Version 62.1 by Saxer Lin on 2023/08/17 17:37

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18
19
20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21
22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23
24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25
26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27
28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29
30
31 == 1.2 ​Features ==
32
33
34 * LoRaWAN 1.0.3 Class A
35 * Ultra-low power consumption
36 * Open-Source hardware/software
37 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
38 * Support Bluetooth v5.1 and LoRaWAN remote configure
39 * Support wireless OTA update firmware
40 * Uplink on periodically
41 * Downlink to change configure
42 * 8500mAh Battery for long term use
43
44
45
46 == 1.3 Specification ==
47
48
49 (% style="color:#037691" %)**Common DC Characteristics:**
50
51 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
52 * Operating Temperature: -40 ~~ 85°C
53
54 (% style="color:#037691" %)**I/O Interface:**
55
56 * Battery output (2.6v ~~ 3.6v depends on battery)
57 * +5v controllable output
58 * 3 x Interrupt or Digital IN/OUT pins
59 * 3 x one-wire interfaces
60 * 1 x UART Interface
61 * 1 x I2C Interface
62
63 (% style="color:#037691" %)**LoRa Spec:**
64
65 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
66 * Max +22 dBm constant RF output vs.
67 * RX sensitivity: down to -139 dBm.
68 * Excellent blocking immunity
69
70 (% style="color:#037691" %)**Battery:**
71
72 * Li/SOCI2 un-chargeable battery
73 * Capacity: 8500mAh
74 * Self-Discharge: <1% / Year @ 25°C
75 * Max continuously current: 130mA
76 * Max boost current: 2A, 1 second
77
78 (% style="color:#037691" %)**Power Consumption**
79
80 * Sleep Mode: 5uA @ 3.3v
81 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
82
83
84
85 == 1.4 Sleep mode and working mode ==
86
87
88 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
89
90 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
91
92
93 == 1.5 Button & LEDs ==
94
95
96 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97
98
99 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
100 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
101 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
104 )))
105 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
106 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
107 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
108 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
109 )))
110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111
112
113
114 == 1.6 BLE connection ==
115
116
117 SN50v3-LB supports BLE remote configure.
118
119
120 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
121
122 * Press button to send an uplink
123 * Press button to active device.
124 * Device Power on or reset.
125
126 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
127
128
129 == 1.7 Pin Definitions ==
130
131
132 [[image:image-20230610163213-1.png||height="404" width="699"]]
133
134
135 == 1.8 Mechanical ==
136
137
138 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
139
140 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
141
142 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
143
144
145 == 1.9 Hole Option ==
146
147
148 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
149
150 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
151
152 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
153
154
155 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
156
157 == 2.1 How it works ==
158
159
160 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
161
162
163 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
164
165
166 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
167
168 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
169
170
171 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
172
173 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
174
175 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
176
177
178 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
179
180
181 (% style="color:blue" %)**Register the device**
182
183 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
184
185
186 (% style="color:blue" %)**Add APP EUI and DEV EUI**
187
188 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
189
190
191 (% style="color:blue" %)**Add APP EUI in the application**
192
193
194 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
195
196
197 (% style="color:blue" %)**Add APP KEY**
198
199 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
200
201
202 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
203
204
205 Press the button for 5 seconds to activate the SN50v3-LB.
206
207 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
208
209 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
210
211
212 == 2.3 ​Uplink Payload ==
213
214 === 2.3.1 Device Status, FPORT~=5 ===
215
216
217 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
218
219 The Payload format is as below.
220
221
222 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
223 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
224 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
225 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
226
227 Example parse in TTNv3
228
229
230 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
231
232 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
233
234 (% style="color:#037691" %)**Frequency Band**:
235
236 0x01: EU868
237
238 0x02: US915
239
240 0x03: IN865
241
242 0x04: AU915
243
244 0x05: KZ865
245
246 0x06: RU864
247
248 0x07: AS923
249
250 0x08: AS923-1
251
252 0x09: AS923-2
253
254 0x0a: AS923-3
255
256 0x0b: CN470
257
258 0x0c: EU433
259
260 0x0d: KR920
261
262 0x0e: MA869
263
264
265 (% style="color:#037691" %)**Sub-Band**:
266
267 AU915 and US915:value 0x00 ~~ 0x08
268
269 CN470: value 0x0B ~~ 0x0C
270
271 Other Bands: Always 0x00
272
273
274 (% style="color:#037691" %)**Battery Info**:
275
276 Check the battery voltage.
277
278 Ex1: 0x0B45 = 2885mV
279
280 Ex2: 0x0B49 = 2889mV
281
282
283 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
284
285
286 SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
287
288 For example:
289
290 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
291
292
293 (% style="color:red" %) **Important Notice:**
294
295 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
296
297 2. All modes share the same Payload Explanation from HERE.
298
299 3. By default, the device will send an uplink message every 20 minutes.
300
301
302 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
303
304
305 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
306
307 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
308 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
309 |Value|Bat|(% style="width:191px" %)(((
310 Temperature(DS18B20)(PC13)
311 )))|(% style="width:78px" %)(((
312 ADC(PA4)
313 )))|(% style="width:216px" %)(((
314 Digital in(PB15)&Digital Interrupt(PA8)
315 )))|(% style="width:308px" %)(((
316 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
317 )))|(% style="width:154px" %)(((
318 Humidity(SHT20 or SHT31)
319 )))
320
321 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
322
323
324 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
325
326
327 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328
329 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
330 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
331 |Value|BAT|(% style="width:196px" %)(((
332 Temperature(DS18B20)(PC13)
333 )))|(% style="width:87px" %)(((
334 ADC(PA4)
335 )))|(% style="width:189px" %)(((
336 Digital in(PB15) & Digital Interrupt(PA8)
337 )))|(% style="width:208px" %)(((
338 Distance measure by: 1) LIDAR-Lite V3HP
339 Or 2) Ultrasonic Sensor
340 )))|(% style="width:117px" %)Reserved
341
342 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
343
344
345 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
346
347 [[image:image-20230512173758-5.png||height="563" width="712"]]
348
349
350 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
351
352 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
353
354 [[image:image-20230512173903-6.png||height="596" width="715"]]
355
356
357 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
358
359 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
360 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
361 |Value|BAT|(% style="width:183px" %)(((
362 Temperature(DS18B20)(PC13)
363 )))|(% style="width:173px" %)(((
364 Digital in(PB15) & Digital Interrupt(PA8)
365 )))|(% style="width:84px" %)(((
366 ADC(PA4)
367 )))|(% style="width:323px" %)(((
368 Distance measure by:1)TF-Mini plus LiDAR
369 Or 2) TF-Luna LiDAR
370 )))|(% style="width:188px" %)Distance signal  strength
371
372 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
373
374
375 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
376
377 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
378
379 [[image:image-20230512180609-7.png||height="555" width="802"]]
380
381
382 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
383
384 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
385
386 [[image:image-20230610170047-1.png||height="452" width="799"]]
387
388
389 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
390
391
392 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
393
394 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
395 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
396 **Size(bytes)**
397 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
398 |Value|(% style="width:68px" %)(((
399 ADC1(PA4)
400 )))|(% style="width:75px" %)(((
401 ADC2(PA5)
402 )))|(((
403 ADC3(PA8)
404 )))|(((
405 Digital Interrupt(PB15)
406 )))|(% style="width:304px" %)(((
407 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
408 )))|(% style="width:163px" %)(((
409 Humidity(SHT20 or SHT31)
410 )))|(% style="width:53px" %)Bat
411
412 [[image:image-20230513110214-6.png]]
413
414
415 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
416
417
418 This mode has total 11 bytes. As shown below:
419
420 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
421 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
422 |Value|BAT|(% style="width:186px" %)(((
423 Temperature1(DS18B20)(PC13)
424 )))|(% style="width:82px" %)(((
425 ADC(PA4)
426 )))|(% style="width:210px" %)(((
427 Digital in(PB15) & Digital Interrupt(PA8) 
428 )))|(% style="width:191px" %)Temperature2(DS18B20)
429 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
430
431 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
432
433
434 [[image:image-20230513134006-1.png||height="559" width="736"]]
435
436
437 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
438
439
440 [[image:image-20230512164658-2.png||height="532" width="729"]]
441
442 Each HX711 need to be calibrated before used. User need to do below two steps:
443
444 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
445 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
446 1. (((
447 Weight has 4 bytes, the unit is g.
448
449
450
451 )))
452
453 For example:
454
455 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
456
457 Response:  Weight is 401 g
458
459 Check the response of this command and adjust the value to match the real value for thing.
460
461 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
462 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
463 **Size(bytes)**
464 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
465 |Value|BAT|(% style="width:193px" %)(((
466 Temperature(DS18B20)(PC13)
467 )))|(% style="width:85px" %)(((
468 ADC(PA4)
469 )))|(% style="width:186px" %)(((
470 Digital in(PB15) & Digital Interrupt(PA8)
471 )))|(% style="width:100px" %)Weight
472
473 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
474
475
476 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
477
478
479 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
480
481 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
482
483 [[image:image-20230512181814-9.png||height="543" width="697"]]
484
485
486 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
487
488 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
489 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
490 |Value|BAT|(% style="width:256px" %)(((
491 Temperature(DS18B20)(PC13)
492 )))|(% style="width:108px" %)(((
493 ADC(PA4)
494 )))|(% style="width:126px" %)(((
495 Digital in(PB15)
496 )))|(% style="width:145px" %)(((
497 Count(PA8)
498 )))
499
500 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
501
502
503 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
504
505
506 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
507 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
508 **Size(bytes)**
509 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
510 |Value|BAT|(% style="width:188px" %)(((
511 Temperature(DS18B20)
512 (PC13)
513 )))|(% style="width:83px" %)(((
514 ADC(PA5)
515 )))|(% style="width:184px" %)(((
516 Digital Interrupt1(PA8)
517 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
518
519 [[image:image-20230513111203-7.png||height="324" width="975"]]
520
521
522 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
523
524
525 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
526 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
527 **Size(bytes)**
528 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
529 |Value|BAT|(% style="width:207px" %)(((
530 Temperature(DS18B20)
531 (PC13)
532 )))|(% style="width:94px" %)(((
533 ADC1(PA4)
534 )))|(% style="width:198px" %)(((
535 Digital Interrupt(PB15)
536 )))|(% style="width:84px" %)(((
537 ADC2(PA5)
538 )))|(% style="width:82px" %)(((
539 ADC3(PA8)
540 )))
541
542 [[image:image-20230513111231-8.png||height="335" width="900"]]
543
544
545 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
546
547
548 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
549 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
550 **Size(bytes)**
551 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
552 |Value|BAT|(((
553 Temperature
554 (DS18B20)(PC13)
555 )))|(((
556 Temperature2
557 (DS18B20)(PB9)
558 )))|(((
559 Digital Interrupt
560 (PB15)
561 )))|(% style="width:193px" %)(((
562 Temperature3
563 (DS18B20)(PB8)
564 )))|(% style="width:78px" %)(((
565 Count1(PA8)
566 )))|(% style="width:78px" %)(((
567 Count2(PA4)
568 )))
569
570 [[image:image-20230513111255-9.png||height="341" width="899"]]
571
572 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
573
574 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
575
576 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
577
578 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
579
580
581 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
582
583 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
584
585 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
586
587
588 === 2.3.3  ​Decode payload ===
589
590
591 While using TTN V3 network, you can add the payload format to decode the payload.
592
593 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
594
595 The payload decoder function for TTN V3 are here:
596
597 SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
598
599
600 ==== 2.3.3.1 Battery Info ====
601
602
603 Check the battery voltage for SN50v3-LB.
604
605 Ex1: 0x0B45 = 2885mV
606
607 Ex2: 0x0B49 = 2889mV
608
609
610 ==== 2.3.3.2  Temperature (DS18B20) ====
611
612
613 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
614
615 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
616
617 (% style="color:blue" %)**Connection:**
618
619 [[image:image-20230512180718-8.png||height="538" width="647"]]
620
621
622 (% style="color:blue" %)**Example**:
623
624 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
625
626 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
627
628 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
629
630
631 ==== 2.3.3.3 Digital Input ====
632
633
634 The digital input for pin PB15,
635
636 * When PB15 is high, the bit 1 of payload byte 6 is 1.
637 * When PB15 is low, the bit 1 of payload byte 6 is 0.
638
639 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
640 (((
641 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
642
643 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
644
645
646 )))
647
648 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
649
650
651 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
652
653 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
654
655 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
656
657
658 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
659
660
661 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
662
663 [[image:image-20230811113449-1.png||height="370" width="608"]]
664
665 ==== 2.3.3.5 Digital Interrupt ====
666
667
668 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
669
670 (% style="color:blue" %)** Interrupt connection method:**
671
672 [[image:image-20230513105351-5.png||height="147" width="485"]]
673
674
675 (% style="color:blue" %)**Example to use with door sensor :**
676
677 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
678
679 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
680
681 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
682
683
684 (% style="color:blue" %)**Below is the installation example:**
685
686 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
687
688 * (((
689 One pin to SN50v3-LB's PA8 pin
690 )))
691 * (((
692 The other pin to SN50v3-LB's VDD pin
693 )))
694
695 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
696
697 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
698
699 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
700
701 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
702
703 The above photos shows the two parts of the magnetic switch fitted to a door.
704
705 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
706
707 The command is:
708
709 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
710
711 Below shows some screen captures in TTN V3:
712
713 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
714
715
716 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
717
718 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
719
720
721 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
722
723
724 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
725
726 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
727
728 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
729
730
731 Below is the connection to SHT20/ SHT31. The connection is as below:
732
733 [[image:image-20230610170152-2.png||height="501" width="846"]]
734
735
736 The device will be able to get the I2C sensor data now and upload to IoT Server.
737
738 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
739
740 Convert the read byte to decimal and divide it by ten.
741
742 **Example:**
743
744 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
745
746 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
747
748 If you want to use other I2C device, please refer the SHT20 part source code as reference.
749
750
751 ==== 2.3.3.7  ​Distance Reading ====
752
753
754 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
755
756
757 ==== 2.3.3.8 Ultrasonic Sensor ====
758
759
760 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
761
762 The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
763
764 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
765
766 The picture below shows the connection:
767
768 [[image:image-20230512173903-6.png||height="596" width="715"]]
769
770
771 Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
772
773 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
774
775 **Example:**
776
777 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
778
779
780 ==== 2.3.3.9  Battery Output - BAT pin ====
781
782
783 The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
784
785
786 ==== 2.3.3.10  +5V Output ====
787
788
789 SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
790
791 The 5V output time can be controlled by AT Command.
792
793 (% style="color:blue" %)**AT+5VT=1000**
794
795 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
796
797 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
798
799
800 ==== 2.3.3.11  BH1750 Illumination Sensor ====
801
802
803 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
804
805 [[image:image-20230512172447-4.png||height="416" width="712"]]
806
807
808 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
809
810
811 ==== 2.3.3.12  Working MOD ====
812
813
814 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
815
816 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
817
818 Case 7^^th^^ Byte >> 2 & 0x1f:
819
820 * 0: MOD1
821 * 1: MOD2
822 * 2: MOD3
823 * 3: MOD4
824 * 4: MOD5
825 * 5: MOD6
826 * 6: MOD7
827 * 7: MOD8
828 * 8: MOD9
829
830
831
832 == 2.4 Payload Decoder file ==
833
834
835 In TTN, use can add a custom payload so it shows friendly reading
836
837 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
838
839 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
840
841
842 == 2.5 Frequency Plans ==
843
844
845 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
846
847 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
848
849
850 = 3. Configure SN50v3-LB =
851
852 == 3.1 Configure Methods ==
853
854
855 SN50v3-LB supports below configure method:
856
857 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
858 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
859 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
860
861
862
863 == 3.2 General Commands ==
864
865
866 These commands are to configure:
867
868 * General system settings like: uplink interval.
869 * LoRaWAN protocol & radio related command.
870
871 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
872
873 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
874
875
876 == 3.3 Commands special design for SN50v3-LB ==
877
878
879 These commands only valid for SN50v3-LB, as below:
880
881
882 === 3.3.1 Set Transmit Interval Time ===
883
884
885 Feature: Change LoRaWAN End Node Transmit Interval.
886
887 (% style="color:blue" %)**AT Command: AT+TDC**
888
889 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
890 |=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
891 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
892 30000
893 OK
894 the interval is 30000ms = 30s
895 )))
896 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
897 OK
898 Set transmit interval to 60000ms = 60 seconds
899 )))
900
901 (% style="color:blue" %)**Downlink Command: 0x01**
902
903 Format: Command Code (0x01) followed by 3 bytes time value.
904
905 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
906
907 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
908 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
909
910
911
912 === 3.3.2 Get Device Status ===
913
914
915 Send a LoRaWAN downlink to ask the device to send its status.
916
917 (% style="color:blue" %)**Downlink Payload: 0x26 01**
918
919 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
920
921
922 === 3.3.3 Set Interrupt Mode ===
923
924
925 Feature, Set Interrupt mode for GPIO_EXIT.
926
927 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
928
929 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
930 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
931 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
932 0
933 OK
934 the mode is 0 =Disable Interrupt
935 )))
936 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
937 Set Transmit Interval
938 0. (Disable Interrupt),
939 ~1. (Trigger by rising and falling edge)
940 2. (Trigger by falling edge)
941 3. (Trigger by rising edge)
942 )))|(% style="width:157px" %)OK
943 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
944 Set Transmit Interval
945 trigger by rising edge.
946 )))|(% style="width:157px" %)OK
947 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
948
949 (% style="color:blue" %)**Downlink Command: 0x06**
950
951 Format: Command Code (0x06) followed by 3 bytes.
952
953 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
954
955 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
956 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
957 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
958 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
959
960
961
962 === 3.3.4 Set Power Output Duration ===
963
964
965 Control the output duration 5V . Before each sampling, device will
966
967 ~1. first enable the power output to external sensor,
968
969 2. keep it on as per duration, read sensor value and construct uplink payload
970
971 3. final, close the power output.
972
973 (% style="color:blue" %)**AT Command: AT+5VT**
974
975 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
976 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
977 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
978 500(default)
979 OK
980 )))
981 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
982 Close after a delay of 1000 milliseconds.
983 )))|(% style="width:157px" %)OK
984
985 (% style="color:blue" %)**Downlink Command: 0x07**
986
987 Format: Command Code (0x07) followed by 2 bytes.
988
989 The first and second bytes are the time to turn on.
990
991 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
992 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
993
994
995
996 === 3.3.5 Set Weighing parameters ===
997
998
999 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1000
1001 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1002
1003 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1004 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1005 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1006 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1007 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1008
1009 (% style="color:blue" %)**Downlink Command: 0x08**
1010
1011 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1012
1013 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1014
1015 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1016
1017 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1018 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1019 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1020
1021
1022
1023 === 3.3.6 Set Digital pulse count value ===
1024
1025
1026 Feature: Set the pulse count value.
1027
1028 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1029
1030 (% style="color:blue" %)**AT Command: AT+SETCNT**
1031
1032 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1033 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1034 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1035 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1036
1037 (% style="color:blue" %)**Downlink Command: 0x09**
1038
1039 Format: Command Code (0x09) followed by 5 bytes.
1040
1041 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1042
1043 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1044 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1045
1046
1047
1048 === 3.3.7 Set Workmode ===
1049
1050
1051 Feature: Switch working mode.
1052
1053 (% style="color:blue" %)**AT Command: AT+MOD**
1054
1055 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1056 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1057 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1058 OK
1059 )))
1060 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1061 OK
1062 Attention:Take effect after ATZ
1063 )))
1064
1065 (% style="color:blue" %)**Downlink Command: 0x0A**
1066
1067 Format: Command Code (0x0A) followed by 1 bytes.
1068
1069 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1070 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1071
1072
1073
1074 = 4. Battery & Power Consumption =
1075
1076
1077 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1078
1079 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1080
1081
1082 = 5. OTA Firmware update =
1083
1084
1085 (% class="wikigeneratedid" %)
1086 **User can change firmware SN50v3-LB to:**
1087
1088 * Change Frequency band/ region.
1089 * Update with new features.
1090 * Fix bugs.
1091
1092 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1093
1094 **Methods to Update Firmware:**
1095
1096 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1097 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1098
1099
1100
1101 = 6. FAQ =
1102
1103 == 6.1 Where can i find source code of SN50v3-LB? ==
1104
1105
1106 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1107 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1108
1109
1110
1111 == 6.2 How to generate PWM Output in SN50v3-LB? ==
1112
1113
1114 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1115
1116
1117 == 6.3 How to put several sensors to a SN50v3-LB? ==
1118
1119
1120 When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1121
1122 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1123
1124 [[image:image-20230810121434-1.png||height="242" width="656"]]
1125
1126
1127 = 7. Order Info =
1128
1129
1130 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1131
1132 (% style="color:red" %)**XX**(%%): The default frequency band
1133
1134 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1135 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1136 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1137 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1138 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1139 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1140 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1141 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1142
1143 (% style="color:red" %)**YY: ** (%%)Hole Option
1144
1145 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1146 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1147 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1148 * (% style="color:red" %)**NH**(%%): No Hole
1149
1150
1151
1152 = 8. ​Packing Info =
1153
1154
1155 (% style="color:#037691" %)**Package Includes**:
1156
1157 * SN50v3-LB LoRaWAN Generic Node
1158
1159 (% style="color:#037691" %)**Dimension and weight**:
1160
1161 * Device Size: cm
1162 * Device Weight: g
1163 * Package Size / pcs : cm
1164 * Weight / pcs : g
1165
1166
1167
1168 = 9. Support =
1169
1170
1171 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1172
1173 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]