Version 74.3 by Xiaoling on 2023/08/19 15:41

Hide last authors
Xiaoling 41.2 1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
Edwin Chen 2.1 3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
Edwin Chen 5.1 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
Edwin Chen 2.1 18
Xiaoling 43.2 19
Edwin Chen 4.1 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 21
Edwin Chen 4.1 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
Edwin Chen 2.1 23
Edwin Chen 4.1 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
Edwin Chen 2.1 25
Edwin Chen 4.1 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 27
Edwin Chen 4.1 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 29
Edwin Chen 4.1 30
Edwin Chen 2.1 31 == 1.2 ​Features ==
32
Xiaoling 43.44 33
Edwin Chen 2.1 34 * LoRaWAN 1.0.3 Class A
35 * Ultra-low power consumption
Edwin Chen 5.1 36 * Open-Source hardware/software
Edwin Chen 2.1 37 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
38 * Support Bluetooth v5.1 and LoRaWAN remote configure
39 * Support wireless OTA update firmware
40 * Uplink on periodically
41 * Downlink to change configure
42 * 8500mAh Battery for long term use
43
44 == 1.3 Specification ==
45
Xiaoling 43.4 46
Edwin Chen 2.1 47 (% style="color:#037691" %)**Common DC Characteristics:**
48
49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
50 * Operating Temperature: -40 ~~ 85°C
51
Edwin Chen 5.1 52 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 53
Edwin Chen 5.1 54 * Battery output (2.6v ~~ 3.6v depends on battery)
55 * +5v controllable output
56 * 3 x Interrupt or Digital IN/OUT pins
57 * 3 x one-wire interfaces
58 * 1 x UART Interface
59 * 1 x I2C Interface
Edwin Chen 2.1 60
61 (% style="color:#037691" %)**LoRa Spec:**
62
63 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
64 * Max +22 dBm constant RF output vs.
65 * RX sensitivity: down to -139 dBm.
66 * Excellent blocking immunity
67
68 (% style="color:#037691" %)**Battery:**
69
70 * Li/SOCI2 un-chargeable battery
71 * Capacity: 8500mAh
72 * Self-Discharge: <1% / Year @ 25°C
73 * Max continuously current: 130mA
74 * Max boost current: 2A, 1 second
75
76 (% style="color:#037691" %)**Power Consumption**
77
78 * Sleep Mode: 5uA @ 3.3v
79 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
80
81 == 1.4 Sleep mode and working mode ==
82
Xiaoling 43.4 83
Edwin Chen 2.1 84 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
85
86 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
87
88
89 == 1.5 Button & LEDs ==
90
91
92 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
93
94
95 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
96 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
97 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
98 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
99 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
100 )))
101 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
102 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
103 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
104 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
105 )))
106 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
107
108 == 1.6 BLE connection ==
109
110
Edwin Chen 5.1 111 SN50v3-LB supports BLE remote configure.
Edwin Chen 2.1 112
113
114 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
115
116 * Press button to send an uplink
117 * Press button to active device.
118 * Device Power on or reset.
119
120 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
121
122
Edwin Chen 6.1 123 == 1.7 Pin Definitions ==
Edwin Chen 2.1 124
125
Saxer Lin 49.1 126 [[image:image-20230610163213-1.png||height="404" width="699"]]
Edwin Chen 2.1 127
128
129 == 1.8 Mechanical ==
130
131
132 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
133
134 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
135
136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137
138
Saxer Lin 44.5 139 == 1.9 Hole Option ==
Edwin Chen 5.1 140
Xiaoling 43.4 141
Edwin Chen 5.1 142 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
143
144 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
145
146 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
147
148
Edwin Chen 10.1 149 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
Edwin Chen 2.1 150
151 == 2.1 How it works ==
152
153
Xiaoling 44.3 154 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 155
156
157 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
158
159
160 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
161
Xiaoling 44.3 162 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
Edwin Chen 2.1 163
164
Edwin Chen 11.2 165 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
Edwin Chen 2.1 166
Edwin Chen 11.2 167 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 168
Edwin Chen 11.2 169 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 2.1 170
171
172 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
173
174
175 (% style="color:blue" %)**Register the device**
176
177 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
178
179
180 (% style="color:blue" %)**Add APP EUI and DEV EUI**
181
182 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
183
184
185 (% style="color:blue" %)**Add APP EUI in the application**
186
187
188 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
189
190
191 (% style="color:blue" %)**Add APP KEY**
192
193 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
194
195
Edwin Chen 11.2 196 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
Edwin Chen 2.1 197
198
Edwin Chen 11.2 199 Press the button for 5 seconds to activate the SN50v3-LB.
Edwin Chen 2.1 200
201 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
202
203 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
204
205
206 == 2.3 ​Uplink Payload ==
207
208 === 2.3.1 Device Status, FPORT~=5 ===
209
210
Xiaoling 44.3 211 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 212
213 The Payload format is as below.
214
215
216 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
217 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
218 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
Xiaoling 45.4 219 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
Edwin Chen 2.1 220
221 Example parse in TTNv3
222
223
Xiaoling 44.3 224 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
Edwin Chen 2.1 225
226 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
227
228 (% style="color:#037691" %)**Frequency Band**:
229
Xiaoling 53.2 230 0x01: EU868
Edwin Chen 2.1 231
Xiaoling 53.2 232 0x02: US915
Edwin Chen 2.1 233
Xiaoling 53.2 234 0x03: IN865
Edwin Chen 2.1 235
Xiaoling 53.2 236 0x04: AU915
Edwin Chen 2.1 237
Xiaoling 53.2 238 0x05: KZ865
Edwin Chen 2.1 239
Xiaoling 53.2 240 0x06: RU864
Edwin Chen 2.1 241
Xiaoling 53.2 242 0x07: AS923
Edwin Chen 2.1 243
Xiaoling 53.2 244 0x08: AS923-1
Edwin Chen 2.1 245
Xiaoling 53.2 246 0x09: AS923-2
Edwin Chen 2.1 247
Xiaoling 53.2 248 0x0a: AS923-3
Edwin Chen 2.1 249
Xiaoling 53.2 250 0x0b: CN470
Edwin Chen 2.1 251
Xiaoling 53.2 252 0x0c: EU433
Edwin Chen 2.1 253
Xiaoling 53.2 254 0x0d: KR920
Edwin Chen 2.1 255
Xiaoling 53.2 256 0x0e: MA869
Edwin Chen 2.1 257
258
259 (% style="color:#037691" %)**Sub-Band**:
260
261 AU915 and US915:value 0x00 ~~ 0x08
262
263 CN470: value 0x0B ~~ 0x0C
264
265 Other Bands: Always 0x00
266
267
268 (% style="color:#037691" %)**Battery Info**:
269
270 Check the battery voltage.
271
272 Ex1: 0x0B45 = 2885mV
273
274 Ex2: 0x0B49 = 2889mV
275
276
Edwin Chen 12.1 277 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 278
279
Xiaoling 44.2 280 SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
Edwin Chen 12.1 281
282 For example:
283
Xiaoling 44.2 284 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
Edwin Chen 12.1 285
286
Edwin Chen 13.1 287 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 288
Xiaoling 44.3 289 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
Edwin Chen 12.1 290
Xiaoling 44.2 291 2. All modes share the same Payload Explanation from HERE.
Xiaoling 43.53 292
Xiaoling 44.2 293 3. By default, the device will send an uplink message every 20 minutes.
294
295
Edwin Chen 13.1 296 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 297
Xiaoling 43.5 298
Edwin Chen 12.1 299 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
300
Xiaoling 43.5 301 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.54 302 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
Xiaoling 45.4 303 |Value|Bat|(% style="width:191px" %)(((
Xiaoling 43.12 304 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 305 )))|(% style="width:78px" %)(((
Xiaoling 43.12 306 ADC(PA4)
Saxer Lin 26.2 307 )))|(% style="width:216px" %)(((
Xiaoling 43.13 308 Digital in(PB15)&Digital Interrupt(PA8)
Saxer Lin 40.1 309 )))|(% style="width:308px" %)(((
Xiaoling 43.12 310 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 311 )))|(% style="width:154px" %)(((
Xiaoling 43.12 312 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 313 )))
314
Edwin Chen 12.1 315 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
316
317
Edwin Chen 13.1 318 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
319
Xiaoling 43.45 320
Edwin Chen 12.1 321 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
322
Xiaoling 43.14 323 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.54 324 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
Xiaoling 45.4 325 |Value|BAT|(% style="width:196px" %)(((
Xiaoling 43.16 326 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 327 )))|(% style="width:87px" %)(((
Xiaoling 43.16 328 ADC(PA4)
Saxer Lin 40.1 329 )))|(% style="width:189px" %)(((
Xiaoling 43.16 330 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 331 )))|(% style="width:208px" %)(((
Xiaoling 53.2 332 Distance measure by: 1) LIDAR-Lite V3HP
333 Or 2) Ultrasonic Sensor
Saxer Lin 40.1 334 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 335
336 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
337
Xiaoling 43.45 338
Xiaoling 43.17 339 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
Edwin Chen 12.1 340
Saxer Lin 26.2 341 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 342
Xiaoling 43.45 343
Xiaoling 43.17 344 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
Edwin Chen 12.1 345
Ellie Zhang 44.1 346 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
Saxer Lin 36.1 347
Saxer Lin 26.2 348 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 349
Xiaoling 43.45 350
Edwin Chen 12.1 351 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
352
Xiaoling 43.19 353 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 354 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
Xiaoling 45.5 355 |Value|BAT|(% style="width:183px" %)(((
Xiaoling 43.19 356 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 357 )))|(% style="width:173px" %)(((
Xiaoling 43.19 358 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 359 )))|(% style="width:84px" %)(((
Xiaoling 43.19 360 ADC(PA4)
Saxer Lin 40.1 361 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 362 Distance measure by:1)TF-Mini plus LiDAR
Xiaoling 53.3 363 Or 2) TF-Luna LiDAR
Saxer Lin 40.1 364 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 365
366 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
367
Xiaoling 43.45 368
Edwin Chen 12.1 369 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
370
Ellie Zhang 44.1 371 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 372
Saxer Lin 26.2 373 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 374
Xiaoling 43.45 375
Edwin Chen 12.1 376 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
377
Ellie Zhang 44.1 378 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 379
Saxer Lin 52.1 380 [[image:image-20230610170047-1.png||height="452" width="799"]]
Edwin Chen 12.1 381
382
Edwin Chen 13.1 383 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
384
Xiaoling 43.45 385
Edwin Chen 12.1 386 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
387
Xiaoling 43.21 388 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.25 389 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
390 **Size(bytes)**
Xiaoling 43.54 391 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
Xiaoling 45.4 392 |Value|(% style="width:68px" %)(((
Xiaoling 43.23 393 ADC1(PA4)
Saxer Lin 26.2 394 )))|(% style="width:75px" %)(((
Xiaoling 43.23 395 ADC2(PA5)
Saxer Lin 36.1 396 )))|(((
Xiaoling 43.23 397 ADC3(PA8)
Saxer Lin 36.1 398 )))|(((
399 Digital Interrupt(PB15)
400 )))|(% style="width:304px" %)(((
Xiaoling 43.23 401 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 36.1 402 )))|(% style="width:163px" %)(((
Xiaoling 43.23 403 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 404 )))|(% style="width:53px" %)Bat
405
406 [[image:image-20230513110214-6.png]]
407
408
Edwin Chen 13.1 409 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
410
Edwin Chen 12.1 411
Saxer Lin 26.2 412 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 413
Xiaoling 43.26 414 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 415 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
Xiaoling 45.4 416 |Value|BAT|(% style="width:186px" %)(((
Xiaoling 43.27 417 Temperature1(DS18B20)(PC13)
Saxer Lin 26.2 418 )))|(% style="width:82px" %)(((
Xiaoling 43.27 419 ADC(PA4)
Saxer Lin 26.2 420 )))|(% style="width:210px" %)(((
Xiaoling 43.27 421 Digital in(PB15) & Digital Interrupt(PA8) 
Saxer Lin 26.2 422 )))|(% style="width:191px" %)Temperature2(DS18B20)
Xiaoling 43.27 423 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
Edwin Chen 12.1 424
425 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
426
Xiaoling 44.4 427
Saxer Lin 39.2 428 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 429
Saxer Lin 39.1 430
Edwin Chen 13.1 431 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
432
Xiaoling 43.45 433
Saxer Lin 26.2 434 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 435
436 Each HX711 need to be calibrated before used. User need to do below two steps:
437
Xiaoling 44.2 438 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
439 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
Edwin Chen 12.1 440 1. (((
Saxer Lin 26.2 441 Weight has 4 bytes, the unit is g.
Xiaoling 43.53 442
443
444
Edwin Chen 12.1 445 )))
446
447 For example:
448
Xiaoling 44.2 449 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
Edwin Chen 12.1 450
451 Response:  Weight is 401 g
452
453 Check the response of this command and adjust the value to match the real value for thing.
454
Xiaoling 43.29 455 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
456 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 457 **Size(bytes)**
Xiaoling 43.30 458 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
Xiaoling 45.4 459 |Value|BAT|(% style="width:193px" %)(((
Xiaoling 43.55 460 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 461 )))|(% style="width:85px" %)(((
Xiaoling 43.31 462 ADC(PA4)
Saxer Lin 40.1 463 )))|(% style="width:186px" %)(((
Xiaoling 43.55 464 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 465 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 466
Edwin Chen 12.1 467 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
468
469
Edwin Chen 13.1 470 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
471
Xiaoling 43.45 472
Edwin Chen 12.1 473 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
474
475 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
476
Saxer Lin 26.2 477 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 478
Xiaoling 43.53 479
Xiaoling 43.45 480 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
Edwin Chen 12.1 481
Xiaoling 43.38 482 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.57 483 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
Xiaoling 45.4 484 |Value|BAT|(% style="width:256px" %)(((
Xiaoling 43.31 485 Temperature(DS18B20)(PC13)
Saxer Lin 36.1 486 )))|(% style="width:108px" %)(((
Xiaoling 43.31 487 ADC(PA4)
Saxer Lin 36.1 488 )))|(% style="width:126px" %)(((
Xiaoling 43.31 489 Digital in(PB15)
Saxer Lin 36.1 490 )))|(% style="width:145px" %)(((
Xiaoling 43.31 491 Count(PA8)
Saxer Lin 36.1 492 )))
493
Edwin Chen 12.1 494 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
495
496
Edwin Chen 13.1 497 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
498
Xiaoling 43.45 499
Xiaoling 43.38 500 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.33 501 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 502 **Size(bytes)**
Xiaoling 43.34 503 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
Xiaoling 45.4 504 |Value|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 505 Temperature(DS18B20)
506 (PC13)
Saxer Lin 40.1 507 )))|(% style="width:83px" %)(((
Xiaoling 43.35 508 ADC(PA5)
Saxer Lin 40.1 509 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 510 Digital Interrupt1(PA8)
Saxer Lin 40.1 511 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 512
513 [[image:image-20230513111203-7.png||height="324" width="975"]]
514
Xiaoling 43.45 515
Edwin Chen 13.1 516 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
517
Xiaoling 43.45 518
Xiaoling 43.38 519 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.35 520 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 521 **Size(bytes)**
Xiaoling 43.55 522 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
Xiaoling 45.4 523 |Value|BAT|(% style="width:207px" %)(((
Saxer Lin 36.1 524 Temperature(DS18B20)
525 (PC13)
526 )))|(% style="width:94px" %)(((
Xiaoling 43.36 527 ADC1(PA4)
Saxer Lin 36.1 528 )))|(% style="width:198px" %)(((
529 Digital Interrupt(PB15)
530 )))|(% style="width:84px" %)(((
Xiaoling 43.36 531 ADC2(PA5)
Saxer Lin 40.1 532 )))|(% style="width:82px" %)(((
Xiaoling 43.36 533 ADC3(PA8)
Edwin Chen 12.1 534 )))
535
Saxer Lin 36.1 536 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 537
538
Edwin Chen 13.1 539 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
540
Xiaoling 43.45 541
Xiaoling 43.38 542 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
543 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 544 **Size(bytes)**
Xiaoling 43.56 545 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
Xiaoling 45.4 546 |Value|BAT|(((
Xiaoling 43.58 547 Temperature
548 (DS18B20)(PC13)
Edwin Chen 12.1 549 )))|(((
Xiaoling 43.58 550 Temperature2
551 (DS18B20)(PB9)
Edwin Chen 12.1 552 )))|(((
Saxer Lin 36.1 553 Digital Interrupt
554 (PB15)
555 )))|(% style="width:193px" %)(((
Xiaoling 43.58 556 Temperature3
557 (DS18B20)(PB8)
Saxer Lin 36.1 558 )))|(% style="width:78px" %)(((
Xiaoling 43.39 559 Count1(PA8)
Saxer Lin 36.1 560 )))|(% style="width:78px" %)(((
Xiaoling 43.39 561 Count2(PA4)
Edwin Chen 12.1 562 )))
563
Saxer Lin 36.1 564 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 565
Xiaoling 43.40 566 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
Edwin Chen 12.1 567
Xiaoling 43.44 568 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
Edwin Chen 12.1 569
Xiaoling 43.44 570 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
Edwin Chen 12.1 571
Xiaoling 43.44 572 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
Edwin Chen 12.1 573
574
Xiaoling 43.41 575 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
576
Saxer Lin 36.1 577 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 578
Saxer Lin 36.1 579 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 580
581
Saxer Lin 65.1 582 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
583
Xiaoling 74.3 584
Saxer Lin 65.1 585 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586
Xiaoling 74.3 587 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
Saxer Lin 65.1 588
Saxer Lin 69.1 589
Saxer Lin 65.1 590 ===== 2.3.2.10.a  Uplink, PWM input capture =====
591
Xiaoling 74.3 592
Saxer Lin 65.1 593 [[image:image-20230817172209-2.png||height="439" width="683"]]
594
595 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
596 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
597 |Value|Bat|(% style="width:191px" %)(((
598 Temperature(DS18B20)(PC13)
599 )))|(% style="width:78px" %)(((
600 ADC(PA4)
601 )))|(% style="width:135px" %)(((
602 PWM_Setting
603
604 &Digital Interrupt(PA8)
605 )))|(% style="width:70px" %)(((
606 Pulse period
607 )))|(% style="width:89px" %)(((
608 Duration of high level
609 )))
610
611 [[image:image-20230817170702-1.png||height="161" width="1044"]]
612
613
Saxer Lin 72.1 614 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
Saxer Lin 65.1 615
Saxer Lin 72.1 616 Frequency:
Saxer Lin 65.1 617
Saxer Lin 72.1 618 (% class="MsoNormal" %)
Saxer Lin 74.1 619 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0,**(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
Saxer Lin 65.1 620
Saxer Lin 72.1 621 (% class="MsoNormal" %)
Saxer Lin 74.1 622 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1,**(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
Saxer Lin 72.1 623
624 (% class="MsoNormal" %)
625 Duty cycle:
626
627 Duty cycle= Duration of high level/ Pulse period*100 ~(%).
628
629 [[image:image-20230818092200-1.png||height="344" width="627"]]
630
631
Saxer Lin 65.1 632 ===== 2.3.2.10.b  Downlink, PWM output =====
633
Xiaoling 74.3 634
Saxer Lin 65.1 635 [[image:image-20230817173800-3.png||height="412" width="685"]]
636
637 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
638
639 xx xx xx is the output frequency, the unit is HZ.
640
641 yy is the duty cycle of the output, the unit is %.
642
643 zz zz is the time delay of the output, the unit is ms.
644
645
646 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
647
648 The oscilloscope displays as follows:
649
650 [[image:image-20230817173858-5.png||height="694" width="921"]]
651
652
Edwin Chen 14.1 653 === 2.3.3  ​Decode payload ===
654
Xiaoling 43.45 655
Edwin Chen 12.1 656 While using TTN V3 network, you can add the payload format to decode the payload.
657
658 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
659
660 The payload decoder function for TTN V3 are here:
661
Xiaoling 44.2 662 SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 663
664
Edwin Chen 14.1 665 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 666
Xiaoling 43.45 667
Xiaoling 44.2 668 Check the battery voltage for SN50v3-LB.
Edwin Chen 2.1 669
670 Ex1: 0x0B45 = 2885mV
671
672 Ex2: 0x0B49 = 2889mV
673
674
Edwin Chen 14.1 675 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 676
Xiaoling 43.45 677
Saxer Lin 42.1 678 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 679
Xiaoling 43.45 680 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
Edwin Chen 14.1 681
Xiaoling 43.41 682 (% style="color:blue" %)**Connection:**
Edwin Chen 14.1 683
Saxer Lin 26.2 684 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 685
Xiaoling 43.46 686
Xiaoling 43.41 687 (% style="color:blue" %)**Example**:
Edwin Chen 2.1 688
689 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
690
691 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
692
693 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
694
695
Edwin Chen 14.1 696 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 697
Xiaoling 43.46 698
Saxer Lin 26.2 699 The digital input for pin PB15,
Edwin Chen 2.1 700
Saxer Lin 26.2 701 * When PB15 is high, the bit 1 of payload byte 6 is 1.
702 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 703
Saxer Lin 26.2 704 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
705 (((
Saxer Lin 36.1 706 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
707
Xiaoling 43.46 708 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
709
710
Saxer Lin 26.2 711 )))
712
Edwin Chen 14.1 713 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 714
Xiaoling 43.46 715
Saxer Lin 53.1 716 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 717
Saxer Lin 53.1 718 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 719
Saxer Lin 26.2 720 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 721
Xiaoling 44.2 722
Xiaoling 43.46 723 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
Edwin Chen 14.1 724
Saxer Lin 43.1 725
Saxer Lin 59.1 726 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
727
728 [[image:image-20230811113449-1.png||height="370" width="608"]]
729
Edwin Chen 14.1 730 ==== 2.3.3.5 Digital Interrupt ====
731
Xiaoling 43.46 732
Xiaoling 44.2 733 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
Edwin Chen 14.1 734
Xiaoling 43.44 735 (% style="color:blue" %)** Interrupt connection method:**
Edwin Chen 14.1 736
Saxer Lin 36.1 737 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 738
Xiaoling 43.46 739
Xiaoling 43.8 740 (% style="color:blue" %)**Example to use with door sensor :**
Edwin Chen 14.1 741
742 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
743
744 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
745
Xiaoling 44.2 746 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 747
748
Xiaoling 43.46 749 (% style="color:blue" %)**Below is the installation example:**
750
Xiaoling 44.2 751 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
Edwin Chen 14.1 752
753 * (((
Xiaoling 44.2 754 One pin to SN50v3-LB's PA8 pin
Edwin Chen 14.1 755 )))
756 * (((
Xiaoling 44.2 757 The other pin to SN50v3-LB's VDD pin
Edwin Chen 14.1 758 )))
759
Saxer Lin 36.1 760 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 761
Xiaoling 43.46 762 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
Edwin Chen 14.1 763
Saxer Lin 36.1 764 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 765
766 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
767
768 The above photos shows the two parts of the magnetic switch fitted to a door.
769
770 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
771
772 The command is:
773
Xiaoling 44.2 774 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 775
776 Below shows some screen captures in TTN V3:
777
778 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
779
Xiaoling 43.47 780
Xiaoling 44.4 781 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
Edwin Chen 14.1 782
783 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
784
785
Saxer Lin 26.2 786 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 787
Xiaoling 43.47 788
Saxer Lin 26.2 789 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 790
Saxer Lin 40.1 791 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 792
Xiaoling 44.2 793 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
Edwin Chen 14.1 794
Xiaoling 44.2 795
Edwin Chen 14.1 796 Below is the connection to SHT20/ SHT31. The connection is as below:
797
Saxer Lin 52.1 798 [[image:image-20230610170152-2.png||height="501" width="846"]]
Saxer Lin 36.1 799
Xiaoling 44.4 800
Edwin Chen 14.1 801 The device will be able to get the I2C sensor data now and upload to IoT Server.
802
803 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
804
805 Convert the read byte to decimal and divide it by ten.
806
Edwin Chen 2.1 807 **Example:**
808
Edwin Chen 14.1 809 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 810
Edwin Chen 14.1 811 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 812
Edwin Chen 14.1 813 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 814
815
Edwin Chen 14.1 816 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 817
Xiaoling 43.48 818
Xiaoling 43.42 819 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
Edwin Chen 14.1 820
821
822 ==== 2.3.3.8 Ultrasonic Sensor ====
823
Xiaoling 43.48 824
Saxer Lin 26.2 825 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 826
Xiaoling 44.2 827 The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 828
Xiaoling 43.44 829 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
Saxer Lin 36.1 830
Edwin Chen 14.1 831 The picture below shows the connection:
832
Saxer Lin 36.1 833 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 834
Xiaoling 43.50 835
Xiaoling 44.2 836 Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 837
838 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
839
840 **Example:**
841
842 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
843
844
845 ==== 2.3.3.9  Battery Output - BAT pin ====
846
Xiaoling 43.50 847
Xiaoling 44.4 848 The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
Edwin Chen 14.1 849
850
851 ==== 2.3.3.10  +5V Output ====
852
Xiaoling 43.50 853
Xiaoling 44.2 854 SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
Edwin Chen 14.1 855
856 The 5V output time can be controlled by AT Command.
857
Xiaoling 43.9 858 (% style="color:blue" %)**AT+5VT=1000**
Edwin Chen 14.1 859
860 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
861
Xiaoling 44.4 862 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
Edwin Chen 14.1 863
864
865 ==== 2.3.3.11  BH1750 Illumination Sensor ====
866
Xiaoling 43.50 867
Edwin Chen 14.1 868 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
869
Saxer Lin 40.1 870 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 871
Xiaoling 43.51 872
Saxer Lin 40.1 873 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 874
875
Saxer Lin 65.1 876 ==== 2.3.3.12  PWM MOD ====
Edwin Chen 14.1 877
Xiaoling 43.51 878
Saxer Lin 69.1 879 * (((
880 The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
881 )))
882 * (((
883 If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
884 )))
885
886 [[image:image-20230817183249-3.png||height="320" width="417"]]
887
888 * (((
889 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
890 )))
891 * (((
Xiaoling 74.2 892 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
Saxer Lin 70.1 893
894
Saxer Lin 69.1 895 )))
896
Saxer Lin 65.1 897 ==== 2.3.3.13  Working MOD ====
898
899
Edwin Chen 14.1 900 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
901
902 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
903
904 Case 7^^th^^ Byte >> 2 & 0x1f:
905
906 * 0: MOD1
907 * 1: MOD2
908 * 2: MOD3
909 * 3: MOD4
910 * 4: MOD5
911 * 5: MOD6
Saxer Lin 36.1 912 * 6: MOD7
913 * 7: MOD8
914 * 8: MOD9
Saxer Lin 65.1 915 * 9: MOD10
Edwin Chen 14.1 916
Edwin Chen 2.1 917 == 2.4 Payload Decoder file ==
918
919
920 In TTN, use can add a custom payload so it shows friendly reading
921
922 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
923
Saxer Lin 40.1 924 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 925
926
Edwin Chen 15.1 927 == 2.5 Frequency Plans ==
Edwin Chen 2.1 928
929
Edwin Chen 15.1 930 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 2.1 931
932 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
933
934
Edwin Chen 16.1 935 = 3. Configure SN50v3-LB =
Edwin Chen 2.1 936
937 == 3.1 Configure Methods ==
938
939
Edwin Chen 16.1 940 SN50v3-LB supports below configure method:
Edwin Chen 2.1 941
942 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
943 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
944 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
945
946 == 3.2 General Commands ==
947
948
949 These commands are to configure:
950
951 * General system settings like: uplink interval.
952 * LoRaWAN protocol & radio related command.
953
954 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
955
956 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
957
958
Edwin Chen 16.1 959 == 3.3 Commands special design for SN50v3-LB ==
Edwin Chen 2.1 960
961
Xiaoling 44.2 962 These commands only valid for SN50v3-LB, as below:
Edwin Chen 2.1 963
964
965 === 3.3.1 Set Transmit Interval Time ===
966
Xiaoling 43.51 967
Edwin Chen 2.1 968 Feature: Change LoRaWAN End Node Transmit Interval.
969
970 (% style="color:blue" %)**AT Command: AT+TDC**
971
972 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.2 973 |=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
Edwin Chen 2.1 974 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
975 30000
976 OK
977 the interval is 30000ms = 30s
978 )))
979 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
980 OK
981 Set transmit interval to 60000ms = 60 seconds
982 )))
983
984 (% style="color:blue" %)**Downlink Command: 0x01**
985
986 Format: Command Code (0x01) followed by 3 bytes time value.
987
988 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
989
990 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
991 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
992
993 === 3.3.2 Get Device Status ===
994
Xiaoling 43.52 995
Saxer Lin 40.1 996 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 997
Xiaoling 44.4 998 (% style="color:blue" %)**Downlink Payload: 0x26 01**
Edwin Chen 2.1 999
Xiaoling 44.4 1000 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
Edwin Chen 2.1 1001
1002
Saxer Lin 36.1 1003 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 1004
Xiaoling 43.52 1005
Edwin Chen 2.1 1006 Feature, Set Interrupt mode for GPIO_EXIT.
1007
Saxer Lin 36.1 1008 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
Edwin Chen 2.1 1009
1010 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1011 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1012 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
Edwin Chen 2.1 1013 0
1014 OK
1015 the mode is 0 =Disable Interrupt
1016 )))
Saxer Lin 36.1 1017 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
Edwin Chen 2.1 1018 Set Transmit Interval
1019 0. (Disable Interrupt),
1020 ~1. (Trigger by rising and falling edge)
1021 2. (Trigger by falling edge)
1022 3. (Trigger by rising edge)
1023 )))|(% style="width:157px" %)OK
Saxer Lin 36.1 1024 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1025 Set Transmit Interval
1026 trigger by rising edge.
1027 )))|(% style="width:157px" %)OK
1028 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1029
Edwin Chen 2.1 1030 (% style="color:blue" %)**Downlink Command: 0x06**
1031
1032 Format: Command Code (0x06) followed by 3 bytes.
1033
1034 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1035
Saxer Lin 36.1 1036 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1037 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1038 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1039 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
Edwin Chen 2.1 1040
Saxer Lin 36.1 1041 === 3.3.4 Set Power Output Duration ===
1042
Xiaoling 43.52 1043
Saxer Lin 36.1 1044 Control the output duration 5V . Before each sampling, device will
1045
1046 ~1. first enable the power output to external sensor,
1047
1048 2. keep it on as per duration, read sensor value and construct uplink payload
1049
1050 3. final, close the power output.
1051
1052 (% style="color:blue" %)**AT Command: AT+5VT**
1053
1054 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1055 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1056 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1057 500(default)
1058 OK
1059 )))
1060 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1061 Close after a delay of 1000 milliseconds.
1062 )))|(% style="width:157px" %)OK
1063
1064 (% style="color:blue" %)**Downlink Command: 0x07**
1065
1066 Format: Command Code (0x07) followed by 2 bytes.
1067
1068 The first and second bytes are the time to turn on.
1069
Saxer Lin 40.1 1070 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1071 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 1072
1073 === 3.3.5 Set Weighing parameters ===
1074
Xiaoling 43.52 1075
Saxer Lin 37.1 1076 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 1077
1078 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1079
1080 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1081 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 37.1 1082 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1083 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1084 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 1085
1086 (% style="color:blue" %)**Downlink Command: 0x08**
1087
Saxer Lin 37.1 1088 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 1089
Saxer Lin 37.1 1090 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 1091
Saxer Lin 37.1 1092 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 1093
Saxer Lin 37.1 1094 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1095 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1096 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1097
Saxer Lin 36.1 1098 === 3.3.6 Set Digital pulse count value ===
1099
Xiaoling 43.52 1100
Saxer Lin 36.1 1101 Feature: Set the pulse count value.
1102
Saxer Lin 37.1 1103 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1104
Saxer Lin 36.1 1105 (% style="color:blue" %)**AT Command: AT+SETCNT**
1106
1107 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1108 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1109 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1110 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1111
1112 (% style="color:blue" %)**Downlink Command: 0x09**
1113
1114 Format: Command Code (0x09) followed by 5 bytes.
1115
1116 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1117
1118 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 1119 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 1120
1121 === 3.3.7 Set Workmode ===
1122
Xiaoling 43.52 1123
Saxer Lin 37.1 1124 Feature: Switch working mode.
Saxer Lin 36.1 1125
1126 (% style="color:blue" %)**AT Command: AT+MOD**
1127
1128 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1129 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1130 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1131 OK
1132 )))
1133 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1134 OK
1135 Attention:Take effect after ATZ
1136 )))
1137
1138 (% style="color:blue" %)**Downlink Command: 0x0A**
1139
1140 Format: Command Code (0x0A) followed by 1 bytes.
1141
1142 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1143 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1144
Saxer Lin 72.1 1145 === 3.3.8 PWM setting ===
1146
1147 Feature: Set the time acquisition unit for PWM input capture.
1148
1149 (% style="color:blue" %)**AT Command: AT+PWMSET**
1150
1151 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1152 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1153 |(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1154 0(default)
1155
1156 OK
1157 )))
1158 |(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1159 OK
1160
1161 )))
1162 |(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1163
1164 (% style="color:blue" %)**Downlink Command: 0x0C**
1165
1166 Format: Command Code (0x0C) followed by 1 bytes.
1167
1168 * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1169 * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1170
Edwin Chen 2.1 1171 = 4. Battery & Power Consumption =
1172
1173
Edwin Chen 11.1 1174 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1175
1176 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1177
1178
1179 = 5. OTA Firmware update =
1180
1181
1182 (% class="wikigeneratedid" %)
Xiaoling 44.4 1183 **User can change firmware SN50v3-LB to:**
Edwin Chen 2.1 1184
1185 * Change Frequency band/ region.
1186 * Update with new features.
1187 * Fix bugs.
1188
Xiaoling 52.2 1189 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
Edwin Chen 2.1 1190
Xiaoling 44.4 1191 **Methods to Update Firmware:**
Edwin Chen 2.1 1192
Xiaoling 53.3 1193 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1194 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
Edwin Chen 2.1 1195
1196 = 6. FAQ =
1197
Edwin Chen 17.1 1198 == 6.1 Where can i find source code of SN50v3-LB? ==
Edwin Chen 2.1 1199
Xiaoling 43.52 1200
Edwin Chen 17.1 1201 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1202 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
Edwin Chen 2.1 1203
Xiaoling 55.2 1204 == 6.2 How to generate PWM Output in SN50v3-LB? ==
1205
1206
Edwin Chen 55.1 1207 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1208
1209
Edwin Chen 57.1 1210 == 6.3 How to put several sensors to a SN50v3-LB? ==
1211
Xiaoling 57.2 1212
Edwin Chen 57.1 1213 When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1214
1215 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1216
1217 [[image:image-20230810121434-1.png||height="242" width="656"]]
1218
1219
Edwin Chen 2.1 1220 = 7. Order Info =
1221
1222
Edwin Chen 10.1 1223 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
Edwin Chen 2.1 1224
1225 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1226
Edwin Chen 2.1 1227 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1228 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1229 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1230 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1231 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1232 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1233 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1234 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1235
Edwin Chen 10.1 1236 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1237
Edwin Chen 10.1 1238 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1239 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1240 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1241 * (% style="color:red" %)**NH**(%%): No Hole
1242
Edwin Chen 2.1 1243 = 8. ​Packing Info =
1244
Xiaoling 43.52 1245
Edwin Chen 2.1 1246 (% style="color:#037691" %)**Package Includes**:
1247
Edwin Chen 10.1 1248 * SN50v3-LB LoRaWAN Generic Node
Edwin Chen 2.1 1249
1250 (% style="color:#037691" %)**Dimension and weight**:
1251
1252 * Device Size: cm
1253 * Device Weight: g
1254 * Package Size / pcs : cm
1255 * Weight / pcs : g
1256
1257 = 9. Support =
1258
1259
1260 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 43.10 1261
Xiaoling 41.4 1262 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]