Version 74.5 by Xiaoling on 2023/08/19 16:07

Hide last authors
Xiaoling 41.2 1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
Edwin Chen 2.1 3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
Edwin Chen 5.1 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
Edwin Chen 2.1 18
Xiaoling 43.2 19
Edwin Chen 4.1 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 21
Edwin Chen 4.1 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
Edwin Chen 2.1 23
Edwin Chen 4.1 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
Edwin Chen 2.1 25
Edwin Chen 4.1 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 27
Edwin Chen 4.1 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 29
Edwin Chen 4.1 30
Edwin Chen 2.1 31 == 1.2 ​Features ==
32
Xiaoling 43.44 33
Edwin Chen 2.1 34 * LoRaWAN 1.0.3 Class A
35 * Ultra-low power consumption
Edwin Chen 5.1 36 * Open-Source hardware/software
Edwin Chen 2.1 37 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
38 * Support Bluetooth v5.1 and LoRaWAN remote configure
39 * Support wireless OTA update firmware
40 * Uplink on periodically
41 * Downlink to change configure
42 * 8500mAh Battery for long term use
43
Xiaoling 74.5 44
45
Edwin Chen 2.1 46 == 1.3 Specification ==
47
Xiaoling 43.4 48
Edwin Chen 2.1 49 (% style="color:#037691" %)**Common DC Characteristics:**
50
51 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
52 * Operating Temperature: -40 ~~ 85°C
53
Edwin Chen 5.1 54 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 55
Edwin Chen 5.1 56 * Battery output (2.6v ~~ 3.6v depends on battery)
57 * +5v controllable output
58 * 3 x Interrupt or Digital IN/OUT pins
59 * 3 x one-wire interfaces
60 * 1 x UART Interface
61 * 1 x I2C Interface
Edwin Chen 2.1 62
63 (% style="color:#037691" %)**LoRa Spec:**
64
65 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
66 * Max +22 dBm constant RF output vs.
67 * RX sensitivity: down to -139 dBm.
68 * Excellent blocking immunity
69
70 (% style="color:#037691" %)**Battery:**
71
72 * Li/SOCI2 un-chargeable battery
73 * Capacity: 8500mAh
74 * Self-Discharge: <1% / Year @ 25°C
75 * Max continuously current: 130mA
76 * Max boost current: 2A, 1 second
77
78 (% style="color:#037691" %)**Power Consumption**
79
80 * Sleep Mode: 5uA @ 3.3v
81 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
82
Xiaoling 74.5 83
84
Edwin Chen 2.1 85 == 1.4 Sleep mode and working mode ==
86
Xiaoling 43.4 87
Edwin Chen 2.1 88 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
89
90 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
91
92
93 == 1.5 Button & LEDs ==
94
95
96 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97
98
99 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
100 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
101 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
104 )))
105 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
106 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
107 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
108 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
109 )))
110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111
Xiaoling 74.5 112
113
Edwin Chen 2.1 114 == 1.6 BLE connection ==
115
116
Edwin Chen 5.1 117 SN50v3-LB supports BLE remote configure.
Edwin Chen 2.1 118
119
120 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
121
122 * Press button to send an uplink
123 * Press button to active device.
124 * Device Power on or reset.
125
126 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
127
128
Edwin Chen 6.1 129 == 1.7 Pin Definitions ==
Edwin Chen 2.1 130
131
Saxer Lin 49.1 132 [[image:image-20230610163213-1.png||height="404" width="699"]]
Edwin Chen 2.1 133
134
135 == 1.8 Mechanical ==
136
137
138 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
139
140 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
141
142 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
143
144
Saxer Lin 44.5 145 == 1.9 Hole Option ==
Edwin Chen 5.1 146
Xiaoling 43.4 147
Edwin Chen 5.1 148 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
149
150 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
151
152 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
153
154
Edwin Chen 10.1 155 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
Edwin Chen 2.1 156
157 == 2.1 How it works ==
158
159
Xiaoling 44.3 160 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 161
162
163 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
164
165
166 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
167
Xiaoling 44.3 168 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
Edwin Chen 2.1 169
170
Edwin Chen 11.2 171 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
Edwin Chen 2.1 172
Edwin Chen 11.2 173 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 174
Edwin Chen 11.2 175 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 2.1 176
177
178 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
179
180
181 (% style="color:blue" %)**Register the device**
182
183 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
184
185
186 (% style="color:blue" %)**Add APP EUI and DEV EUI**
187
188 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
189
190
191 (% style="color:blue" %)**Add APP EUI in the application**
192
193
194 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
195
196
197 (% style="color:blue" %)**Add APP KEY**
198
199 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
200
201
Edwin Chen 11.2 202 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
Edwin Chen 2.1 203
204
Edwin Chen 11.2 205 Press the button for 5 seconds to activate the SN50v3-LB.
Edwin Chen 2.1 206
207 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
208
209 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
210
211
212 == 2.3 ​Uplink Payload ==
213
214 === 2.3.1 Device Status, FPORT~=5 ===
215
216
Xiaoling 44.3 217 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 218
219 The Payload format is as below.
220
221
222 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
223 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
224 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
Xiaoling 45.4 225 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
Edwin Chen 2.1 226
227 Example parse in TTNv3
228
229
Xiaoling 44.3 230 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
Edwin Chen 2.1 231
232 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
233
234 (% style="color:#037691" %)**Frequency Band**:
235
Xiaoling 53.2 236 0x01: EU868
Edwin Chen 2.1 237
Xiaoling 53.2 238 0x02: US915
Edwin Chen 2.1 239
Xiaoling 53.2 240 0x03: IN865
Edwin Chen 2.1 241
Xiaoling 53.2 242 0x04: AU915
Edwin Chen 2.1 243
Xiaoling 53.2 244 0x05: KZ865
Edwin Chen 2.1 245
Xiaoling 53.2 246 0x06: RU864
Edwin Chen 2.1 247
Xiaoling 53.2 248 0x07: AS923
Edwin Chen 2.1 249
Xiaoling 53.2 250 0x08: AS923-1
Edwin Chen 2.1 251
Xiaoling 53.2 252 0x09: AS923-2
Edwin Chen 2.1 253
Xiaoling 53.2 254 0x0a: AS923-3
Edwin Chen 2.1 255
Xiaoling 53.2 256 0x0b: CN470
Edwin Chen 2.1 257
Xiaoling 53.2 258 0x0c: EU433
Edwin Chen 2.1 259
Xiaoling 53.2 260 0x0d: KR920
Edwin Chen 2.1 261
Xiaoling 53.2 262 0x0e: MA869
Edwin Chen 2.1 263
264
265 (% style="color:#037691" %)**Sub-Band**:
266
267 AU915 and US915:value 0x00 ~~ 0x08
268
269 CN470: value 0x0B ~~ 0x0C
270
271 Other Bands: Always 0x00
272
273
274 (% style="color:#037691" %)**Battery Info**:
275
276 Check the battery voltage.
277
278 Ex1: 0x0B45 = 2885mV
279
280 Ex2: 0x0B49 = 2889mV
281
282
Edwin Chen 12.1 283 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 284
285
Xiaoling 44.2 286 SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
Edwin Chen 12.1 287
288 For example:
289
Xiaoling 44.2 290 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
Edwin Chen 12.1 291
292
Edwin Chen 13.1 293 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 294
Xiaoling 44.3 295 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
Edwin Chen 12.1 296
Xiaoling 44.2 297 2. All modes share the same Payload Explanation from HERE.
Xiaoling 43.53 298
Xiaoling 44.2 299 3. By default, the device will send an uplink message every 20 minutes.
300
301
Edwin Chen 13.1 302 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 303
Xiaoling 43.5 304
Edwin Chen 12.1 305 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
306
Xiaoling 43.5 307 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.54 308 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
Xiaoling 45.4 309 |Value|Bat|(% style="width:191px" %)(((
Xiaoling 43.12 310 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 311 )))|(% style="width:78px" %)(((
Xiaoling 43.12 312 ADC(PA4)
Saxer Lin 26.2 313 )))|(% style="width:216px" %)(((
Xiaoling 43.13 314 Digital in(PB15)&Digital Interrupt(PA8)
Saxer Lin 40.1 315 )))|(% style="width:308px" %)(((
Xiaoling 43.12 316 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 317 )))|(% style="width:154px" %)(((
Xiaoling 43.12 318 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 319 )))
320
Edwin Chen 12.1 321 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
322
323
Edwin Chen 13.1 324 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
325
Xiaoling 43.45 326
Edwin Chen 12.1 327 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328
Xiaoling 43.14 329 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.54 330 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
Xiaoling 45.4 331 |Value|BAT|(% style="width:196px" %)(((
Xiaoling 43.16 332 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 333 )))|(% style="width:87px" %)(((
Xiaoling 43.16 334 ADC(PA4)
Saxer Lin 40.1 335 )))|(% style="width:189px" %)(((
Xiaoling 43.16 336 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 337 )))|(% style="width:208px" %)(((
Xiaoling 53.2 338 Distance measure by: 1) LIDAR-Lite V3HP
339 Or 2) Ultrasonic Sensor
Saxer Lin 40.1 340 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 341
342 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
343
Xiaoling 43.45 344
Xiaoling 43.17 345 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
Edwin Chen 12.1 346
Saxer Lin 26.2 347 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 348
Xiaoling 43.45 349
Xiaoling 43.17 350 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
Edwin Chen 12.1 351
Ellie Zhang 44.1 352 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
Saxer Lin 36.1 353
Saxer Lin 26.2 354 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 355
Xiaoling 43.45 356
Edwin Chen 12.1 357 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
358
Xiaoling 43.19 359 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 360 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
Xiaoling 45.5 361 |Value|BAT|(% style="width:183px" %)(((
Xiaoling 43.19 362 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 363 )))|(% style="width:173px" %)(((
Xiaoling 43.19 364 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 365 )))|(% style="width:84px" %)(((
Xiaoling 43.19 366 ADC(PA4)
Saxer Lin 40.1 367 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 368 Distance measure by:1)TF-Mini plus LiDAR
Xiaoling 53.3 369 Or 2) TF-Luna LiDAR
Saxer Lin 40.1 370 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 371
372 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
373
Xiaoling 43.45 374
Edwin Chen 12.1 375 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
376
Ellie Zhang 44.1 377 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 378
Saxer Lin 26.2 379 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 380
Xiaoling 43.45 381
Edwin Chen 12.1 382 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
383
Ellie Zhang 44.1 384 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 385
Saxer Lin 52.1 386 [[image:image-20230610170047-1.png||height="452" width="799"]]
Edwin Chen 12.1 387
388
Edwin Chen 13.1 389 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
390
Xiaoling 43.45 391
Edwin Chen 12.1 392 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
393
Xiaoling 43.21 394 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.25 395 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
396 **Size(bytes)**
Xiaoling 43.54 397 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
Xiaoling 45.4 398 |Value|(% style="width:68px" %)(((
Xiaoling 43.23 399 ADC1(PA4)
Saxer Lin 26.2 400 )))|(% style="width:75px" %)(((
Xiaoling 43.23 401 ADC2(PA5)
Saxer Lin 36.1 402 )))|(((
Xiaoling 43.23 403 ADC3(PA8)
Saxer Lin 36.1 404 )))|(((
405 Digital Interrupt(PB15)
406 )))|(% style="width:304px" %)(((
Xiaoling 43.23 407 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 36.1 408 )))|(% style="width:163px" %)(((
Xiaoling 43.23 409 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 410 )))|(% style="width:53px" %)Bat
411
412 [[image:image-20230513110214-6.png]]
413
414
Edwin Chen 13.1 415 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
416
Edwin Chen 12.1 417
Saxer Lin 26.2 418 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 419
Xiaoling 43.26 420 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 421 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
Xiaoling 45.4 422 |Value|BAT|(% style="width:186px" %)(((
Xiaoling 43.27 423 Temperature1(DS18B20)(PC13)
Saxer Lin 26.2 424 )))|(% style="width:82px" %)(((
Xiaoling 43.27 425 ADC(PA4)
Saxer Lin 26.2 426 )))|(% style="width:210px" %)(((
Xiaoling 43.27 427 Digital in(PB15) & Digital Interrupt(PA8) 
Saxer Lin 26.2 428 )))|(% style="width:191px" %)Temperature2(DS18B20)
Xiaoling 43.27 429 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
Edwin Chen 12.1 430
431 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
432
Xiaoling 44.4 433
Saxer Lin 39.2 434 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 435
Saxer Lin 39.1 436
Edwin Chen 13.1 437 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
438
Xiaoling 43.45 439
Saxer Lin 26.2 440 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 441
442 Each HX711 need to be calibrated before used. User need to do below two steps:
443
Xiaoling 44.2 444 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
445 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
Edwin Chen 12.1 446 1. (((
Saxer Lin 26.2 447 Weight has 4 bytes, the unit is g.
Xiaoling 43.53 448
449
450
Edwin Chen 12.1 451 )))
452
453 For example:
454
Xiaoling 44.2 455 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
Edwin Chen 12.1 456
457 Response:  Weight is 401 g
458
459 Check the response of this command and adjust the value to match the real value for thing.
460
Xiaoling 43.29 461 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
462 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 463 **Size(bytes)**
Xiaoling 43.30 464 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
Xiaoling 45.4 465 |Value|BAT|(% style="width:193px" %)(((
Xiaoling 43.55 466 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 467 )))|(% style="width:85px" %)(((
Xiaoling 43.31 468 ADC(PA4)
Saxer Lin 40.1 469 )))|(% style="width:186px" %)(((
Xiaoling 43.55 470 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 471 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 472
Edwin Chen 12.1 473 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
474
475
Edwin Chen 13.1 476 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
477
Xiaoling 43.45 478
Edwin Chen 12.1 479 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
480
481 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
482
Saxer Lin 26.2 483 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 484
Xiaoling 43.53 485
Xiaoling 43.45 486 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
Edwin Chen 12.1 487
Xiaoling 43.38 488 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.57 489 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
Xiaoling 45.4 490 |Value|BAT|(% style="width:256px" %)(((
Xiaoling 43.31 491 Temperature(DS18B20)(PC13)
Saxer Lin 36.1 492 )))|(% style="width:108px" %)(((
Xiaoling 43.31 493 ADC(PA4)
Saxer Lin 36.1 494 )))|(% style="width:126px" %)(((
Xiaoling 43.31 495 Digital in(PB15)
Saxer Lin 36.1 496 )))|(% style="width:145px" %)(((
Xiaoling 43.31 497 Count(PA8)
Saxer Lin 36.1 498 )))
499
Edwin Chen 12.1 500 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
501
502
Edwin Chen 13.1 503 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
504
Xiaoling 43.45 505
Xiaoling 43.38 506 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.33 507 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 508 **Size(bytes)**
Xiaoling 43.34 509 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
Xiaoling 45.4 510 |Value|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 511 Temperature(DS18B20)
512 (PC13)
Saxer Lin 40.1 513 )))|(% style="width:83px" %)(((
Xiaoling 43.35 514 ADC(PA5)
Saxer Lin 40.1 515 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 516 Digital Interrupt1(PA8)
Saxer Lin 40.1 517 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 518
519 [[image:image-20230513111203-7.png||height="324" width="975"]]
520
Xiaoling 43.45 521
Edwin Chen 13.1 522 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
523
Xiaoling 43.45 524
Xiaoling 43.38 525 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.35 526 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 527 **Size(bytes)**
Xiaoling 43.55 528 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
Xiaoling 45.4 529 |Value|BAT|(% style="width:207px" %)(((
Saxer Lin 36.1 530 Temperature(DS18B20)
531 (PC13)
532 )))|(% style="width:94px" %)(((
Xiaoling 43.36 533 ADC1(PA4)
Saxer Lin 36.1 534 )))|(% style="width:198px" %)(((
535 Digital Interrupt(PB15)
536 )))|(% style="width:84px" %)(((
Xiaoling 43.36 537 ADC2(PA5)
Saxer Lin 40.1 538 )))|(% style="width:82px" %)(((
Xiaoling 43.36 539 ADC3(PA8)
Edwin Chen 12.1 540 )))
541
Saxer Lin 36.1 542 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 543
544
Edwin Chen 13.1 545 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
546
Xiaoling 43.45 547
Xiaoling 43.38 548 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
549 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 550 **Size(bytes)**
Xiaoling 43.56 551 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
Xiaoling 45.4 552 |Value|BAT|(((
Xiaoling 43.58 553 Temperature
554 (DS18B20)(PC13)
Edwin Chen 12.1 555 )))|(((
Xiaoling 43.58 556 Temperature2
557 (DS18B20)(PB9)
Edwin Chen 12.1 558 )))|(((
Saxer Lin 36.1 559 Digital Interrupt
560 (PB15)
561 )))|(% style="width:193px" %)(((
Xiaoling 43.58 562 Temperature3
563 (DS18B20)(PB8)
Saxer Lin 36.1 564 )))|(% style="width:78px" %)(((
Xiaoling 43.39 565 Count1(PA8)
Saxer Lin 36.1 566 )))|(% style="width:78px" %)(((
Xiaoling 43.39 567 Count2(PA4)
Edwin Chen 12.1 568 )))
569
Saxer Lin 36.1 570 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 571
Xiaoling 43.40 572 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
Edwin Chen 12.1 573
Xiaoling 43.44 574 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
Edwin Chen 12.1 575
Xiaoling 43.44 576 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
Edwin Chen 12.1 577
Xiaoling 43.44 578 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
Edwin Chen 12.1 579
580
Xiaoling 43.41 581 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
582
Saxer Lin 36.1 583 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 584
Saxer Lin 36.1 585 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 586
587
Saxer Lin 65.1 588 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
589
Xiaoling 74.3 590
Saxer Lin 65.1 591 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
592
Xiaoling 74.3 593 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
Saxer Lin 65.1 594
Saxer Lin 69.1 595
Saxer Lin 65.1 596 ===== 2.3.2.10.a  Uplink, PWM input capture =====
597
Xiaoling 74.3 598
Saxer Lin 65.1 599 [[image:image-20230817172209-2.png||height="439" width="683"]]
600
601 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
602 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
603 |Value|Bat|(% style="width:191px" %)(((
604 Temperature(DS18B20)(PC13)
605 )))|(% style="width:78px" %)(((
606 ADC(PA4)
607 )))|(% style="width:135px" %)(((
608 PWM_Setting
609
610 &Digital Interrupt(PA8)
611 )))|(% style="width:70px" %)(((
612 Pulse period
613 )))|(% style="width:89px" %)(((
614 Duration of high level
615 )))
616
617 [[image:image-20230817170702-1.png||height="161" width="1044"]]
618
619
Saxer Lin 72.1 620 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
Saxer Lin 65.1 621
Xiaoling 74.4 622 **Frequency:**
Saxer Lin 65.1 623
Saxer Lin 72.1 624 (% class="MsoNormal" %)
Xiaoling 74.4 625 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
Saxer Lin 65.1 626
Saxer Lin 72.1 627 (% class="MsoNormal" %)
Xiaoling 74.4 628 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
Saxer Lin 72.1 629
Xiaoling 74.4 630
Saxer Lin 72.1 631 (% class="MsoNormal" %)
Xiaoling 74.4 632 **Duty cycle:**
Saxer Lin 72.1 633
634 Duty cycle= Duration of high level/ Pulse period*100 ~(%).
635
636 [[image:image-20230818092200-1.png||height="344" width="627"]]
637
638
Saxer Lin 65.1 639 ===== 2.3.2.10.b  Downlink, PWM output =====
640
Xiaoling 74.3 641
Saxer Lin 65.1 642 [[image:image-20230817173800-3.png||height="412" width="685"]]
643
644 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
645
646 xx xx xx is the output frequency, the unit is HZ.
647
648 yy is the duty cycle of the output, the unit is %.
649
650 zz zz is the time delay of the output, the unit is ms.
651
652
653 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
654
655 The oscilloscope displays as follows:
656
657 [[image:image-20230817173858-5.png||height="694" width="921"]]
658
659
Edwin Chen 14.1 660 === 2.3.3  ​Decode payload ===
661
Xiaoling 43.45 662
Edwin Chen 12.1 663 While using TTN V3 network, you can add the payload format to decode the payload.
664
665 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
666
667 The payload decoder function for TTN V3 are here:
668
Xiaoling 44.2 669 SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 670
671
Edwin Chen 14.1 672 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 673
Xiaoling 43.45 674
Xiaoling 44.2 675 Check the battery voltage for SN50v3-LB.
Edwin Chen 2.1 676
677 Ex1: 0x0B45 = 2885mV
678
679 Ex2: 0x0B49 = 2889mV
680
681
Edwin Chen 14.1 682 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 683
Xiaoling 43.45 684
Saxer Lin 42.1 685 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 686
Xiaoling 43.45 687 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
Edwin Chen 14.1 688
Xiaoling 43.41 689 (% style="color:blue" %)**Connection:**
Edwin Chen 14.1 690
Saxer Lin 26.2 691 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 692
Xiaoling 43.46 693
Xiaoling 43.41 694 (% style="color:blue" %)**Example**:
Edwin Chen 2.1 695
696 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
697
698 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
699
700 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
701
702
Edwin Chen 14.1 703 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 704
Xiaoling 43.46 705
Saxer Lin 26.2 706 The digital input for pin PB15,
Edwin Chen 2.1 707
Saxer Lin 26.2 708 * When PB15 is high, the bit 1 of payload byte 6 is 1.
709 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 710
Saxer Lin 26.2 711 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
712 (((
Saxer Lin 36.1 713 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
714
Xiaoling 43.46 715 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
716
717
Saxer Lin 26.2 718 )))
719
Edwin Chen 14.1 720 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 721
Xiaoling 43.46 722
Saxer Lin 53.1 723 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 724
Saxer Lin 53.1 725 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 726
Saxer Lin 26.2 727 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 728
Xiaoling 44.2 729
Xiaoling 43.46 730 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
Edwin Chen 14.1 731
Saxer Lin 43.1 732
Saxer Lin 59.1 733 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
734
735 [[image:image-20230811113449-1.png||height="370" width="608"]]
736
Edwin Chen 14.1 737 ==== 2.3.3.5 Digital Interrupt ====
738
Xiaoling 43.46 739
Xiaoling 44.2 740 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
Edwin Chen 14.1 741
Xiaoling 43.44 742 (% style="color:blue" %)** Interrupt connection method:**
Edwin Chen 14.1 743
Saxer Lin 36.1 744 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 745
Xiaoling 43.46 746
Xiaoling 43.8 747 (% style="color:blue" %)**Example to use with door sensor :**
Edwin Chen 14.1 748
749 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
750
751 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
752
Xiaoling 44.2 753 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 754
755
Xiaoling 43.46 756 (% style="color:blue" %)**Below is the installation example:**
757
Xiaoling 44.2 758 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
Edwin Chen 14.1 759
760 * (((
Xiaoling 44.2 761 One pin to SN50v3-LB's PA8 pin
Edwin Chen 14.1 762 )))
763 * (((
Xiaoling 44.2 764 The other pin to SN50v3-LB's VDD pin
Edwin Chen 14.1 765 )))
766
Saxer Lin 36.1 767 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 768
Xiaoling 43.46 769 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
Edwin Chen 14.1 770
Saxer Lin 36.1 771 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 772
773 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
774
775 The above photos shows the two parts of the magnetic switch fitted to a door.
776
777 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
778
779 The command is:
780
Xiaoling 44.2 781 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 782
783 Below shows some screen captures in TTN V3:
784
785 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
786
Xiaoling 43.47 787
Xiaoling 44.4 788 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
Edwin Chen 14.1 789
790 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
791
792
Saxer Lin 26.2 793 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 794
Xiaoling 43.47 795
Saxer Lin 26.2 796 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 797
Saxer Lin 40.1 798 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 799
Xiaoling 44.2 800 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
Edwin Chen 14.1 801
Xiaoling 44.2 802
Edwin Chen 14.1 803 Below is the connection to SHT20/ SHT31. The connection is as below:
804
Saxer Lin 52.1 805 [[image:image-20230610170152-2.png||height="501" width="846"]]
Saxer Lin 36.1 806
Xiaoling 44.4 807
Edwin Chen 14.1 808 The device will be able to get the I2C sensor data now and upload to IoT Server.
809
810 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
811
812 Convert the read byte to decimal and divide it by ten.
813
Edwin Chen 2.1 814 **Example:**
815
Edwin Chen 14.1 816 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 817
Edwin Chen 14.1 818 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 819
Edwin Chen 14.1 820 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 821
822
Edwin Chen 14.1 823 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 824
Xiaoling 43.48 825
Xiaoling 43.42 826 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
Edwin Chen 14.1 827
828
829 ==== 2.3.3.8 Ultrasonic Sensor ====
830
Xiaoling 43.48 831
Saxer Lin 26.2 832 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 833
Xiaoling 44.2 834 The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 835
Xiaoling 43.44 836 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
Saxer Lin 36.1 837
Edwin Chen 14.1 838 The picture below shows the connection:
839
Saxer Lin 36.1 840 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 841
Xiaoling 43.50 842
Xiaoling 44.2 843 Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 844
845 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
846
847 **Example:**
848
849 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
850
851
852 ==== 2.3.3.9  Battery Output - BAT pin ====
853
Xiaoling 43.50 854
Xiaoling 44.4 855 The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
Edwin Chen 14.1 856
857
858 ==== 2.3.3.10  +5V Output ====
859
Xiaoling 43.50 860
Xiaoling 44.2 861 SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
Edwin Chen 14.1 862
863 The 5V output time can be controlled by AT Command.
864
Xiaoling 43.9 865 (% style="color:blue" %)**AT+5VT=1000**
Edwin Chen 14.1 866
867 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
868
Xiaoling 44.4 869 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
Edwin Chen 14.1 870
871
872 ==== 2.3.3.11  BH1750 Illumination Sensor ====
873
Xiaoling 43.50 874
Edwin Chen 14.1 875 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
876
Saxer Lin 40.1 877 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 878
Xiaoling 43.51 879
Saxer Lin 40.1 880 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 881
882
Saxer Lin 65.1 883 ==== 2.3.3.12  PWM MOD ====
Edwin Chen 14.1 884
Xiaoling 43.51 885
Saxer Lin 69.1 886 * (((
887 The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
888 )))
889 * (((
890 If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
891 )))
892
893 [[image:image-20230817183249-3.png||height="320" width="417"]]
894
895 * (((
896 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
897 )))
898 * (((
Xiaoling 74.2 899 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
Saxer Lin 70.1 900
Xiaoling 74.5 901
Saxer Lin 70.1 902
Saxer Lin 69.1 903 )))
904
Saxer Lin 65.1 905 ==== 2.3.3.13  Working MOD ====
906
907
Edwin Chen 14.1 908 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
909
910 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
911
912 Case 7^^th^^ Byte >> 2 & 0x1f:
913
914 * 0: MOD1
915 * 1: MOD2
916 * 2: MOD3
917 * 3: MOD4
918 * 4: MOD5
919 * 5: MOD6
Saxer Lin 36.1 920 * 6: MOD7
921 * 7: MOD8
922 * 8: MOD9
Saxer Lin 65.1 923 * 9: MOD10
Edwin Chen 14.1 924
Xiaoling 74.5 925
926
Edwin Chen 2.1 927 == 2.4 Payload Decoder file ==
928
929
930 In TTN, use can add a custom payload so it shows friendly reading
931
932 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
933
Saxer Lin 40.1 934 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 935
936
Edwin Chen 15.1 937 == 2.5 Frequency Plans ==
Edwin Chen 2.1 938
939
Edwin Chen 15.1 940 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 2.1 941
942 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
943
944
Edwin Chen 16.1 945 = 3. Configure SN50v3-LB =
Edwin Chen 2.1 946
947 == 3.1 Configure Methods ==
948
949
Edwin Chen 16.1 950 SN50v3-LB supports below configure method:
Edwin Chen 2.1 951
952 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
953 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
954 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
955
Xiaoling 74.5 956
957
Edwin Chen 2.1 958 == 3.2 General Commands ==
959
960
961 These commands are to configure:
962
963 * General system settings like: uplink interval.
964 * LoRaWAN protocol & radio related command.
965
966 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
967
968 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
969
970
Edwin Chen 16.1 971 == 3.3 Commands special design for SN50v3-LB ==
Edwin Chen 2.1 972
973
Xiaoling 44.2 974 These commands only valid for SN50v3-LB, as below:
Edwin Chen 2.1 975
976
977 === 3.3.1 Set Transmit Interval Time ===
978
Xiaoling 43.51 979
Edwin Chen 2.1 980 Feature: Change LoRaWAN End Node Transmit Interval.
981
982 (% style="color:blue" %)**AT Command: AT+TDC**
983
984 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.2 985 |=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
Edwin Chen 2.1 986 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
987 30000
988 OK
989 the interval is 30000ms = 30s
990 )))
991 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
992 OK
993 Set transmit interval to 60000ms = 60 seconds
994 )))
995
996 (% style="color:blue" %)**Downlink Command: 0x01**
997
998 Format: Command Code (0x01) followed by 3 bytes time value.
999
1000 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1001
1002 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1003 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1004
Xiaoling 74.5 1005
1006
Edwin Chen 2.1 1007 === 3.3.2 Get Device Status ===
1008
Xiaoling 43.52 1009
Saxer Lin 40.1 1010 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 1011
Xiaoling 44.4 1012 (% style="color:blue" %)**Downlink Payload: 0x26 01**
Edwin Chen 2.1 1013
Xiaoling 44.4 1014 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
Edwin Chen 2.1 1015
1016
Saxer Lin 36.1 1017 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 1018
Xiaoling 43.52 1019
Edwin Chen 2.1 1020 Feature, Set Interrupt mode for GPIO_EXIT.
1021
Saxer Lin 36.1 1022 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
Edwin Chen 2.1 1023
1024 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1025 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1026 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
Edwin Chen 2.1 1027 0
1028 OK
1029 the mode is 0 =Disable Interrupt
1030 )))
Saxer Lin 36.1 1031 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
Edwin Chen 2.1 1032 Set Transmit Interval
1033 0. (Disable Interrupt),
1034 ~1. (Trigger by rising and falling edge)
1035 2. (Trigger by falling edge)
1036 3. (Trigger by rising edge)
1037 )))|(% style="width:157px" %)OK
Saxer Lin 36.1 1038 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1039 Set Transmit Interval
1040 trigger by rising edge.
1041 )))|(% style="width:157px" %)OK
1042 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1043
Edwin Chen 2.1 1044 (% style="color:blue" %)**Downlink Command: 0x06**
1045
1046 Format: Command Code (0x06) followed by 3 bytes.
1047
1048 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1049
Saxer Lin 36.1 1050 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1051 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1052 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1053 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
Edwin Chen 2.1 1054
Xiaoling 74.5 1055
1056
Saxer Lin 36.1 1057 === 3.3.4 Set Power Output Duration ===
1058
Xiaoling 43.52 1059
Saxer Lin 36.1 1060 Control the output duration 5V . Before each sampling, device will
1061
1062 ~1. first enable the power output to external sensor,
1063
1064 2. keep it on as per duration, read sensor value and construct uplink payload
1065
1066 3. final, close the power output.
1067
1068 (% style="color:blue" %)**AT Command: AT+5VT**
1069
1070 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1071 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1072 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1073 500(default)
1074 OK
1075 )))
1076 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1077 Close after a delay of 1000 milliseconds.
1078 )))|(% style="width:157px" %)OK
1079
1080 (% style="color:blue" %)**Downlink Command: 0x07**
1081
1082 Format: Command Code (0x07) followed by 2 bytes.
1083
1084 The first and second bytes are the time to turn on.
1085
Saxer Lin 40.1 1086 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1087 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 1088
Xiaoling 74.5 1089
1090
Saxer Lin 36.1 1091 === 3.3.5 Set Weighing parameters ===
1092
Xiaoling 43.52 1093
Saxer Lin 37.1 1094 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 1095
1096 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1097
1098 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1099 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 37.1 1100 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1101 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1102 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 1103
1104 (% style="color:blue" %)**Downlink Command: 0x08**
1105
Saxer Lin 37.1 1106 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 1107
Saxer Lin 37.1 1108 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 1109
Saxer Lin 37.1 1110 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 1111
Saxer Lin 37.1 1112 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1113 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1114 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1115
Xiaoling 74.5 1116
1117
Saxer Lin 36.1 1118 === 3.3.6 Set Digital pulse count value ===
1119
Xiaoling 43.52 1120
Saxer Lin 36.1 1121 Feature: Set the pulse count value.
1122
Saxer Lin 37.1 1123 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1124
Saxer Lin 36.1 1125 (% style="color:blue" %)**AT Command: AT+SETCNT**
1126
1127 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1128 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1129 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1130 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1131
1132 (% style="color:blue" %)**Downlink Command: 0x09**
1133
1134 Format: Command Code (0x09) followed by 5 bytes.
1135
1136 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1137
1138 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 1139 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 1140
Xiaoling 74.5 1141
1142
Saxer Lin 36.1 1143 === 3.3.7 Set Workmode ===
1144
Xiaoling 43.52 1145
Saxer Lin 37.1 1146 Feature: Switch working mode.
Saxer Lin 36.1 1147
1148 (% style="color:blue" %)**AT Command: AT+MOD**
1149
1150 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1151 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1152 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1153 OK
1154 )))
1155 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1156 OK
1157 Attention:Take effect after ATZ
1158 )))
1159
1160 (% style="color:blue" %)**Downlink Command: 0x0A**
1161
1162 Format: Command Code (0x0A) followed by 1 bytes.
1163
1164 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1165 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1166
Xiaoling 74.5 1167
1168
Saxer Lin 72.1 1169 === 3.3.8 PWM setting ===
1170
Xiaoling 74.5 1171
Saxer Lin 72.1 1172 Feature: Set the time acquisition unit for PWM input capture.
1173
1174 (% style="color:blue" %)**AT Command: AT+PWMSET**
1175
1176 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1177 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1178 |(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1179 0(default)
1180
1181 OK
1182 )))
1183 |(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1184 OK
1185
1186 )))
1187 |(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1188
1189 (% style="color:blue" %)**Downlink Command: 0x0C**
1190
1191 Format: Command Code (0x0C) followed by 1 bytes.
1192
1193 * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1194 * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1195
Xiaoling 74.5 1196
1197
Edwin Chen 2.1 1198 = 4. Battery & Power Consumption =
1199
1200
Edwin Chen 11.1 1201 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1202
1203 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1204
1205
1206 = 5. OTA Firmware update =
1207
1208
1209 (% class="wikigeneratedid" %)
Xiaoling 44.4 1210 **User can change firmware SN50v3-LB to:**
Edwin Chen 2.1 1211
1212 * Change Frequency band/ region.
1213 * Update with new features.
1214 * Fix bugs.
1215
Xiaoling 52.2 1216 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
Edwin Chen 2.1 1217
Xiaoling 44.4 1218 **Methods to Update Firmware:**
Edwin Chen 2.1 1219
Xiaoling 53.3 1220 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1221 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
Edwin Chen 2.1 1222
Xiaoling 74.5 1223
1224
Edwin Chen 2.1 1225 = 6. FAQ =
1226
Edwin Chen 17.1 1227 == 6.1 Where can i find source code of SN50v3-LB? ==
Edwin Chen 2.1 1228
Xiaoling 43.52 1229
Edwin Chen 17.1 1230 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1231 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
Edwin Chen 2.1 1232
Xiaoling 74.5 1233
1234
Xiaoling 55.2 1235 == 6.2 How to generate PWM Output in SN50v3-LB? ==
1236
1237
Edwin Chen 55.1 1238 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1239
1240
Edwin Chen 57.1 1241 == 6.3 How to put several sensors to a SN50v3-LB? ==
1242
Xiaoling 57.2 1243
Edwin Chen 57.1 1244 When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1245
1246 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1247
1248 [[image:image-20230810121434-1.png||height="242" width="656"]]
1249
1250
Edwin Chen 2.1 1251 = 7. Order Info =
1252
1253
Edwin Chen 10.1 1254 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
Edwin Chen 2.1 1255
1256 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1257
Edwin Chen 2.1 1258 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1259 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1260 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1261 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1262 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1263 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1264 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1265 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1266
Edwin Chen 10.1 1267 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1268
Edwin Chen 10.1 1269 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1270 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1271 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1272 * (% style="color:red" %)**NH**(%%): No Hole
1273
Xiaoling 74.5 1274
1275
Edwin Chen 2.1 1276 = 8. ​Packing Info =
1277
Xiaoling 43.52 1278
Edwin Chen 2.1 1279 (% style="color:#037691" %)**Package Includes**:
1280
Edwin Chen 10.1 1281 * SN50v3-LB LoRaWAN Generic Node
Edwin Chen 2.1 1282
1283 (% style="color:#037691" %)**Dimension and weight**:
1284
1285 * Device Size: cm
1286 * Device Weight: g
1287 * Package Size / pcs : cm
1288 * Weight / pcs : g
1289
Xiaoling 74.5 1290
1291
Edwin Chen 2.1 1292 = 9. Support =
1293
1294
1295 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 43.10 1296
Xiaoling 41.4 1297 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]