Version 67.1 by Saxer Lin on 2023/08/17 18:32

Hide last authors
Xiaoling 41.2 1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
Edwin Chen 2.1 3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
Edwin Chen 5.1 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
Edwin Chen 2.1 18
Xiaoling 43.2 19
Edwin Chen 4.1 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 21
Edwin Chen 4.1 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
Edwin Chen 2.1 23
Edwin Chen 4.1 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
Edwin Chen 2.1 25
Edwin Chen 4.1 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 27
Edwin Chen 4.1 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 29
Edwin Chen 4.1 30
Edwin Chen 2.1 31 == 1.2 ​Features ==
32
Xiaoling 43.44 33
Edwin Chen 2.1 34 * LoRaWAN 1.0.3 Class A
35 * Ultra-low power consumption
Edwin Chen 5.1 36 * Open-Source hardware/software
Edwin Chen 2.1 37 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
38 * Support Bluetooth v5.1 and LoRaWAN remote configure
39 * Support wireless OTA update firmware
40 * Uplink on periodically
41 * Downlink to change configure
42 * 8500mAh Battery for long term use
43
Xiaoling 52.4 44
Edwin Chen 2.1 45 == 1.3 Specification ==
46
Xiaoling 43.4 47
Edwin Chen 2.1 48 (% style="color:#037691" %)**Common DC Characteristics:**
49
50 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
51 * Operating Temperature: -40 ~~ 85°C
52
Edwin Chen 5.1 53 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 54
Edwin Chen 5.1 55 * Battery output (2.6v ~~ 3.6v depends on battery)
56 * +5v controllable output
57 * 3 x Interrupt or Digital IN/OUT pins
58 * 3 x one-wire interfaces
59 * 1 x UART Interface
60 * 1 x I2C Interface
Edwin Chen 2.1 61
62 (% style="color:#037691" %)**LoRa Spec:**
63
64 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
65 * Max +22 dBm constant RF output vs.
66 * RX sensitivity: down to -139 dBm.
67 * Excellent blocking immunity
68
69 (% style="color:#037691" %)**Battery:**
70
71 * Li/SOCI2 un-chargeable battery
72 * Capacity: 8500mAh
73 * Self-Discharge: <1% / Year @ 25°C
74 * Max continuously current: 130mA
75 * Max boost current: 2A, 1 second
76
77 (% style="color:#037691" %)**Power Consumption**
78
79 * Sleep Mode: 5uA @ 3.3v
80 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
81
Xiaoling 52.4 82
Edwin Chen 2.1 83 == 1.4 Sleep mode and working mode ==
84
Xiaoling 43.4 85
Edwin Chen 2.1 86 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
87
88 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
89
90
91 == 1.5 Button & LEDs ==
92
93
94 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
95
96
97 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
98 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
99 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
100 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
101 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
102 )))
103 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
104 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
105 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
106 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
107 )))
108 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
109
Xiaoling 52.4 110
Edwin Chen 2.1 111 == 1.6 BLE connection ==
112
113
Edwin Chen 5.1 114 SN50v3-LB supports BLE remote configure.
Edwin Chen 2.1 115
116
117 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
118
119 * Press button to send an uplink
120 * Press button to active device.
121 * Device Power on or reset.
122
123 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
124
125
Edwin Chen 6.1 126 == 1.7 Pin Definitions ==
Edwin Chen 2.1 127
128
Saxer Lin 49.1 129 [[image:image-20230610163213-1.png||height="404" width="699"]]
Edwin Chen 2.1 130
131
132 == 1.8 Mechanical ==
133
134
135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
136
137 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
138
139 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
140
141
Saxer Lin 44.5 142 == 1.9 Hole Option ==
Edwin Chen 5.1 143
Xiaoling 43.4 144
Edwin Chen 5.1 145 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
146
147 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
148
149 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
150
151
Edwin Chen 10.1 152 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
Edwin Chen 2.1 153
154 == 2.1 How it works ==
155
156
Xiaoling 44.3 157 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 158
159
160 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
161
162
163 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
164
Xiaoling 44.3 165 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
Edwin Chen 2.1 166
167
Edwin Chen 11.2 168 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
Edwin Chen 2.1 169
Edwin Chen 11.2 170 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 171
Edwin Chen 11.2 172 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 2.1 173
174
175 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
176
177
178 (% style="color:blue" %)**Register the device**
179
180 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
181
182
183 (% style="color:blue" %)**Add APP EUI and DEV EUI**
184
185 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
186
187
188 (% style="color:blue" %)**Add APP EUI in the application**
189
190
191 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
192
193
194 (% style="color:blue" %)**Add APP KEY**
195
196 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
197
198
Edwin Chen 11.2 199 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
Edwin Chen 2.1 200
201
Edwin Chen 11.2 202 Press the button for 5 seconds to activate the SN50v3-LB.
Edwin Chen 2.1 203
204 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
205
206 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
207
208
209 == 2.3 ​Uplink Payload ==
210
211 === 2.3.1 Device Status, FPORT~=5 ===
212
213
Xiaoling 44.3 214 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 215
216 The Payload format is as below.
217
218
219 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
220 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
221 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
Xiaoling 45.4 222 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
Edwin Chen 2.1 223
224 Example parse in TTNv3
225
226
Xiaoling 44.3 227 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
Edwin Chen 2.1 228
229 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
230
231 (% style="color:#037691" %)**Frequency Band**:
232
Xiaoling 53.2 233 0x01: EU868
Edwin Chen 2.1 234
Xiaoling 53.2 235 0x02: US915
Edwin Chen 2.1 236
Xiaoling 53.2 237 0x03: IN865
Edwin Chen 2.1 238
Xiaoling 53.2 239 0x04: AU915
Edwin Chen 2.1 240
Xiaoling 53.2 241 0x05: KZ865
Edwin Chen 2.1 242
Xiaoling 53.2 243 0x06: RU864
Edwin Chen 2.1 244
Xiaoling 53.2 245 0x07: AS923
Edwin Chen 2.1 246
Xiaoling 53.2 247 0x08: AS923-1
Edwin Chen 2.1 248
Xiaoling 53.2 249 0x09: AS923-2
Edwin Chen 2.1 250
Xiaoling 53.2 251 0x0a: AS923-3
Edwin Chen 2.1 252
Xiaoling 53.2 253 0x0b: CN470
Edwin Chen 2.1 254
Xiaoling 53.2 255 0x0c: EU433
Edwin Chen 2.1 256
Xiaoling 53.2 257 0x0d: KR920
Edwin Chen 2.1 258
Xiaoling 53.2 259 0x0e: MA869
Edwin Chen 2.1 260
261
262 (% style="color:#037691" %)**Sub-Band**:
263
264 AU915 and US915:value 0x00 ~~ 0x08
265
266 CN470: value 0x0B ~~ 0x0C
267
268 Other Bands: Always 0x00
269
270
271 (% style="color:#037691" %)**Battery Info**:
272
273 Check the battery voltage.
274
275 Ex1: 0x0B45 = 2885mV
276
277 Ex2: 0x0B49 = 2889mV
278
279
Edwin Chen 12.1 280 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 281
282
Xiaoling 44.2 283 SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
Edwin Chen 12.1 284
285 For example:
286
Xiaoling 44.2 287 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
Edwin Chen 12.1 288
289
Edwin Chen 13.1 290 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 291
Xiaoling 44.3 292 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
Edwin Chen 12.1 293
Xiaoling 44.2 294 2. All modes share the same Payload Explanation from HERE.
Xiaoling 43.53 295
Xiaoling 44.2 296 3. By default, the device will send an uplink message every 20 minutes.
297
298
Edwin Chen 13.1 299 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 300
Xiaoling 43.5 301
Edwin Chen 12.1 302 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
303
Xiaoling 43.5 304 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.54 305 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
Xiaoling 45.4 306 |Value|Bat|(% style="width:191px" %)(((
Xiaoling 43.12 307 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 308 )))|(% style="width:78px" %)(((
Xiaoling 43.12 309 ADC(PA4)
Saxer Lin 26.2 310 )))|(% style="width:216px" %)(((
Xiaoling 43.13 311 Digital in(PB15)&Digital Interrupt(PA8)
Saxer Lin 40.1 312 )))|(% style="width:308px" %)(((
Xiaoling 43.12 313 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 314 )))|(% style="width:154px" %)(((
Xiaoling 43.12 315 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 316 )))
317
Edwin Chen 12.1 318 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
319
320
Edwin Chen 13.1 321 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
322
Xiaoling 43.45 323
Edwin Chen 12.1 324 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
325
Xiaoling 43.14 326 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.54 327 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
Xiaoling 45.4 328 |Value|BAT|(% style="width:196px" %)(((
Xiaoling 43.16 329 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 330 )))|(% style="width:87px" %)(((
Xiaoling 43.16 331 ADC(PA4)
Saxer Lin 40.1 332 )))|(% style="width:189px" %)(((
Xiaoling 43.16 333 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 334 )))|(% style="width:208px" %)(((
Xiaoling 53.2 335 Distance measure by: 1) LIDAR-Lite V3HP
336 Or 2) Ultrasonic Sensor
Saxer Lin 40.1 337 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 338
339 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
340
Xiaoling 43.45 341
Xiaoling 43.17 342 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
Edwin Chen 12.1 343
Saxer Lin 26.2 344 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 345
Xiaoling 43.45 346
Xiaoling 43.17 347 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
Edwin Chen 12.1 348
Ellie Zhang 44.1 349 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
Saxer Lin 36.1 350
Saxer Lin 26.2 351 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 352
Xiaoling 43.45 353
Edwin Chen 12.1 354 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
355
Xiaoling 43.19 356 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 357 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
Xiaoling 45.5 358 |Value|BAT|(% style="width:183px" %)(((
Xiaoling 43.19 359 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 360 )))|(% style="width:173px" %)(((
Xiaoling 43.19 361 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 362 )))|(% style="width:84px" %)(((
Xiaoling 43.19 363 ADC(PA4)
Saxer Lin 40.1 364 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 365 Distance measure by:1)TF-Mini plus LiDAR
Xiaoling 53.3 366 Or 2) TF-Luna LiDAR
Saxer Lin 40.1 367 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 368
369 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
370
Xiaoling 43.45 371
Edwin Chen 12.1 372 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
373
Ellie Zhang 44.1 374 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 375
Saxer Lin 26.2 376 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 377
Xiaoling 43.45 378
Edwin Chen 12.1 379 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
380
Ellie Zhang 44.1 381 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 382
Saxer Lin 52.1 383 [[image:image-20230610170047-1.png||height="452" width="799"]]
Edwin Chen 12.1 384
385
Edwin Chen 13.1 386 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
387
Xiaoling 43.45 388
Edwin Chen 12.1 389 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
390
Xiaoling 43.21 391 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.25 392 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
393 **Size(bytes)**
Xiaoling 43.54 394 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
Xiaoling 45.4 395 |Value|(% style="width:68px" %)(((
Xiaoling 43.23 396 ADC1(PA4)
Saxer Lin 26.2 397 )))|(% style="width:75px" %)(((
Xiaoling 43.23 398 ADC2(PA5)
Saxer Lin 36.1 399 )))|(((
Xiaoling 43.23 400 ADC3(PA8)
Saxer Lin 36.1 401 )))|(((
402 Digital Interrupt(PB15)
403 )))|(% style="width:304px" %)(((
Xiaoling 43.23 404 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 36.1 405 )))|(% style="width:163px" %)(((
Xiaoling 43.23 406 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 407 )))|(% style="width:53px" %)Bat
408
409 [[image:image-20230513110214-6.png]]
410
411
Edwin Chen 13.1 412 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
413
Edwin Chen 12.1 414
Saxer Lin 26.2 415 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 416
Xiaoling 43.26 417 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 418 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
Xiaoling 45.4 419 |Value|BAT|(% style="width:186px" %)(((
Xiaoling 43.27 420 Temperature1(DS18B20)(PC13)
Saxer Lin 26.2 421 )))|(% style="width:82px" %)(((
Xiaoling 43.27 422 ADC(PA4)
Saxer Lin 26.2 423 )))|(% style="width:210px" %)(((
Xiaoling 43.27 424 Digital in(PB15) & Digital Interrupt(PA8) 
Saxer Lin 26.2 425 )))|(% style="width:191px" %)Temperature2(DS18B20)
Xiaoling 43.27 426 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
Edwin Chen 12.1 427
428 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
429
Xiaoling 44.4 430
Saxer Lin 39.2 431 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 432
Saxer Lin 39.1 433
Edwin Chen 13.1 434 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
435
Xiaoling 43.45 436
Saxer Lin 26.2 437 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 438
439 Each HX711 need to be calibrated before used. User need to do below two steps:
440
Xiaoling 44.2 441 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
442 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
Edwin Chen 12.1 443 1. (((
Saxer Lin 26.2 444 Weight has 4 bytes, the unit is g.
Xiaoling 43.53 445
446
447
Edwin Chen 12.1 448 )))
449
450 For example:
451
Xiaoling 44.2 452 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
Edwin Chen 12.1 453
454 Response:  Weight is 401 g
455
456 Check the response of this command and adjust the value to match the real value for thing.
457
Xiaoling 43.29 458 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
459 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 460 **Size(bytes)**
Xiaoling 43.30 461 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
Xiaoling 45.4 462 |Value|BAT|(% style="width:193px" %)(((
Xiaoling 43.55 463 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 464 )))|(% style="width:85px" %)(((
Xiaoling 43.31 465 ADC(PA4)
Saxer Lin 40.1 466 )))|(% style="width:186px" %)(((
Xiaoling 43.55 467 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 468 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 469
Edwin Chen 12.1 470 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
471
472
Edwin Chen 13.1 473 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
474
Xiaoling 43.45 475
Edwin Chen 12.1 476 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
477
478 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
479
Saxer Lin 26.2 480 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 481
Xiaoling 43.53 482
Xiaoling 43.45 483 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
Edwin Chen 12.1 484
Xiaoling 43.38 485 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.57 486 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
Xiaoling 45.4 487 |Value|BAT|(% style="width:256px" %)(((
Xiaoling 43.31 488 Temperature(DS18B20)(PC13)
Saxer Lin 36.1 489 )))|(% style="width:108px" %)(((
Xiaoling 43.31 490 ADC(PA4)
Saxer Lin 36.1 491 )))|(% style="width:126px" %)(((
Xiaoling 43.31 492 Digital in(PB15)
Saxer Lin 36.1 493 )))|(% style="width:145px" %)(((
Xiaoling 43.31 494 Count(PA8)
Saxer Lin 36.1 495 )))
496
Edwin Chen 12.1 497 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
498
499
Edwin Chen 13.1 500 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
501
Xiaoling 43.45 502
Xiaoling 43.38 503 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.33 504 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 505 **Size(bytes)**
Xiaoling 43.34 506 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
Xiaoling 45.4 507 |Value|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 508 Temperature(DS18B20)
509 (PC13)
Saxer Lin 40.1 510 )))|(% style="width:83px" %)(((
Xiaoling 43.35 511 ADC(PA5)
Saxer Lin 40.1 512 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 513 Digital Interrupt1(PA8)
Saxer Lin 40.1 514 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 515
516 [[image:image-20230513111203-7.png||height="324" width="975"]]
517
Xiaoling 43.45 518
Edwin Chen 13.1 519 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
520
Xiaoling 43.45 521
Xiaoling 43.38 522 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.35 523 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 524 **Size(bytes)**
Xiaoling 43.55 525 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
Xiaoling 45.4 526 |Value|BAT|(% style="width:207px" %)(((
Saxer Lin 36.1 527 Temperature(DS18B20)
528 (PC13)
529 )))|(% style="width:94px" %)(((
Xiaoling 43.36 530 ADC1(PA4)
Saxer Lin 36.1 531 )))|(% style="width:198px" %)(((
532 Digital Interrupt(PB15)
533 )))|(% style="width:84px" %)(((
Xiaoling 43.36 534 ADC2(PA5)
Saxer Lin 40.1 535 )))|(% style="width:82px" %)(((
Xiaoling 43.36 536 ADC3(PA8)
Edwin Chen 12.1 537 )))
538
Saxer Lin 36.1 539 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 540
541
Edwin Chen 13.1 542 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
543
Xiaoling 43.45 544
Xiaoling 43.38 545 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
546 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 547 **Size(bytes)**
Xiaoling 43.56 548 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
Xiaoling 45.4 549 |Value|BAT|(((
Xiaoling 43.58 550 Temperature
551 (DS18B20)(PC13)
Edwin Chen 12.1 552 )))|(((
Xiaoling 43.58 553 Temperature2
554 (DS18B20)(PB9)
Edwin Chen 12.1 555 )))|(((
Saxer Lin 36.1 556 Digital Interrupt
557 (PB15)
558 )))|(% style="width:193px" %)(((
Xiaoling 43.58 559 Temperature3
560 (DS18B20)(PB8)
Saxer Lin 36.1 561 )))|(% style="width:78px" %)(((
Xiaoling 43.39 562 Count1(PA8)
Saxer Lin 36.1 563 )))|(% style="width:78px" %)(((
Xiaoling 43.39 564 Count2(PA4)
Edwin Chen 12.1 565 )))
566
Saxer Lin 36.1 567 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 568
Xiaoling 43.40 569 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
Edwin Chen 12.1 570
Xiaoling 43.44 571 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
Edwin Chen 12.1 572
Xiaoling 43.44 573 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
Edwin Chen 12.1 574
Xiaoling 43.44 575 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
Edwin Chen 12.1 576
577
Xiaoling 43.41 578 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
579
Saxer Lin 36.1 580 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 581
Saxer Lin 36.1 582 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 583
584
Saxer Lin 65.1 585 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
586
587 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
588
589
590 ===== 2.3.2.10.a  Uplink, PWM input capture =====
591
592 [[image:image-20230817172209-2.png||height="439" width="683"]]
593
594 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
595 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
596 |Value|Bat|(% style="width:191px" %)(((
597 Temperature(DS18B20)(PC13)
598 )))|(% style="width:78px" %)(((
599 ADC(PA4)
600 )))|(% style="width:135px" %)(((
601 PWM_Setting
602
603 &Digital Interrupt(PA8)
604 )))|(% style="width:70px" %)(((
605 Pulse period
606 )))|(% style="width:89px" %)(((
607 Duration of high level
608 )))
609
610 [[image:image-20230817170702-1.png||height="161" width="1044"]]
611
612
613 (% style="color:blue" %)**AT+PWMSET=AA(Default is 0)  ==> Corresponding downlink: 0B AA**
614
615 When AA is 0, the unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. 
616
617 When AA is 1, the unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. 
618
619
620 ===== 2.3.2.10.b  Downlink, PWM output =====
621
622 [[image:image-20230817173800-3.png||height="412" width="685"]]
623
624 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
625
626 xx xx xx is the output frequency, the unit is HZ.
627
628 yy is the duty cycle of the output, the unit is %.
629
630 zz zz is the time delay of the output, the unit is ms.
631
632
633 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
634
635 The oscilloscope displays as follows:
636
637 [[image:image-20230817173858-5.png||height="694" width="921"]]
638
639
Edwin Chen 14.1 640 === 2.3.3  ​Decode payload ===
641
Xiaoling 43.45 642
Edwin Chen 12.1 643 While using TTN V3 network, you can add the payload format to decode the payload.
644
645 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
646
647 The payload decoder function for TTN V3 are here:
648
Xiaoling 44.2 649 SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 650
651
Edwin Chen 14.1 652 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 653
Xiaoling 43.45 654
Xiaoling 44.2 655 Check the battery voltage for SN50v3-LB.
Edwin Chen 2.1 656
657 Ex1: 0x0B45 = 2885mV
658
659 Ex2: 0x0B49 = 2889mV
660
661
Edwin Chen 14.1 662 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 663
Xiaoling 43.45 664
Saxer Lin 42.1 665 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 666
Xiaoling 43.45 667 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
Edwin Chen 14.1 668
Xiaoling 43.41 669 (% style="color:blue" %)**Connection:**
Edwin Chen 14.1 670
Saxer Lin 26.2 671 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 672
Xiaoling 43.46 673
Xiaoling 43.41 674 (% style="color:blue" %)**Example**:
Edwin Chen 2.1 675
676 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
677
678 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
679
680 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
681
682
Edwin Chen 14.1 683 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 684
Xiaoling 43.46 685
Saxer Lin 26.2 686 The digital input for pin PB15,
Edwin Chen 2.1 687
Saxer Lin 26.2 688 * When PB15 is high, the bit 1 of payload byte 6 is 1.
689 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 690
Saxer Lin 26.2 691 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
692 (((
Saxer Lin 36.1 693 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
694
Xiaoling 43.46 695 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
696
697
Saxer Lin 26.2 698 )))
699
Edwin Chen 14.1 700 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 701
Xiaoling 43.46 702
Saxer Lin 53.1 703 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 704
Saxer Lin 53.1 705 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 706
Saxer Lin 26.2 707 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 708
Xiaoling 44.2 709
Xiaoling 43.46 710 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
Edwin Chen 14.1 711
Saxer Lin 43.1 712
Saxer Lin 59.1 713 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
714
715 [[image:image-20230811113449-1.png||height="370" width="608"]]
716
Edwin Chen 14.1 717 ==== 2.3.3.5 Digital Interrupt ====
718
Xiaoling 43.46 719
Xiaoling 44.2 720 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
Edwin Chen 14.1 721
Xiaoling 43.44 722 (% style="color:blue" %)** Interrupt connection method:**
Edwin Chen 14.1 723
Saxer Lin 36.1 724 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 725
Xiaoling 43.46 726
Xiaoling 43.8 727 (% style="color:blue" %)**Example to use with door sensor :**
Edwin Chen 14.1 728
729 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
730
731 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
732
Xiaoling 44.2 733 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 734
735
Xiaoling 43.46 736 (% style="color:blue" %)**Below is the installation example:**
737
Xiaoling 44.2 738 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
Edwin Chen 14.1 739
740 * (((
Xiaoling 44.2 741 One pin to SN50v3-LB's PA8 pin
Edwin Chen 14.1 742 )))
743 * (((
Xiaoling 44.2 744 The other pin to SN50v3-LB's VDD pin
Edwin Chen 14.1 745 )))
746
Saxer Lin 36.1 747 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 748
Xiaoling 43.46 749 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
Edwin Chen 14.1 750
Saxer Lin 36.1 751 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 752
753 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
754
755 The above photos shows the two parts of the magnetic switch fitted to a door.
756
757 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
758
759 The command is:
760
Xiaoling 44.2 761 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 762
763 Below shows some screen captures in TTN V3:
764
765 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
766
Xiaoling 43.47 767
Xiaoling 44.4 768 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
Edwin Chen 14.1 769
770 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
771
772
Saxer Lin 26.2 773 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 774
Xiaoling 43.47 775
Saxer Lin 26.2 776 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 777
Saxer Lin 40.1 778 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 779
Xiaoling 44.2 780 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
Edwin Chen 14.1 781
Xiaoling 44.2 782
Edwin Chen 14.1 783 Below is the connection to SHT20/ SHT31. The connection is as below:
784
Saxer Lin 52.1 785 [[image:image-20230610170152-2.png||height="501" width="846"]]
Saxer Lin 36.1 786
Xiaoling 44.4 787
Edwin Chen 14.1 788 The device will be able to get the I2C sensor data now and upload to IoT Server.
789
790 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
791
792 Convert the read byte to decimal and divide it by ten.
793
Edwin Chen 2.1 794 **Example:**
795
Edwin Chen 14.1 796 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 797
Edwin Chen 14.1 798 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 799
Edwin Chen 14.1 800 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 801
802
Edwin Chen 14.1 803 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 804
Xiaoling 43.48 805
Xiaoling 43.42 806 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
Edwin Chen 14.1 807
808
809 ==== 2.3.3.8 Ultrasonic Sensor ====
810
Xiaoling 43.48 811
Saxer Lin 26.2 812 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 813
Xiaoling 44.2 814 The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 815
Xiaoling 43.44 816 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
Saxer Lin 36.1 817
Edwin Chen 14.1 818 The picture below shows the connection:
819
Saxer Lin 36.1 820 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 821
Xiaoling 43.50 822
Xiaoling 44.2 823 Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 824
825 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
826
827 **Example:**
828
829 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
830
831
832 ==== 2.3.3.9  Battery Output - BAT pin ====
833
Xiaoling 43.50 834
Xiaoling 44.4 835 The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
Edwin Chen 14.1 836
837
838 ==== 2.3.3.10  +5V Output ====
839
Xiaoling 43.50 840
Xiaoling 44.2 841 SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
Edwin Chen 14.1 842
843 The 5V output time can be controlled by AT Command.
844
Xiaoling 43.9 845 (% style="color:blue" %)**AT+5VT=1000**
Edwin Chen 14.1 846
847 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
848
Xiaoling 44.4 849 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
Edwin Chen 14.1 850
851
852 ==== 2.3.3.11  BH1750 Illumination Sensor ====
853
Xiaoling 43.50 854
Edwin Chen 14.1 855 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
856
Saxer Lin 40.1 857 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 858
Xiaoling 43.51 859
Saxer Lin 40.1 860 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 861
862
Saxer Lin 65.1 863 ==== 2.3.3.12  PWM MOD ====
Edwin Chen 14.1 864
Xiaoling 43.51 865
Saxer Lin 65.1 866 ==== 2.3.3.13  Working MOD ====
867
868
Edwin Chen 14.1 869 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
870
871 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
872
873 Case 7^^th^^ Byte >> 2 & 0x1f:
874
875 * 0: MOD1
876 * 1: MOD2
877 * 2: MOD3
878 * 3: MOD4
879 * 4: MOD5
880 * 5: MOD6
Saxer Lin 36.1 881 * 6: MOD7
882 * 7: MOD8
883 * 8: MOD9
Saxer Lin 65.1 884 * 9: MOD10
Edwin Chen 14.1 885
Xiaoling 53.3 886
Edwin Chen 2.1 887 == 2.4 Payload Decoder file ==
888
889
890 In TTN, use can add a custom payload so it shows friendly reading
891
892 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
893
Saxer Lin 40.1 894 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 895
896
Edwin Chen 15.1 897 == 2.5 Frequency Plans ==
Edwin Chen 2.1 898
899
Edwin Chen 15.1 900 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 2.1 901
902 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
903
904
Edwin Chen 16.1 905 = 3. Configure SN50v3-LB =
Edwin Chen 2.1 906
907 == 3.1 Configure Methods ==
908
909
Edwin Chen 16.1 910 SN50v3-LB supports below configure method:
Edwin Chen 2.1 911
912 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
913 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
914 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
915
Xiaoling 53.3 916
Edwin Chen 2.1 917 == 3.2 General Commands ==
918
919
920 These commands are to configure:
921
922 * General system settings like: uplink interval.
923 * LoRaWAN protocol & radio related command.
924
925 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
926
927 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
928
929
Edwin Chen 16.1 930 == 3.3 Commands special design for SN50v3-LB ==
Edwin Chen 2.1 931
932
Xiaoling 44.2 933 These commands only valid for SN50v3-LB, as below:
Edwin Chen 2.1 934
935
936 === 3.3.1 Set Transmit Interval Time ===
937
Xiaoling 43.51 938
Edwin Chen 2.1 939 Feature: Change LoRaWAN End Node Transmit Interval.
940
941 (% style="color:blue" %)**AT Command: AT+TDC**
942
943 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.2 944 |=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
Edwin Chen 2.1 945 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
946 30000
947 OK
948 the interval is 30000ms = 30s
949 )))
950 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
951 OK
952 Set transmit interval to 60000ms = 60 seconds
953 )))
954
955 (% style="color:blue" %)**Downlink Command: 0x01**
956
957 Format: Command Code (0x01) followed by 3 bytes time value.
958
959 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
960
961 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
962 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
963
Xiaoling 53.3 964
Edwin Chen 2.1 965 === 3.3.2 Get Device Status ===
966
Xiaoling 43.52 967
Saxer Lin 40.1 968 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 969
Xiaoling 44.4 970 (% style="color:blue" %)**Downlink Payload: 0x26 01**
Edwin Chen 2.1 971
Xiaoling 44.4 972 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
Edwin Chen 2.1 973
974
Saxer Lin 36.1 975 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 976
Xiaoling 43.52 977
Edwin Chen 2.1 978 Feature, Set Interrupt mode for GPIO_EXIT.
979
Saxer Lin 36.1 980 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
Edwin Chen 2.1 981
982 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 983 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 984 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
Edwin Chen 2.1 985 0
986 OK
987 the mode is 0 =Disable Interrupt
988 )))
Saxer Lin 36.1 989 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
Edwin Chen 2.1 990 Set Transmit Interval
991 0. (Disable Interrupt),
992 ~1. (Trigger by rising and falling edge)
993 2. (Trigger by falling edge)
994 3. (Trigger by rising edge)
995 )))|(% style="width:157px" %)OK
Saxer Lin 36.1 996 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
997 Set Transmit Interval
998 trigger by rising edge.
999 )))|(% style="width:157px" %)OK
1000 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1001
Edwin Chen 2.1 1002 (% style="color:blue" %)**Downlink Command: 0x06**
1003
1004 Format: Command Code (0x06) followed by 3 bytes.
1005
1006 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1007
Saxer Lin 36.1 1008 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1009 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1010 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1011 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
Edwin Chen 2.1 1012
Xiaoling 53.3 1013
Saxer Lin 36.1 1014 === 3.3.4 Set Power Output Duration ===
1015
Xiaoling 43.52 1016
Saxer Lin 36.1 1017 Control the output duration 5V . Before each sampling, device will
1018
1019 ~1. first enable the power output to external sensor,
1020
1021 2. keep it on as per duration, read sensor value and construct uplink payload
1022
1023 3. final, close the power output.
1024
1025 (% style="color:blue" %)**AT Command: AT+5VT**
1026
1027 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1028 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1029 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1030 500(default)
1031 OK
1032 )))
1033 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1034 Close after a delay of 1000 milliseconds.
1035 )))|(% style="width:157px" %)OK
1036
1037 (% style="color:blue" %)**Downlink Command: 0x07**
1038
1039 Format: Command Code (0x07) followed by 2 bytes.
1040
1041 The first and second bytes are the time to turn on.
1042
Saxer Lin 40.1 1043 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1044 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 1045
Xiaoling 53.3 1046
Saxer Lin 36.1 1047 === 3.3.5 Set Weighing parameters ===
1048
Xiaoling 43.52 1049
Saxer Lin 37.1 1050 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 1051
1052 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1053
1054 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1055 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 37.1 1056 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1057 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1058 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 1059
1060 (% style="color:blue" %)**Downlink Command: 0x08**
1061
Saxer Lin 37.1 1062 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 1063
Saxer Lin 37.1 1064 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 1065
Saxer Lin 37.1 1066 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 1067
Saxer Lin 37.1 1068 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1069 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1070 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1071
Xiaoling 53.3 1072
Saxer Lin 36.1 1073 === 3.3.6 Set Digital pulse count value ===
1074
Xiaoling 43.52 1075
Saxer Lin 36.1 1076 Feature: Set the pulse count value.
1077
Saxer Lin 37.1 1078 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1079
Saxer Lin 36.1 1080 (% style="color:blue" %)**AT Command: AT+SETCNT**
1081
1082 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1083 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1084 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1085 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1086
1087 (% style="color:blue" %)**Downlink Command: 0x09**
1088
1089 Format: Command Code (0x09) followed by 5 bytes.
1090
1091 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1092
1093 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 1094 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 1095
Xiaoling 53.3 1096
Saxer Lin 36.1 1097 === 3.3.7 Set Workmode ===
1098
Xiaoling 43.52 1099
Saxer Lin 37.1 1100 Feature: Switch working mode.
Saxer Lin 36.1 1101
1102 (% style="color:blue" %)**AT Command: AT+MOD**
1103
1104 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1105 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1106 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1107 OK
1108 )))
1109 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1110 OK
1111 Attention:Take effect after ATZ
1112 )))
1113
1114 (% style="color:blue" %)**Downlink Command: 0x0A**
1115
1116 Format: Command Code (0x0A) followed by 1 bytes.
1117
1118 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1119 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1120
Xiaoling 53.3 1121
Edwin Chen 2.1 1122 = 4. Battery & Power Consumption =
1123
1124
Edwin Chen 11.1 1125 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1126
1127 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1128
1129
1130 = 5. OTA Firmware update =
1131
1132
1133 (% class="wikigeneratedid" %)
Xiaoling 44.4 1134 **User can change firmware SN50v3-LB to:**
Edwin Chen 2.1 1135
1136 * Change Frequency band/ region.
1137 * Update with new features.
1138 * Fix bugs.
1139
Xiaoling 52.2 1140 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
Edwin Chen 2.1 1141
Xiaoling 44.4 1142 **Methods to Update Firmware:**
Edwin Chen 2.1 1143
Xiaoling 53.3 1144 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1145 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
Edwin Chen 2.1 1146
Xiaoling 53.3 1147
Edwin Chen 2.1 1148 = 6. FAQ =
1149
Edwin Chen 17.1 1150 == 6.1 Where can i find source code of SN50v3-LB? ==
Edwin Chen 2.1 1151
Xiaoling 43.52 1152
Edwin Chen 17.1 1153 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1154 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
Edwin Chen 2.1 1155
Xiaoling 53.3 1156
Xiaoling 55.2 1157 == 6.2 How to generate PWM Output in SN50v3-LB? ==
1158
1159
Edwin Chen 55.1 1160 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1161
1162
Edwin Chen 57.1 1163 == 6.3 How to put several sensors to a SN50v3-LB? ==
1164
Xiaoling 57.2 1165
Edwin Chen 57.1 1166 When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1167
1168 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1169
1170 [[image:image-20230810121434-1.png||height="242" width="656"]]
1171
1172
Edwin Chen 2.1 1173 = 7. Order Info =
1174
1175
Edwin Chen 10.1 1176 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
Edwin Chen 2.1 1177
1178 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1179
Edwin Chen 2.1 1180 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1181 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1182 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1183 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1184 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1185 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1186 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1187 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1188
Edwin Chen 10.1 1189 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1190
Edwin Chen 10.1 1191 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1192 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1193 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1194 * (% style="color:red" %)**NH**(%%): No Hole
1195
Xiaoling 53.3 1196
Edwin Chen 2.1 1197 = 8. ​Packing Info =
1198
Xiaoling 43.52 1199
Edwin Chen 2.1 1200 (% style="color:#037691" %)**Package Includes**:
1201
Edwin Chen 10.1 1202 * SN50v3-LB LoRaWAN Generic Node
Edwin Chen 2.1 1203
1204 (% style="color:#037691" %)**Dimension and weight**:
1205
1206 * Device Size: cm
1207 * Device Weight: g
1208 * Package Size / pcs : cm
1209 * Weight / pcs : g
1210
Xiaoling 59.2 1211
Edwin Chen 2.1 1212 = 9. Support =
1213
1214
1215 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 43.10 1216
Xiaoling 41.4 1217 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]