Version 74.2 by Xiaoling on 2023/08/19 15:36

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18
19
20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21
22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23
24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25
26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27
28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29
30
31 == 1.2 ​Features ==
32
33
34 * LoRaWAN 1.0.3 Class A
35 * Ultra-low power consumption
36 * Open-Source hardware/software
37 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
38 * Support Bluetooth v5.1 and LoRaWAN remote configure
39 * Support wireless OTA update firmware
40 * Uplink on periodically
41 * Downlink to change configure
42 * 8500mAh Battery for long term use
43
44 == 1.3 Specification ==
45
46
47 (% style="color:#037691" %)**Common DC Characteristics:**
48
49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
50 * Operating Temperature: -40 ~~ 85°C
51
52 (% style="color:#037691" %)**I/O Interface:**
53
54 * Battery output (2.6v ~~ 3.6v depends on battery)
55 * +5v controllable output
56 * 3 x Interrupt or Digital IN/OUT pins
57 * 3 x one-wire interfaces
58 * 1 x UART Interface
59 * 1 x I2C Interface
60
61 (% style="color:#037691" %)**LoRa Spec:**
62
63 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
64 * Max +22 dBm constant RF output vs.
65 * RX sensitivity: down to -139 dBm.
66 * Excellent blocking immunity
67
68 (% style="color:#037691" %)**Battery:**
69
70 * Li/SOCI2 un-chargeable battery
71 * Capacity: 8500mAh
72 * Self-Discharge: <1% / Year @ 25°C
73 * Max continuously current: 130mA
74 * Max boost current: 2A, 1 second
75
76 (% style="color:#037691" %)**Power Consumption**
77
78 * Sleep Mode: 5uA @ 3.3v
79 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
80
81 == 1.4 Sleep mode and working mode ==
82
83
84 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
85
86 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
87
88
89 == 1.5 Button & LEDs ==
90
91
92 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
93
94
95 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
96 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
97 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
98 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
99 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
100 )))
101 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
102 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
103 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
104 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
105 )))
106 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
107
108 == 1.6 BLE connection ==
109
110
111 SN50v3-LB supports BLE remote configure.
112
113
114 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
115
116 * Press button to send an uplink
117 * Press button to active device.
118 * Device Power on or reset.
119
120 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
121
122
123 == 1.7 Pin Definitions ==
124
125
126 [[image:image-20230610163213-1.png||height="404" width="699"]]
127
128
129 == 1.8 Mechanical ==
130
131
132 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
133
134 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
135
136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137
138
139 == 1.9 Hole Option ==
140
141
142 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
143
144 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
145
146 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
147
148
149 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
150
151 == 2.1 How it works ==
152
153
154 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
155
156
157 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
158
159
160 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
161
162 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
163
164
165 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
166
167 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
168
169 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
170
171
172 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
173
174
175 (% style="color:blue" %)**Register the device**
176
177 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
178
179
180 (% style="color:blue" %)**Add APP EUI and DEV EUI**
181
182 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
183
184
185 (% style="color:blue" %)**Add APP EUI in the application**
186
187
188 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
189
190
191 (% style="color:blue" %)**Add APP KEY**
192
193 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
194
195
196 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
197
198
199 Press the button for 5 seconds to activate the SN50v3-LB.
200
201 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
202
203 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
204
205
206 == 2.3 ​Uplink Payload ==
207
208 === 2.3.1 Device Status, FPORT~=5 ===
209
210
211 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
212
213 The Payload format is as below.
214
215
216 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
217 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
218 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
219 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
220
221 Example parse in TTNv3
222
223
224 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
225
226 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
227
228 (% style="color:#037691" %)**Frequency Band**:
229
230 0x01: EU868
231
232 0x02: US915
233
234 0x03: IN865
235
236 0x04: AU915
237
238 0x05: KZ865
239
240 0x06: RU864
241
242 0x07: AS923
243
244 0x08: AS923-1
245
246 0x09: AS923-2
247
248 0x0a: AS923-3
249
250 0x0b: CN470
251
252 0x0c: EU433
253
254 0x0d: KR920
255
256 0x0e: MA869
257
258
259 (% style="color:#037691" %)**Sub-Band**:
260
261 AU915 and US915:value 0x00 ~~ 0x08
262
263 CN470: value 0x0B ~~ 0x0C
264
265 Other Bands: Always 0x00
266
267
268 (% style="color:#037691" %)**Battery Info**:
269
270 Check the battery voltage.
271
272 Ex1: 0x0B45 = 2885mV
273
274 Ex2: 0x0B49 = 2889mV
275
276
277 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
278
279
280 SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
281
282 For example:
283
284 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
285
286
287 (% style="color:red" %) **Important Notice:**
288
289 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
290
291 2. All modes share the same Payload Explanation from HERE.
292
293 3. By default, the device will send an uplink message every 20 minutes.
294
295
296 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
297
298
299 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
300
301 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
302 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
303 |Value|Bat|(% style="width:191px" %)(((
304 Temperature(DS18B20)(PC13)
305 )))|(% style="width:78px" %)(((
306 ADC(PA4)
307 )))|(% style="width:216px" %)(((
308 Digital in(PB15)&Digital Interrupt(PA8)
309 )))|(% style="width:308px" %)(((
310 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
311 )))|(% style="width:154px" %)(((
312 Humidity(SHT20 or SHT31)
313 )))
314
315 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
316
317
318 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
319
320
321 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
322
323 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
324 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
325 |Value|BAT|(% style="width:196px" %)(((
326 Temperature(DS18B20)(PC13)
327 )))|(% style="width:87px" %)(((
328 ADC(PA4)
329 )))|(% style="width:189px" %)(((
330 Digital in(PB15) & Digital Interrupt(PA8)
331 )))|(% style="width:208px" %)(((
332 Distance measure by: 1) LIDAR-Lite V3HP
333 Or 2) Ultrasonic Sensor
334 )))|(% style="width:117px" %)Reserved
335
336 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
337
338
339 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
340
341 [[image:image-20230512173758-5.png||height="563" width="712"]]
342
343
344 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
345
346 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
347
348 [[image:image-20230512173903-6.png||height="596" width="715"]]
349
350
351 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
352
353 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
354 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
355 |Value|BAT|(% style="width:183px" %)(((
356 Temperature(DS18B20)(PC13)
357 )))|(% style="width:173px" %)(((
358 Digital in(PB15) & Digital Interrupt(PA8)
359 )))|(% style="width:84px" %)(((
360 ADC(PA4)
361 )))|(% style="width:323px" %)(((
362 Distance measure by:1)TF-Mini plus LiDAR
363 Or 2) TF-Luna LiDAR
364 )))|(% style="width:188px" %)Distance signal  strength
365
366 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
367
368
369 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
370
371 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
372
373 [[image:image-20230512180609-7.png||height="555" width="802"]]
374
375
376 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
377
378 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
379
380 [[image:image-20230610170047-1.png||height="452" width="799"]]
381
382
383 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
384
385
386 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
387
388 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
389 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
390 **Size(bytes)**
391 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
392 |Value|(% style="width:68px" %)(((
393 ADC1(PA4)
394 )))|(% style="width:75px" %)(((
395 ADC2(PA5)
396 )))|(((
397 ADC3(PA8)
398 )))|(((
399 Digital Interrupt(PB15)
400 )))|(% style="width:304px" %)(((
401 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
402 )))|(% style="width:163px" %)(((
403 Humidity(SHT20 or SHT31)
404 )))|(% style="width:53px" %)Bat
405
406 [[image:image-20230513110214-6.png]]
407
408
409 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
410
411
412 This mode has total 11 bytes. As shown below:
413
414 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
415 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
416 |Value|BAT|(% style="width:186px" %)(((
417 Temperature1(DS18B20)(PC13)
418 )))|(% style="width:82px" %)(((
419 ADC(PA4)
420 )))|(% style="width:210px" %)(((
421 Digital in(PB15) & Digital Interrupt(PA8) 
422 )))|(% style="width:191px" %)Temperature2(DS18B20)
423 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
424
425 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
426
427
428 [[image:image-20230513134006-1.png||height="559" width="736"]]
429
430
431 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
432
433
434 [[image:image-20230512164658-2.png||height="532" width="729"]]
435
436 Each HX711 need to be calibrated before used. User need to do below two steps:
437
438 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
439 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
440 1. (((
441 Weight has 4 bytes, the unit is g.
442
443
444
445 )))
446
447 For example:
448
449 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
450
451 Response:  Weight is 401 g
452
453 Check the response of this command and adjust the value to match the real value for thing.
454
455 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
456 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
457 **Size(bytes)**
458 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
459 |Value|BAT|(% style="width:193px" %)(((
460 Temperature(DS18B20)(PC13)
461 )))|(% style="width:85px" %)(((
462 ADC(PA4)
463 )))|(% style="width:186px" %)(((
464 Digital in(PB15) & Digital Interrupt(PA8)
465 )))|(% style="width:100px" %)Weight
466
467 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
468
469
470 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
471
472
473 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
474
475 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
476
477 [[image:image-20230512181814-9.png||height="543" width="697"]]
478
479
480 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
481
482 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
483 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
484 |Value|BAT|(% style="width:256px" %)(((
485 Temperature(DS18B20)(PC13)
486 )))|(% style="width:108px" %)(((
487 ADC(PA4)
488 )))|(% style="width:126px" %)(((
489 Digital in(PB15)
490 )))|(% style="width:145px" %)(((
491 Count(PA8)
492 )))
493
494 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
495
496
497 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
498
499
500 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
501 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
502 **Size(bytes)**
503 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
504 |Value|BAT|(% style="width:188px" %)(((
505 Temperature(DS18B20)
506 (PC13)
507 )))|(% style="width:83px" %)(((
508 ADC(PA5)
509 )))|(% style="width:184px" %)(((
510 Digital Interrupt1(PA8)
511 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
512
513 [[image:image-20230513111203-7.png||height="324" width="975"]]
514
515
516 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
517
518
519 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
520 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
521 **Size(bytes)**
522 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
523 |Value|BAT|(% style="width:207px" %)(((
524 Temperature(DS18B20)
525 (PC13)
526 )))|(% style="width:94px" %)(((
527 ADC1(PA4)
528 )))|(% style="width:198px" %)(((
529 Digital Interrupt(PB15)
530 )))|(% style="width:84px" %)(((
531 ADC2(PA5)
532 )))|(% style="width:82px" %)(((
533 ADC3(PA8)
534 )))
535
536 [[image:image-20230513111231-8.png||height="335" width="900"]]
537
538
539 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
540
541
542 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
543 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
544 **Size(bytes)**
545 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
546 |Value|BAT|(((
547 Temperature
548 (DS18B20)(PC13)
549 )))|(((
550 Temperature2
551 (DS18B20)(PB9)
552 )))|(((
553 Digital Interrupt
554 (PB15)
555 )))|(% style="width:193px" %)(((
556 Temperature3
557 (DS18B20)(PB8)
558 )))|(% style="width:78px" %)(((
559 Count1(PA8)
560 )))|(% style="width:78px" %)(((
561 Count2(PA4)
562 )))
563
564 [[image:image-20230513111255-9.png||height="341" width="899"]]
565
566 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
567
568 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
569
570 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
571
572 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
573
574
575 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
576
577 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
578
579 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
580
581
582 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
583
584 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
585
586 [[It should be noted when using PWM mode.>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]]
587
588
589 ===== 2.3.2.10.a  Uplink, PWM input capture =====
590
591 [[image:image-20230817172209-2.png||height="439" width="683"]]
592
593 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
594 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
595 |Value|Bat|(% style="width:191px" %)(((
596 Temperature(DS18B20)(PC13)
597 )))|(% style="width:78px" %)(((
598 ADC(PA4)
599 )))|(% style="width:135px" %)(((
600 PWM_Setting
601
602 &Digital Interrupt(PA8)
603 )))|(% style="width:70px" %)(((
604 Pulse period
605 )))|(% style="width:89px" %)(((
606 Duration of high level
607 )))
608
609 [[image:image-20230817170702-1.png||height="161" width="1044"]]
610
611
612 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
613
614 Frequency:
615
616 (% class="MsoNormal" %)
617 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0,**(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
618
619 (% class="MsoNormal" %)
620 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1,**(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
621
622 (% class="MsoNormal" %)
623 Duty cycle:
624
625 Duty cycle= Duration of high level/ Pulse period*100 ~(%).
626
627 [[image:image-20230818092200-1.png||height="344" width="627"]]
628
629
630 ===== 2.3.2.10.b  Downlink, PWM output =====
631
632 [[image:image-20230817173800-3.png||height="412" width="685"]]
633
634 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
635
636 xx xx xx is the output frequency, the unit is HZ.
637
638 yy is the duty cycle of the output, the unit is %.
639
640 zz zz is the time delay of the output, the unit is ms.
641
642
643 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
644
645 The oscilloscope displays as follows:
646
647 [[image:image-20230817173858-5.png||height="694" width="921"]]
648
649
650 === 2.3.3  ​Decode payload ===
651
652
653 While using TTN V3 network, you can add the payload format to decode the payload.
654
655 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
656
657 The payload decoder function for TTN V3 are here:
658
659 SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
660
661
662 ==== 2.3.3.1 Battery Info ====
663
664
665 Check the battery voltage for SN50v3-LB.
666
667 Ex1: 0x0B45 = 2885mV
668
669 Ex2: 0x0B49 = 2889mV
670
671
672 ==== 2.3.3.2  Temperature (DS18B20) ====
673
674
675 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
676
677 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
678
679 (% style="color:blue" %)**Connection:**
680
681 [[image:image-20230512180718-8.png||height="538" width="647"]]
682
683
684 (% style="color:blue" %)**Example**:
685
686 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
687
688 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
689
690 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
691
692
693 ==== 2.3.3.3 Digital Input ====
694
695
696 The digital input for pin PB15,
697
698 * When PB15 is high, the bit 1 of payload byte 6 is 1.
699 * When PB15 is low, the bit 1 of payload byte 6 is 0.
700
701 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
702 (((
703 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
704
705 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
706
707
708 )))
709
710 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
711
712
713 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
714
715 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
716
717 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
718
719
720 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
721
722
723 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
724
725 [[image:image-20230811113449-1.png||height="370" width="608"]]
726
727 ==== 2.3.3.5 Digital Interrupt ====
728
729
730 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
731
732 (% style="color:blue" %)** Interrupt connection method:**
733
734 [[image:image-20230513105351-5.png||height="147" width="485"]]
735
736
737 (% style="color:blue" %)**Example to use with door sensor :**
738
739 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
740
741 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
742
743 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
744
745
746 (% style="color:blue" %)**Below is the installation example:**
747
748 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
749
750 * (((
751 One pin to SN50v3-LB's PA8 pin
752 )))
753 * (((
754 The other pin to SN50v3-LB's VDD pin
755 )))
756
757 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
758
759 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
760
761 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
762
763 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
764
765 The above photos shows the two parts of the magnetic switch fitted to a door.
766
767 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
768
769 The command is:
770
771 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
772
773 Below shows some screen captures in TTN V3:
774
775 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
776
777
778 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
779
780 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
781
782
783 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
784
785
786 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
787
788 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
789
790 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
791
792
793 Below is the connection to SHT20/ SHT31. The connection is as below:
794
795 [[image:image-20230610170152-2.png||height="501" width="846"]]
796
797
798 The device will be able to get the I2C sensor data now and upload to IoT Server.
799
800 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
801
802 Convert the read byte to decimal and divide it by ten.
803
804 **Example:**
805
806 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
807
808 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
809
810 If you want to use other I2C device, please refer the SHT20 part source code as reference.
811
812
813 ==== 2.3.3.7  ​Distance Reading ====
814
815
816 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
817
818
819 ==== 2.3.3.8 Ultrasonic Sensor ====
820
821
822 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
823
824 The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
825
826 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
827
828 The picture below shows the connection:
829
830 [[image:image-20230512173903-6.png||height="596" width="715"]]
831
832
833 Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
834
835 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
836
837 **Example:**
838
839 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
840
841
842 ==== 2.3.3.9  Battery Output - BAT pin ====
843
844
845 The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
846
847
848 ==== 2.3.3.10  +5V Output ====
849
850
851 SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
852
853 The 5V output time can be controlled by AT Command.
854
855 (% style="color:blue" %)**AT+5VT=1000**
856
857 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
858
859 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
860
861
862 ==== 2.3.3.11  BH1750 Illumination Sensor ====
863
864
865 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
866
867 [[image:image-20230512172447-4.png||height="416" width="712"]]
868
869
870 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
871
872
873 ==== 2.3.3.12  PWM MOD ====
874
875
876 * (((
877 The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
878 )))
879 * (((
880 If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
881 )))
882
883 [[image:image-20230817183249-3.png||height="320" width="417"]]
884
885 * (((
886 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
887 )))
888 * (((
889 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
890
891
892 )))
893
894 ==== 2.3.3.13  Working MOD ====
895
896
897 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
898
899 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
900
901 Case 7^^th^^ Byte >> 2 & 0x1f:
902
903 * 0: MOD1
904 * 1: MOD2
905 * 2: MOD3
906 * 3: MOD4
907 * 4: MOD5
908 * 5: MOD6
909 * 6: MOD7
910 * 7: MOD8
911 * 8: MOD9
912 * 9: MOD10
913
914 == 2.4 Payload Decoder file ==
915
916
917 In TTN, use can add a custom payload so it shows friendly reading
918
919 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
920
921 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
922
923
924 == 2.5 Frequency Plans ==
925
926
927 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
928
929 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
930
931
932 = 3. Configure SN50v3-LB =
933
934 == 3.1 Configure Methods ==
935
936
937 SN50v3-LB supports below configure method:
938
939 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
940 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
941 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
942
943 == 3.2 General Commands ==
944
945
946 These commands are to configure:
947
948 * General system settings like: uplink interval.
949 * LoRaWAN protocol & radio related command.
950
951 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
952
953 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
954
955
956 == 3.3 Commands special design for SN50v3-LB ==
957
958
959 These commands only valid for SN50v3-LB, as below:
960
961
962 === 3.3.1 Set Transmit Interval Time ===
963
964
965 Feature: Change LoRaWAN End Node Transmit Interval.
966
967 (% style="color:blue" %)**AT Command: AT+TDC**
968
969 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
970 |=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
971 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
972 30000
973 OK
974 the interval is 30000ms = 30s
975 )))
976 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
977 OK
978 Set transmit interval to 60000ms = 60 seconds
979 )))
980
981 (% style="color:blue" %)**Downlink Command: 0x01**
982
983 Format: Command Code (0x01) followed by 3 bytes time value.
984
985 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
986
987 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
988 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
989
990 === 3.3.2 Get Device Status ===
991
992
993 Send a LoRaWAN downlink to ask the device to send its status.
994
995 (% style="color:blue" %)**Downlink Payload: 0x26 01**
996
997 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
998
999
1000 === 3.3.3 Set Interrupt Mode ===
1001
1002
1003 Feature, Set Interrupt mode for GPIO_EXIT.
1004
1005 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1006
1007 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1008 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1009 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1010 0
1011 OK
1012 the mode is 0 =Disable Interrupt
1013 )))
1014 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
1015 Set Transmit Interval
1016 0. (Disable Interrupt),
1017 ~1. (Trigger by rising and falling edge)
1018 2. (Trigger by falling edge)
1019 3. (Trigger by rising edge)
1020 )))|(% style="width:157px" %)OK
1021 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1022 Set Transmit Interval
1023 trigger by rising edge.
1024 )))|(% style="width:157px" %)OK
1025 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1026
1027 (% style="color:blue" %)**Downlink Command: 0x06**
1028
1029 Format: Command Code (0x06) followed by 3 bytes.
1030
1031 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1032
1033 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1034 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1035 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1036 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1037
1038 === 3.3.4 Set Power Output Duration ===
1039
1040
1041 Control the output duration 5V . Before each sampling, device will
1042
1043 ~1. first enable the power output to external sensor,
1044
1045 2. keep it on as per duration, read sensor value and construct uplink payload
1046
1047 3. final, close the power output.
1048
1049 (% style="color:blue" %)**AT Command: AT+5VT**
1050
1051 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1052 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1053 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1054 500(default)
1055 OK
1056 )))
1057 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1058 Close after a delay of 1000 milliseconds.
1059 )))|(% style="width:157px" %)OK
1060
1061 (% style="color:blue" %)**Downlink Command: 0x07**
1062
1063 Format: Command Code (0x07) followed by 2 bytes.
1064
1065 The first and second bytes are the time to turn on.
1066
1067 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1068 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1069
1070 === 3.3.5 Set Weighing parameters ===
1071
1072
1073 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1074
1075 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1076
1077 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1078 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1079 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1080 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1081 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1082
1083 (% style="color:blue" %)**Downlink Command: 0x08**
1084
1085 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1086
1087 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1088
1089 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1090
1091 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1092 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1093 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1094
1095 === 3.3.6 Set Digital pulse count value ===
1096
1097
1098 Feature: Set the pulse count value.
1099
1100 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1101
1102 (% style="color:blue" %)**AT Command: AT+SETCNT**
1103
1104 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1105 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1106 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1107 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1108
1109 (% style="color:blue" %)**Downlink Command: 0x09**
1110
1111 Format: Command Code (0x09) followed by 5 bytes.
1112
1113 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1114
1115 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1116 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1117
1118 === 3.3.7 Set Workmode ===
1119
1120
1121 Feature: Switch working mode.
1122
1123 (% style="color:blue" %)**AT Command: AT+MOD**
1124
1125 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1126 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1127 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1128 OK
1129 )))
1130 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1131 OK
1132 Attention:Take effect after ATZ
1133 )))
1134
1135 (% style="color:blue" %)**Downlink Command: 0x0A**
1136
1137 Format: Command Code (0x0A) followed by 1 bytes.
1138
1139 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1140 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1141
1142 === 3.3.8 PWM setting ===
1143
1144 Feature: Set the time acquisition unit for PWM input capture.
1145
1146 (% style="color:blue" %)**AT Command: AT+PWMSET**
1147
1148 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1149 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1150 |(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1151 0(default)
1152
1153 OK
1154 )))
1155 |(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1156 OK
1157
1158 )))
1159 |(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1160
1161 (% style="color:blue" %)**Downlink Command: 0x0C**
1162
1163 Format: Command Code (0x0C) followed by 1 bytes.
1164
1165 * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1166 * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1167
1168 = 4. Battery & Power Consumption =
1169
1170
1171 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1172
1173 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1174
1175
1176 = 5. OTA Firmware update =
1177
1178
1179 (% class="wikigeneratedid" %)
1180 **User can change firmware SN50v3-LB to:**
1181
1182 * Change Frequency band/ region.
1183 * Update with new features.
1184 * Fix bugs.
1185
1186 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1187
1188 **Methods to Update Firmware:**
1189
1190 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1191 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1192
1193 = 6. FAQ =
1194
1195 == 6.1 Where can i find source code of SN50v3-LB? ==
1196
1197
1198 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1199 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1200
1201 == 6.2 How to generate PWM Output in SN50v3-LB? ==
1202
1203
1204 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1205
1206
1207 == 6.3 How to put several sensors to a SN50v3-LB? ==
1208
1209
1210 When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1211
1212 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1213
1214 [[image:image-20230810121434-1.png||height="242" width="656"]]
1215
1216
1217 = 7. Order Info =
1218
1219
1220 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1221
1222 (% style="color:red" %)**XX**(%%): The default frequency band
1223
1224 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1225 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1226 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1227 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1228 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1229 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1230 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1231 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1232
1233 (% style="color:red" %)**YY: ** (%%)Hole Option
1234
1235 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1236 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1237 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1238 * (% style="color:red" %)**NH**(%%): No Hole
1239
1240 = 8. ​Packing Info =
1241
1242
1243 (% style="color:#037691" %)**Package Includes**:
1244
1245 * SN50v3-LB LoRaWAN Generic Node
1246
1247 (% style="color:#037691" %)**Dimension and weight**:
1248
1249 * Device Size: cm
1250 * Device Weight: g
1251 * Package Size / pcs : cm
1252 * Weight / pcs : g
1253
1254 = 9. Support =
1255
1256
1257 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1258
1259 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]