Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18
19
20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21
22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23
24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25
26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27
28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29
30
31 == 1.2 ​Features ==
32
33
34 * LoRaWAN 1.0.3 Class A
35 * Ultra-low power consumption
36 * Open-Source hardware/software
37 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
38 * Support Bluetooth v5.1 and LoRaWAN remote configure
39 * Support wireless OTA update firmware
40 * Uplink on periodically
41 * Downlink to change configure
42 * 8500mAh Battery for long term use
43
44
45 == 1.3 Specification ==
46
47
48 (% style="color:#037691" %)**Common DC Characteristics:**
49
50 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
51 * Operating Temperature: -40 ~~ 85°C
52
53 (% style="color:#037691" %)**I/O Interface:**
54
55 * Battery output (2.6v ~~ 3.6v depends on battery)
56 * +5v controllable output
57 * 3 x Interrupt or Digital IN/OUT pins
58 * 3 x one-wire interfaces
59 * 1 x UART Interface
60 * 1 x I2C Interface
61
62 (% style="color:#037691" %)**LoRa Spec:**
63
64 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
65 * Max +22 dBm constant RF output vs.
66 * RX sensitivity: down to -139 dBm.
67 * Excellent blocking immunity
68
69 (% style="color:#037691" %)**Battery:**
70
71 * Li/SOCI2 un-chargeable battery
72 * Capacity: 8500mAh
73 * Self-Discharge: <1% / Year @ 25°C
74 * Max continuously current: 130mA
75 * Max boost current: 2A, 1 second
76
77 (% style="color:#037691" %)**Power Consumption**
78
79 * Sleep Mode: 5uA @ 3.3v
80 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
81
82
83 == 1.4 Sleep mode and working mode ==
84
85
86 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
87
88 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
89
90
91 == 1.5 Button & LEDs ==
92
93
94 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
95
96
97 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
98 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
99 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
100 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
101 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
102 )))
103 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
104 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
105 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
106 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
107 )))
108 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
109
110
111 == 1.6 BLE connection ==
112
113
114 SN50v3-LB supports BLE remote configure.
115
116
117 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
118
119 * Press button to send an uplink
120 * Press button to active device.
121 * Device Power on or reset.
122
123 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
124
125
126 == 1.7 Pin Definitions ==
127
128
129 [[image:image-20230610163213-1.png||height="404" width="699"]]
130
131
132 == 1.8 Mechanical ==
133
134
135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
136
137 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
138
139 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
140
141
142 == 1.9 Hole Option ==
143
144
145 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
146
147 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
148
149 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
150
151
152 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
153
154 == 2.1 How it works ==
155
156
157 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
158
159
160 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
161
162
163 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
164
165 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
166
167
168 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
169
170 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
171
172 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
173
174
175 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
176
177
178 (% style="color:blue" %)**Register the device**
179
180 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
181
182
183 (% style="color:blue" %)**Add APP EUI and DEV EUI**
184
185 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
186
187
188 (% style="color:blue" %)**Add APP EUI in the application**
189
190
191 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
192
193
194 (% style="color:blue" %)**Add APP KEY**
195
196 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
197
198
199 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
200
201
202 Press the button for 5 seconds to activate the SN50v3-LB.
203
204 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
205
206 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
207
208
209 == 2.3 ​Uplink Payload ==
210
211 === 2.3.1 Device Status, FPORT~=5 ===
212
213
214 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
215
216 The Payload format is as below.
217
218
219 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
220 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
221 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
222 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
223
224 Example parse in TTNv3
225
226
227 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
228
229 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
230
231 (% style="color:#037691" %)**Frequency Band**:
232
233 0x01: EU868
234
235 0x02: US915
236
237 0x03: IN865
238
239 0x04: AU915
240
241 0x05: KZ865
242
243 0x06: RU864
244
245 0x07: AS923
246
247 0x08: AS923-1
248
249 0x09: AS923-2
250
251 0x0a: AS923-3
252
253 0x0b: CN470
254
255 0x0c: EU433
256
257 0x0d: KR920
258
259 0x0e: MA869
260
261
262 (% style="color:#037691" %)**Sub-Band**:
263
264 AU915 and US915:value 0x00 ~~ 0x08
265
266 CN470: value 0x0B ~~ 0x0C
267
268 Other Bands: Always 0x00
269
270
271 (% style="color:#037691" %)**Battery Info**:
272
273 Check the battery voltage.
274
275 Ex1: 0x0B45 = 2885mV
276
277 Ex2: 0x0B49 = 2889mV
278
279
280 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
281
282
283 SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
284
285 For example:
286
287 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
288
289
290 (% style="color:red" %) **Important Notice:**
291
292 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
293
294 2. All modes share the same Payload Explanation from HERE.
295
296 3. By default, the device will send an uplink message every 20 minutes.
297
298
299 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
300
301
302 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
303
304 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
305 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
306 |Value|Bat|(% style="width:191px" %)(((
307 Temperature(DS18B20)(PC13)
308 )))|(% style="width:78px" %)(((
309 ADC(PA4)
310 )))|(% style="width:216px" %)(((
311 Digital in(PB15)&Digital Interrupt(PA8)
312 )))|(% style="width:308px" %)(((
313 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
314 )))|(% style="width:154px" %)(((
315 Humidity(SHT20 or SHT31)
316 )))
317
318 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
319
320
321 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
322
323
324 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
325
326 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
327 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
328 |Value|BAT|(% style="width:196px" %)(((
329 Temperature(DS18B20)(PC13)
330 )))|(% style="width:87px" %)(((
331 ADC(PA4)
332 )))|(% style="width:189px" %)(((
333 Digital in(PB15) & Digital Interrupt(PA8)
334 )))|(% style="width:208px" %)(((
335 Distance measure by: 1) LIDAR-Lite V3HP
336 Or 2) Ultrasonic Sensor
337 )))|(% style="width:117px" %)Reserved
338
339 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
340
341
342 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
343
344 [[image:image-20230512173758-5.png||height="563" width="712"]]
345
346
347 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
348
349 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
350
351 [[image:image-20230512173903-6.png||height="596" width="715"]]
352
353
354 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
355
356 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
357 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
358 |Value|BAT|(% style="width:183px" %)(((
359 Temperature(DS18B20)(PC13)
360 )))|(% style="width:173px" %)(((
361 Digital in(PB15) & Digital Interrupt(PA8)
362 )))|(% style="width:84px" %)(((
363 ADC(PA4)
364 )))|(% style="width:323px" %)(((
365 Distance measure by:1)TF-Mini plus LiDAR
366 Or 2) TF-Luna LiDAR
367 )))|(% style="width:188px" %)Distance signal  strength
368
369 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
370
371
372 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
373
374 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
375
376 [[image:image-20230512180609-7.png||height="555" width="802"]]
377
378
379 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
380
381 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
382
383 [[image:image-20230610170047-1.png||height="452" width="799"]]
384
385
386 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
387
388
389 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
390
391 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
392 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
393 **Size(bytes)**
394 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
395 |Value|(% style="width:68px" %)(((
396 ADC1(PA4)
397 )))|(% style="width:75px" %)(((
398 ADC2(PA5)
399 )))|(((
400 ADC3(PA8)
401 )))|(((
402 Digital Interrupt(PB15)
403 )))|(% style="width:304px" %)(((
404 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
405 )))|(% style="width:163px" %)(((
406 Humidity(SHT20 or SHT31)
407 )))|(% style="width:53px" %)Bat
408
409 [[image:image-20230513110214-6.png]]
410
411
412 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
413
414
415 This mode has total 11 bytes. As shown below:
416
417 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
418 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
419 |Value|BAT|(% style="width:186px" %)(((
420 Temperature1(DS18B20)(PC13)
421 )))|(% style="width:82px" %)(((
422 ADC(PA4)
423 )))|(% style="width:210px" %)(((
424 Digital in(PB15) & Digital Interrupt(PA8) 
425 )))|(% style="width:191px" %)Temperature2(DS18B20)
426 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
427
428 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
429
430
431 [[image:image-20230513134006-1.png||height="559" width="736"]]
432
433
434 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
435
436
437 [[image:image-20230512164658-2.png||height="532" width="729"]]
438
439 Each HX711 need to be calibrated before used. User need to do below two steps:
440
441 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
442 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
443 1. (((
444 Weight has 4 bytes, the unit is g.
445
446
447
448 )))
449
450 For example:
451
452 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
453
454 Response:  Weight is 401 g
455
456 Check the response of this command and adjust the value to match the real value for thing.
457
458 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
459 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
460 **Size(bytes)**
461 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
462 |Value|BAT|(% style="width:193px" %)(((
463 Temperature(DS18B20)(PC13)
464 )))|(% style="width:85px" %)(((
465 ADC(PA4)
466 )))|(% style="width:186px" %)(((
467 Digital in(PB15) & Digital Interrupt(PA8)
468 )))|(% style="width:100px" %)Weight
469
470 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
471
472
473 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
474
475
476 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
477
478 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
479
480 [[image:image-20230512181814-9.png||height="543" width="697"]]
481
482
483 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
484
485 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
486 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
487 |Value|BAT|(% style="width:256px" %)(((
488 Temperature(DS18B20)(PC13)
489 )))|(% style="width:108px" %)(((
490 ADC(PA4)
491 )))|(% style="width:126px" %)(((
492 Digital in(PB15)
493 )))|(% style="width:145px" %)(((
494 Count(PA8)
495 )))
496
497 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
498
499
500 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
501
502
503 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
504 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
505 **Size(bytes)**
506 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
507 |Value|BAT|(% style="width:188px" %)(((
508 Temperature(DS18B20)
509 (PC13)
510 )))|(% style="width:83px" %)(((
511 ADC(PA5)
512 )))|(% style="width:184px" %)(((
513 Digital Interrupt1(PA8)
514 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
515
516 [[image:image-20230513111203-7.png||height="324" width="975"]]
517
518
519 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
520
521
522 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
523 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
524 **Size(bytes)**
525 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
526 |Value|BAT|(% style="width:207px" %)(((
527 Temperature(DS18B20)
528 (PC13)
529 )))|(% style="width:94px" %)(((
530 ADC1(PA4)
531 )))|(% style="width:198px" %)(((
532 Digital Interrupt(PB15)
533 )))|(% style="width:84px" %)(((
534 ADC2(PA5)
535 )))|(% style="width:82px" %)(((
536 ADC3(PA8)
537 )))
538
539 [[image:image-20230513111231-8.png||height="335" width="900"]]
540
541
542 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
543
544
545 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
546 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
547 **Size(bytes)**
548 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
549 |Value|BAT|(((
550 Temperature
551 (DS18B20)(PC13)
552 )))|(((
553 Temperature2
554 (DS18B20)(PB9)
555 )))|(((
556 Digital Interrupt
557 (PB15)
558 )))|(% style="width:193px" %)(((
559 Temperature3
560 (DS18B20)(PB8)
561 )))|(% style="width:78px" %)(((
562 Count1(PA8)
563 )))|(% style="width:78px" %)(((
564 Count2(PA4)
565 )))
566
567 [[image:image-20230513111255-9.png||height="341" width="899"]]
568
569 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
570
571 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
572
573 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
574
575 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
576
577
578 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
579
580 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
581
582 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
583
584
585 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
586
587 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
588
589
590 ===== 2.3.2.10.a  Uplink, PWM input capture =====
591
592 [[image:image-20230817172209-2.png||height="439" width="683"]]
593
594 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
595 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
596 |Value|Bat|(% style="width:191px" %)(((
597 Temperature(DS18B20)(PC13)
598 )))|(% style="width:78px" %)(((
599 ADC(PA4)
600 )))|(% style="width:135px" %)(((
601 PWM_Setting
602
603 &Digital Interrupt(PA8)
604 )))|(% style="width:70px" %)(((
605 Pulse period
606 )))|(% style="width:89px" %)(((
607 Duration of high level
608 )))
609
610 [[image:image-20230817170702-1.png||height="161" width="1044"]]
611
612
613 (% style="color:blue" %)**AT+PWMSET=AA(Default is 0)  ==> Corresponding downlink: 0B AA**
614
615 When AA is 0, the unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. 
616
617 When AA is 1, the unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. 
618
619
620 ===== 2.3.2.10.b  Downlink, PWM output =====
621
622 [[image:image-20230817173800-3.png||height="412" width="685"]]
623
624 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
625
626 xx xx xx is the output frequency, the unit is HZ.
627
628 yy is the duty cycle of the output, the unit is %.
629
630 zz zz is the time delay of the output, the unit is ms.
631
632
633 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
634
635 The oscilloscope displays as follows:
636
637 [[image:image-20230817173858-5.png||height="694" width="921"]]
638
639
640 === 2.3.3  ​Decode payload ===
641
642
643 While using TTN V3 network, you can add the payload format to decode the payload.
644
645 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
646
647 The payload decoder function for TTN V3 are here:
648
649 SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
650
651
652 ==== 2.3.3.1 Battery Info ====
653
654
655 Check the battery voltage for SN50v3-LB.
656
657 Ex1: 0x0B45 = 2885mV
658
659 Ex2: 0x0B49 = 2889mV
660
661
662 ==== 2.3.3.2  Temperature (DS18B20) ====
663
664
665 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
666
667 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
668
669 (% style="color:blue" %)**Connection:**
670
671 [[image:image-20230512180718-8.png||height="538" width="647"]]
672
673
674 (% style="color:blue" %)**Example**:
675
676 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
677
678 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
679
680 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
681
682
683 ==== 2.3.3.3 Digital Input ====
684
685
686 The digital input for pin PB15,
687
688 * When PB15 is high, the bit 1 of payload byte 6 is 1.
689 * When PB15 is low, the bit 1 of payload byte 6 is 0.
690
691 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
692 (((
693 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
694
695 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
696
697
698 )))
699
700 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
701
702
703 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
704
705 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
706
707 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
708
709
710 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
711
712
713 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
714
715 [[image:image-20230811113449-1.png||height="370" width="608"]]
716
717 ==== 2.3.3.5 Digital Interrupt ====
718
719
720 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
721
722 (% style="color:blue" %)** Interrupt connection method:**
723
724 [[image:image-20230513105351-5.png||height="147" width="485"]]
725
726
727 (% style="color:blue" %)**Example to use with door sensor :**
728
729 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
730
731 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
732
733 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
734
735
736 (% style="color:blue" %)**Below is the installation example:**
737
738 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
739
740 * (((
741 One pin to SN50v3-LB's PA8 pin
742 )))
743 * (((
744 The other pin to SN50v3-LB's VDD pin
745 )))
746
747 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
748
749 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
750
751 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
752
753 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
754
755 The above photos shows the two parts of the magnetic switch fitted to a door.
756
757 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
758
759 The command is:
760
761 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
762
763 Below shows some screen captures in TTN V3:
764
765 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
766
767
768 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
769
770 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
771
772
773 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
774
775
776 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
777
778 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
779
780 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
781
782
783 Below is the connection to SHT20/ SHT31. The connection is as below:
784
785 [[image:image-20230610170152-2.png||height="501" width="846"]]
786
787
788 The device will be able to get the I2C sensor data now and upload to IoT Server.
789
790 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
791
792 Convert the read byte to decimal and divide it by ten.
793
794 **Example:**
795
796 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
797
798 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
799
800 If you want to use other I2C device, please refer the SHT20 part source code as reference.
801
802
803 ==== 2.3.3.7  ​Distance Reading ====
804
805
806 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
807
808
809 ==== 2.3.3.8 Ultrasonic Sensor ====
810
811
812 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
813
814 The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
815
816 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
817
818 The picture below shows the connection:
819
820 [[image:image-20230512173903-6.png||height="596" width="715"]]
821
822
823 Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
824
825 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
826
827 **Example:**
828
829 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
830
831
832 ==== 2.3.3.9  Battery Output - BAT pin ====
833
834
835 The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
836
837
838 ==== 2.3.3.10  +5V Output ====
839
840
841 SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
842
843 The 5V output time can be controlled by AT Command.
844
845 (% style="color:blue" %)**AT+5VT=1000**
846
847 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
848
849 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
850
851
852 ==== 2.3.3.11  BH1750 Illumination Sensor ====
853
854
855 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
856
857 [[image:image-20230512172447-4.png||height="416" width="712"]]
858
859
860 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
861
862
863 ==== 2.3.3.12  PWM MOD ====
864
865
866 ==== 2.3.3.13  Working MOD ====
867
868
869 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
870
871 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
872
873 Case 7^^th^^ Byte >> 2 & 0x1f:
874
875 * 0: MOD1
876 * 1: MOD2
877 * 2: MOD3
878 * 3: MOD4
879 * 4: MOD5
880 * 5: MOD6
881 * 6: MOD7
882 * 7: MOD8
883 * 8: MOD9
884 * 9: MOD10
885
886
887 == 2.4 Payload Decoder file ==
888
889
890 In TTN, use can add a custom payload so it shows friendly reading
891
892 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
893
894 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
895
896
897 == 2.5 Frequency Plans ==
898
899
900 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
901
902 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
903
904
905 = 3. Configure SN50v3-LB =
906
907 == 3.1 Configure Methods ==
908
909
910 SN50v3-LB supports below configure method:
911
912 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
913 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
914 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
915
916
917 == 3.2 General Commands ==
918
919
920 These commands are to configure:
921
922 * General system settings like: uplink interval.
923 * LoRaWAN protocol & radio related command.
924
925 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
926
927 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
928
929
930 == 3.3 Commands special design for SN50v3-LB ==
931
932
933 These commands only valid for SN50v3-LB, as below:
934
935
936 === 3.3.1 Set Transmit Interval Time ===
937
938
939 Feature: Change LoRaWAN End Node Transmit Interval.
940
941 (% style="color:blue" %)**AT Command: AT+TDC**
942
943 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
944 |=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
945 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
946 30000
947 OK
948 the interval is 30000ms = 30s
949 )))
950 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
951 OK
952 Set transmit interval to 60000ms = 60 seconds
953 )))
954
955 (% style="color:blue" %)**Downlink Command: 0x01**
956
957 Format: Command Code (0x01) followed by 3 bytes time value.
958
959 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
960
961 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
962 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
963
964
965 === 3.3.2 Get Device Status ===
966
967
968 Send a LoRaWAN downlink to ask the device to send its status.
969
970 (% style="color:blue" %)**Downlink Payload: 0x26 01**
971
972 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
973
974
975 === 3.3.3 Set Interrupt Mode ===
976
977
978 Feature, Set Interrupt mode for GPIO_EXIT.
979
980 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
981
982 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
983 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
984 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
985 0
986 OK
987 the mode is 0 =Disable Interrupt
988 )))
989 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
990 Set Transmit Interval
991 0. (Disable Interrupt),
992 ~1. (Trigger by rising and falling edge)
993 2. (Trigger by falling edge)
994 3. (Trigger by rising edge)
995 )))|(% style="width:157px" %)OK
996 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
997 Set Transmit Interval
998 trigger by rising edge.
999 )))|(% style="width:157px" %)OK
1000 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1001
1002 (% style="color:blue" %)**Downlink Command: 0x06**
1003
1004 Format: Command Code (0x06) followed by 3 bytes.
1005
1006 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1007
1008 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1009 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1010 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1011 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1012
1013
1014 === 3.3.4 Set Power Output Duration ===
1015
1016
1017 Control the output duration 5V . Before each sampling, device will
1018
1019 ~1. first enable the power output to external sensor,
1020
1021 2. keep it on as per duration, read sensor value and construct uplink payload
1022
1023 3. final, close the power output.
1024
1025 (% style="color:blue" %)**AT Command: AT+5VT**
1026
1027 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1028 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1029 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1030 500(default)
1031 OK
1032 )))
1033 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1034 Close after a delay of 1000 milliseconds.
1035 )))|(% style="width:157px" %)OK
1036
1037 (% style="color:blue" %)**Downlink Command: 0x07**
1038
1039 Format: Command Code (0x07) followed by 2 bytes.
1040
1041 The first and second bytes are the time to turn on.
1042
1043 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1044 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1045
1046
1047 === 3.3.5 Set Weighing parameters ===
1048
1049
1050 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1051
1052 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1053
1054 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1055 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1056 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1057 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1058 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1059
1060 (% style="color:blue" %)**Downlink Command: 0x08**
1061
1062 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1063
1064 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1065
1066 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1067
1068 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1069 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1070 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1071
1072
1073 === 3.3.6 Set Digital pulse count value ===
1074
1075
1076 Feature: Set the pulse count value.
1077
1078 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1079
1080 (% style="color:blue" %)**AT Command: AT+SETCNT**
1081
1082 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1083 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1084 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1085 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1086
1087 (% style="color:blue" %)**Downlink Command: 0x09**
1088
1089 Format: Command Code (0x09) followed by 5 bytes.
1090
1091 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1092
1093 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1094 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1095
1096
1097 === 3.3.7 Set Workmode ===
1098
1099
1100 Feature: Switch working mode.
1101
1102 (% style="color:blue" %)**AT Command: AT+MOD**
1103
1104 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1105 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1106 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1107 OK
1108 )))
1109 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1110 OK
1111 Attention:Take effect after ATZ
1112 )))
1113
1114 (% style="color:blue" %)**Downlink Command: 0x0A**
1115
1116 Format: Command Code (0x0A) followed by 1 bytes.
1117
1118 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1119 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1120
1121
1122 = 4. Battery & Power Consumption =
1123
1124
1125 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1126
1127 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1128
1129
1130 = 5. OTA Firmware update =
1131
1132
1133 (% class="wikigeneratedid" %)
1134 **User can change firmware SN50v3-LB to:**
1135
1136 * Change Frequency band/ region.
1137 * Update with new features.
1138 * Fix bugs.
1139
1140 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1141
1142 **Methods to Update Firmware:**
1143
1144 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1145 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1146
1147
1148 = 6. FAQ =
1149
1150 == 6.1 Where can i find source code of SN50v3-LB? ==
1151
1152
1153 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1154 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1155
1156
1157 == 6.2 How to generate PWM Output in SN50v3-LB? ==
1158
1159
1160 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1161
1162
1163 == 6.3 How to put several sensors to a SN50v3-LB? ==
1164
1165
1166 When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1167
1168 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1169
1170 [[image:image-20230810121434-1.png||height="242" width="656"]]
1171
1172
1173 = 7. Order Info =
1174
1175
1176 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1177
1178 (% style="color:red" %)**XX**(%%): The default frequency band
1179
1180 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1181 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1182 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1183 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1184 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1185 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1186 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1187 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1188
1189 (% style="color:red" %)**YY: ** (%%)Hole Option
1190
1191 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1192 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1193 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1194 * (% style="color:red" %)**NH**(%%): No Hole
1195
1196
1197 = 8. ​Packing Info =
1198
1199
1200 (% style="color:#037691" %)**Package Includes**:
1201
1202 * SN50v3-LB LoRaWAN Generic Node
1203
1204 (% style="color:#037691" %)**Dimension and weight**:
1205
1206 * Device Size: cm
1207 * Device Weight: g
1208 * Package Size / pcs : cm
1209 * Weight / pcs : g
1210
1211
1212 = 9. Support =
1213
1214
1215 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1216
1217 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0