saxer Lin 37.1 1135 Feature: Switch working mode.
Saxer Lin 36.1 1136
1137 (% style="color:blue" %)**AT Command: AT+MOD**
1138
1139 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1140 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1141 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1142 OK
1143 )))
1144 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1145 OK
1146 Attention:Take effect after ATZ
1147 )))
1148
1149 (% style="color:blue" %)**Downlink Command: 0x0A**
1150
1151 Format: Command Code (0x0A) followed by 1 bytes.
1152
1153 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1154 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1155
Xiaoling 74.5 1156
Saxer Lin 72.1 1157 === 3.3.8 PWM setting ===
1158
Xiaoling 74.5 1159
Saxer Lin 72.1 1160 Feature: Set the time acquisition unit for PWM input capture.
1161
1162 (% style="color:blue" %)**AT Command: AT+PWMSET**
1163
1164 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1165 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1166 |(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1167 0(default)
1168
1169 OK
1170 )))
1171 |(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1172 OK
1173
1174 )))
1175 |(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1176
1177 (% style="color:blue" %)**Downlink Command: 0x0C**
1178
1179 Format: Command Code (0x0C) followed by 1 bytes.
1180
1181 * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1182 * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1183
Xiaoling 74.5 1184
Edwin Chen 2.1 1185 = 4. Battery & Power Consumption =
1186
1187
Edwin Chen 11.1 1188 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1189
1190 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1191
1192
1193 = 5. OTA Firmware update =
1194
1195
1196 (% class="wikigeneratedid" %)
Xiaoling 44.4 1197 **User can change firmware SN50v3-LB to:**
Edwin Chen 2.1 1198
1199 * Change Frequency band/ region.
1200 * Update with new features.
1201 * Fix bugs.
1202
Xiaoling 52.2 1203 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
Edwin Chen 2.1 1204
Xiaoling 44.4 1205 **Methods to Update Firmware:**
Edwin Chen 2.1 1206
Xiaoling 53.3 1207 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1208 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
Edwin Chen 2.1 1209
Xiaoling 74.5 1210
Edwin Chen 2.1 1211 = 6. FAQ =
1212
Edwin Chen 17.1 1213 == 6.1 Where can i find source code of SN50v3-LB? ==
Edwin Chen 2.1 1214
Xiaoling 43.52 1215
Edwin Chen 17.1 1216 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1217 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
Edwin Chen 2.1 1218
Xiaoling 74.5 1219
Xiaoling 55.2 1220 == 6.2 How to generate PWM Output in SN50v3-LB? ==
1221
1222
Edwin Chen 55.1 1223 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1224
1225
Edwin Chen 57.1 1226 == 6.3 How to put several sensors to a SN50v3-LB? ==
1227
Xiaoling 57.2 1228
Edwin Chen 57.1 1229 When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1230
1231 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1232
1233 [[image:image-20230810121434-1.png||height="242" width="656"]]
1234
1235
Edwin Chen 2.1 1236 = 7. Order Info =
1237
1238
Edwin Chen 10.1 1239 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
Edwin Chen 2.1 1240
1241 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1242
Edwin Chen 2.1 1243 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1244 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1245 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1246 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1247 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1248 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1249 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1250 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1251
Edwin Chen 10.1 1252 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1253
Edwin Chen 10.1 1254 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1255 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1256 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1257 * (% style="color:red" %)**NH**(%%): No Hole
1258
Xiaoling 74.5 1259
Edwin Chen 2.1 1260 = 8. ​Packing Info =
1261
Xiaoling 43.52 1262
Edwin Chen 2.1 1263 (% style="color:#037691" %)**Package Includes**:
1264
Edwin Chen 10.1 1265 * SN50v3-LB LoRaWAN Generic Node
Edwin Chen 2.1 1266
1267 (% style="color:#037691" %)**Dimension and weight**:
1268
1269 * Device Size: cm
1270 * Device Weight: g
1271 * Package Size / pcs : cm
1272 * Weight / pcs : g
1273
Xiaoling 74.5 1274
Edwin Chen 2.1 1275 = 9. Support =
1276
1277
1278 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 43.10 1279
Xiaoling 41.4 1280 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]