Version 54.2 by Xiaoling on 2023/07/13 15:14

Hide last authors
Xiaoling 41.2 1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
Edwin Chen 2.1 3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
Edwin Chen 5.1 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
Edwin Chen 2.1 18
Xiaoling 43.2 19
Edwin Chen 4.1 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 21
Edwin Chen 4.1 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
Edwin Chen 2.1 23
Edwin Chen 4.1 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
Edwin Chen 2.1 25
Edwin Chen 4.1 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 27
Edwin Chen 4.1 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 29
Edwin Chen 4.1 30
Edwin Chen 2.1 31 == 1.2 ​Features ==
32
Xiaoling 43.44 33
Edwin Chen 2.1 34 * LoRaWAN 1.0.3 Class A
35 * Ultra-low power consumption
Edwin Chen 5.1 36 * Open-Source hardware/software
Edwin Chen 2.1 37 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
38 * Support Bluetooth v5.1 and LoRaWAN remote configure
39 * Support wireless OTA update firmware
40 * Uplink on periodically
41 * Downlink to change configure
42 * 8500mAh Battery for long term use
43
Xiaoling 52.4 44
Xiaoling 54.2 45
Edwin Chen 2.1 46 == 1.3 Specification ==
47
Xiaoling 43.4 48
Edwin Chen 2.1 49 (% style="color:#037691" %)**Common DC Characteristics:**
50
51 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
52 * Operating Temperature: -40 ~~ 85°C
53
Edwin Chen 5.1 54 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 55
Edwin Chen 5.1 56 * Battery output (2.6v ~~ 3.6v depends on battery)
57 * +5v controllable output
58 * 3 x Interrupt or Digital IN/OUT pins
59 * 3 x one-wire interfaces
60 * 1 x UART Interface
61 * 1 x I2C Interface
Edwin Chen 2.1 62
63 (% style="color:#037691" %)**LoRa Spec:**
64
65 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
66 * Max +22 dBm constant RF output vs.
67 * RX sensitivity: down to -139 dBm.
68 * Excellent blocking immunity
69
70 (% style="color:#037691" %)**Battery:**
71
72 * Li/SOCI2 un-chargeable battery
73 * Capacity: 8500mAh
74 * Self-Discharge: <1% / Year @ 25°C
75 * Max continuously current: 130mA
76 * Max boost current: 2A, 1 second
77
78 (% style="color:#037691" %)**Power Consumption**
79
80 * Sleep Mode: 5uA @ 3.3v
81 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
82
Xiaoling 52.4 83
Xiaoling 54.2 84
Edwin Chen 2.1 85 == 1.4 Sleep mode and working mode ==
86
Xiaoling 43.4 87
Edwin Chen 2.1 88 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
89
90 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
91
92
93 == 1.5 Button & LEDs ==
94
95
96 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97
98
99 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
100 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
101 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
104 )))
105 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
106 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
107 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
108 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
109 )))
110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111
Xiaoling 52.4 112
Xiaoling 54.2 113
Edwin Chen 2.1 114 == 1.6 BLE connection ==
115
116
Edwin Chen 5.1 117 SN50v3-LB supports BLE remote configure.
Edwin Chen 2.1 118
119
120 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
121
122 * Press button to send an uplink
123 * Press button to active device.
124 * Device Power on or reset.
125
126 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
127
128
Edwin Chen 6.1 129 == 1.7 Pin Definitions ==
Edwin Chen 2.1 130
131
Saxer Lin 49.1 132 [[image:image-20230610163213-1.png||height="404" width="699"]]
Edwin Chen 2.1 133
134
135 == 1.8 Mechanical ==
136
137
138 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
139
140 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
141
142 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
143
144
Saxer Lin 44.5 145 == 1.9 Hole Option ==
Edwin Chen 5.1 146
Xiaoling 43.4 147
Edwin Chen 5.1 148 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
149
150 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
151
152 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
153
154
Edwin Chen 10.1 155 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
Edwin Chen 2.1 156
157 == 2.1 How it works ==
158
159
Xiaoling 44.3 160 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 161
162
163 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
164
165
166 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
167
Xiaoling 44.3 168 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
Edwin Chen 2.1 169
170
Edwin Chen 11.2 171 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
Edwin Chen 2.1 172
Edwin Chen 11.2 173 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 174
Edwin Chen 11.2 175 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 2.1 176
177
178 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
179
180
181 (% style="color:blue" %)**Register the device**
182
183 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
184
185
186 (% style="color:blue" %)**Add APP EUI and DEV EUI**
187
188 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
189
190
191 (% style="color:blue" %)**Add APP EUI in the application**
192
193
194 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
195
196
197 (% style="color:blue" %)**Add APP KEY**
198
199 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
200
201
Edwin Chen 11.2 202 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
Edwin Chen 2.1 203
204
Edwin Chen 11.2 205 Press the button for 5 seconds to activate the SN50v3-LB.
Edwin Chen 2.1 206
207 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
208
209 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
210
211
212 == 2.3 ​Uplink Payload ==
213
214 === 2.3.1 Device Status, FPORT~=5 ===
215
216
Xiaoling 44.3 217 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 218
219 The Payload format is as below.
220
221
222 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
223 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
224 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
Xiaoling 45.4 225 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
Edwin Chen 2.1 226
227 Example parse in TTNv3
228
229
Xiaoling 44.3 230 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
Edwin Chen 2.1 231
232 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
233
234 (% style="color:#037691" %)**Frequency Band**:
235
Xiaoling 53.2 236 0x01: EU868
Edwin Chen 2.1 237
Xiaoling 53.2 238 0x02: US915
Edwin Chen 2.1 239
Xiaoling 53.2 240 0x03: IN865
Edwin Chen 2.1 241
Xiaoling 53.2 242 0x04: AU915
Edwin Chen 2.1 243
Xiaoling 53.2 244 0x05: KZ865
Edwin Chen 2.1 245
Xiaoling 53.2 246 0x06: RU864
Edwin Chen 2.1 247
Xiaoling 53.2 248 0x07: AS923
Edwin Chen 2.1 249
Xiaoling 53.2 250 0x08: AS923-1
Edwin Chen 2.1 251
Xiaoling 53.2 252 0x09: AS923-2
Edwin Chen 2.1 253
Xiaoling 53.2 254 0x0a: AS923-3
Edwin Chen 2.1 255
Xiaoling 53.2 256 0x0b: CN470
Edwin Chen 2.1 257
Xiaoling 53.2 258 0x0c: EU433
Edwin Chen 2.1 259
Xiaoling 53.2 260 0x0d: KR920
Edwin Chen 2.1 261
Xiaoling 53.2 262 0x0e: MA869
Edwin Chen 2.1 263
264
265 (% style="color:#037691" %)**Sub-Band**:
266
267 AU915 and US915:value 0x00 ~~ 0x08
268
269 CN470: value 0x0B ~~ 0x0C
270
271 Other Bands: Always 0x00
272
273
274 (% style="color:#037691" %)**Battery Info**:
275
276 Check the battery voltage.
277
278 Ex1: 0x0B45 = 2885mV
279
280 Ex2: 0x0B49 = 2889mV
281
282
Edwin Chen 12.1 283 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 284
285
Xiaoling 44.2 286 SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
Edwin Chen 12.1 287
288 For example:
289
Xiaoling 44.2 290 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
Edwin Chen 12.1 291
292
Edwin Chen 13.1 293 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 294
Xiaoling 44.3 295 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
Edwin Chen 12.1 296
Xiaoling 44.2 297 2. All modes share the same Payload Explanation from HERE.
Xiaoling 43.53 298
Xiaoling 44.2 299 3. By default, the device will send an uplink message every 20 minutes.
300
301
Edwin Chen 13.1 302 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 303
Xiaoling 43.5 304
Edwin Chen 12.1 305 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
306
Xiaoling 43.5 307 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.54 308 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
Xiaoling 45.4 309 |Value|Bat|(% style="width:191px" %)(((
Xiaoling 43.12 310 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 311 )))|(% style="width:78px" %)(((
Xiaoling 43.12 312 ADC(PA4)
Saxer Lin 26.2 313 )))|(% style="width:216px" %)(((
Xiaoling 43.13 314 Digital in(PB15)&Digital Interrupt(PA8)
Saxer Lin 40.1 315 )))|(% style="width:308px" %)(((
Xiaoling 43.12 316 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 317 )))|(% style="width:154px" %)(((
Xiaoling 43.12 318 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 319 )))
320
Edwin Chen 12.1 321 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
322
323
Edwin Chen 13.1 324 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
325
Xiaoling 43.45 326
Edwin Chen 12.1 327 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328
Xiaoling 43.14 329 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.54 330 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
Xiaoling 45.4 331 |Value|BAT|(% style="width:196px" %)(((
Xiaoling 43.16 332 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 333 )))|(% style="width:87px" %)(((
Xiaoling 43.16 334 ADC(PA4)
Saxer Lin 40.1 335 )))|(% style="width:189px" %)(((
Xiaoling 43.16 336 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 337 )))|(% style="width:208px" %)(((
Xiaoling 53.2 338 Distance measure by: 1) LIDAR-Lite V3HP
339 Or 2) Ultrasonic Sensor
Saxer Lin 40.1 340 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 341
342 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
343
Xiaoling 43.45 344
Xiaoling 43.17 345 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
Edwin Chen 12.1 346
Saxer Lin 26.2 347 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 348
Xiaoling 43.45 349
Xiaoling 43.17 350 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
Edwin Chen 12.1 351
Ellie Zhang 44.1 352 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
Saxer Lin 36.1 353
Saxer Lin 26.2 354 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 355
Xiaoling 43.45 356
Edwin Chen 12.1 357 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
358
Xiaoling 43.19 359 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 360 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
Xiaoling 45.5 361 |Value|BAT|(% style="width:183px" %)(((
Xiaoling 43.19 362 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 363 )))|(% style="width:173px" %)(((
Xiaoling 43.19 364 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 365 )))|(% style="width:84px" %)(((
Xiaoling 43.19 366 ADC(PA4)
Saxer Lin 40.1 367 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 368 Distance measure by:1)TF-Mini plus LiDAR
Xiaoling 53.3 369 Or 2) TF-Luna LiDAR
Saxer Lin 40.1 370 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 371
372 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
373
Xiaoling 43.45 374
Edwin Chen 12.1 375 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
376
Ellie Zhang 44.1 377 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 378
Saxer Lin 26.2 379 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 380
Xiaoling 43.45 381
Edwin Chen 12.1 382 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
383
Ellie Zhang 44.1 384 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 385
Saxer Lin 52.1 386 [[image:image-20230610170047-1.png||height="452" width="799"]]
Edwin Chen 12.1 387
388
Edwin Chen 13.1 389 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
390
Xiaoling 43.45 391
Edwin Chen 12.1 392 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
393
Xiaoling 43.21 394 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.25 395 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
396 **Size(bytes)**
Xiaoling 43.54 397 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
Xiaoling 45.4 398 |Value|(% style="width:68px" %)(((
Xiaoling 43.23 399 ADC1(PA4)
Saxer Lin 26.2 400 )))|(% style="width:75px" %)(((
Xiaoling 43.23 401 ADC2(PA5)
Saxer Lin 36.1 402 )))|(((
Xiaoling 43.23 403 ADC3(PA8)
Saxer Lin 36.1 404 )))|(((
405 Digital Interrupt(PB15)
406 )))|(% style="width:304px" %)(((
Xiaoling 43.23 407 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 36.1 408 )))|(% style="width:163px" %)(((
Xiaoling 43.23 409 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 410 )))|(% style="width:53px" %)Bat
411
412 [[image:image-20230513110214-6.png]]
413
414
Edwin Chen 13.1 415 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
416
Edwin Chen 12.1 417
Saxer Lin 26.2 418 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 419
Xiaoling 43.26 420 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 421 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
Xiaoling 45.4 422 |Value|BAT|(% style="width:186px" %)(((
Xiaoling 43.27 423 Temperature1(DS18B20)(PC13)
Saxer Lin 26.2 424 )))|(% style="width:82px" %)(((
Xiaoling 43.27 425 ADC(PA4)
Saxer Lin 26.2 426 )))|(% style="width:210px" %)(((
Xiaoling 43.27 427 Digital in(PB15) & Digital Interrupt(PA8) 
Saxer Lin 26.2 428 )))|(% style="width:191px" %)Temperature2(DS18B20)
Xiaoling 43.27 429 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
Edwin Chen 12.1 430
431 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
432
Xiaoling 44.4 433
Saxer Lin 39.2 434 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 435
Saxer Lin 39.1 436
Edwin Chen 13.1 437 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
438
Xiaoling 43.45 439
Saxer Lin 26.2 440 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 441
442 Each HX711 need to be calibrated before used. User need to do below two steps:
443
Xiaoling 44.2 444 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
445 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
Edwin Chen 12.1 446 1. (((
Saxer Lin 26.2 447 Weight has 4 bytes, the unit is g.
Xiaoling 43.53 448
449
450
Edwin Chen 12.1 451 )))
452
453 For example:
454
Xiaoling 44.2 455 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
Edwin Chen 12.1 456
457 Response:  Weight is 401 g
458
459 Check the response of this command and adjust the value to match the real value for thing.
460
Xiaoling 43.29 461 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
462 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 463 **Size(bytes)**
Xiaoling 43.30 464 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
Xiaoling 45.4 465 |Value|BAT|(% style="width:193px" %)(((
Xiaoling 43.55 466 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 467 )))|(% style="width:85px" %)(((
Xiaoling 43.31 468 ADC(PA4)
Saxer Lin 40.1 469 )))|(% style="width:186px" %)(((
Xiaoling 43.55 470 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 471 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 472
Edwin Chen 12.1 473 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
474
475
Xiaoling 43.45 476
Edwin Chen 13.1 477 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
478
Xiaoling 43.45 479
Edwin Chen 12.1 480 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
481
482 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
483
Saxer Lin 26.2 484 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 485
Xiaoling 43.53 486
Xiaoling 43.45 487 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
Edwin Chen 12.1 488
Xiaoling 43.38 489 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.57 490 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
Xiaoling 45.4 491 |Value|BAT|(% style="width:256px" %)(((
Xiaoling 43.31 492 Temperature(DS18B20)(PC13)
Saxer Lin 36.1 493 )))|(% style="width:108px" %)(((
Xiaoling 43.31 494 ADC(PA4)
Saxer Lin 36.1 495 )))|(% style="width:126px" %)(((
Xiaoling 43.31 496 Digital in(PB15)
Saxer Lin 36.1 497 )))|(% style="width:145px" %)(((
Xiaoling 43.31 498 Count(PA8)
Saxer Lin 36.1 499 )))
500
Edwin Chen 12.1 501 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
502
503
Edwin Chen 13.1 504 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
505
Xiaoling 43.45 506
Xiaoling 43.38 507 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.33 508 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 509 **Size(bytes)**
Xiaoling 43.34 510 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
Xiaoling 45.4 511 |Value|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 512 Temperature(DS18B20)
513 (PC13)
Saxer Lin 40.1 514 )))|(% style="width:83px" %)(((
Xiaoling 43.35 515 ADC(PA5)
Saxer Lin 40.1 516 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 517 Digital Interrupt1(PA8)
Saxer Lin 40.1 518 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 519
520 [[image:image-20230513111203-7.png||height="324" width="975"]]
521
Xiaoling 43.45 522
Edwin Chen 13.1 523 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
524
Xiaoling 43.45 525
Xiaoling 43.38 526 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.35 527 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 528 **Size(bytes)**
Xiaoling 43.55 529 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
Xiaoling 45.4 530 |Value|BAT|(% style="width:207px" %)(((
Saxer Lin 36.1 531 Temperature(DS18B20)
532 (PC13)
533 )))|(% style="width:94px" %)(((
Xiaoling 43.36 534 ADC1(PA4)
Saxer Lin 36.1 535 )))|(% style="width:198px" %)(((
536 Digital Interrupt(PB15)
537 )))|(% style="width:84px" %)(((
Xiaoling 43.36 538 ADC2(PA5)
Saxer Lin 40.1 539 )))|(% style="width:82px" %)(((
Xiaoling 43.36 540 ADC3(PA8)
Edwin Chen 12.1 541 )))
542
Saxer Lin 36.1 543 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 544
545
Edwin Chen 13.1 546 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
547
Xiaoling 43.45 548
Xiaoling 43.38 549 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
550 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 551 **Size(bytes)**
Xiaoling 43.56 552 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
Xiaoling 45.4 553 |Value|BAT|(((
Xiaoling 43.58 554 Temperature
555 (DS18B20)(PC13)
Edwin Chen 12.1 556 )))|(((
Xiaoling 43.58 557 Temperature2
558 (DS18B20)(PB9)
Edwin Chen 12.1 559 )))|(((
Saxer Lin 36.1 560 Digital Interrupt
561 (PB15)
562 )))|(% style="width:193px" %)(((
Xiaoling 43.58 563 Temperature3
564 (DS18B20)(PB8)
Saxer Lin 36.1 565 )))|(% style="width:78px" %)(((
Xiaoling 43.39 566 Count1(PA8)
Saxer Lin 36.1 567 )))|(% style="width:78px" %)(((
Xiaoling 43.39 568 Count2(PA4)
Edwin Chen 12.1 569 )))
570
Saxer Lin 36.1 571 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 572
Xiaoling 43.40 573 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
Edwin Chen 12.1 574
Xiaoling 43.44 575 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
Edwin Chen 12.1 576
Xiaoling 43.44 577 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
Edwin Chen 12.1 578
Xiaoling 43.44 579 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
Edwin Chen 12.1 580
581
Xiaoling 43.41 582 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
583
Saxer Lin 36.1 584 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 585
Saxer Lin 36.1 586 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 587
588
Edwin Chen 14.1 589 === 2.3.3  ​Decode payload ===
590
Xiaoling 43.45 591
Edwin Chen 12.1 592 While using TTN V3 network, you can add the payload format to decode the payload.
593
594 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
595
596 The payload decoder function for TTN V3 are here:
597
Xiaoling 44.2 598 SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 599
600
Edwin Chen 14.1 601 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 602
Xiaoling 43.45 603
Xiaoling 44.2 604 Check the battery voltage for SN50v3-LB.
Edwin Chen 2.1 605
606 Ex1: 0x0B45 = 2885mV
607
608 Ex2: 0x0B49 = 2889mV
609
610
Edwin Chen 14.1 611 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 612
Xiaoling 43.45 613
Saxer Lin 42.1 614 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 615
Xiaoling 43.45 616 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
Edwin Chen 14.1 617
Xiaoling 43.41 618 (% style="color:blue" %)**Connection:**
Edwin Chen 14.1 619
Saxer Lin 26.2 620 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 621
Xiaoling 43.46 622
Xiaoling 43.41 623 (% style="color:blue" %)**Example**:
Edwin Chen 2.1 624
625 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
626
627 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
628
629 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
630
631
Edwin Chen 14.1 632 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 633
Xiaoling 43.46 634
Saxer Lin 26.2 635 The digital input for pin PB15,
Edwin Chen 2.1 636
Saxer Lin 26.2 637 * When PB15 is high, the bit 1 of payload byte 6 is 1.
638 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 639
Saxer Lin 26.2 640 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
641 (((
Saxer Lin 36.1 642 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
643
Xiaoling 43.46 644 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
645
646
Saxer Lin 26.2 647 )))
648
Edwin Chen 14.1 649 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 650
Xiaoling 43.46 651
Saxer Lin 53.1 652 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 653
Saxer Lin 53.1 654 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 655
Saxer Lin 26.2 656 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 657
Xiaoling 44.2 658
Xiaoling 43.46 659 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
Edwin Chen 14.1 660
Saxer Lin 43.1 661
Edwin Chen 14.1 662 ==== 2.3.3.5 Digital Interrupt ====
663
Xiaoling 43.46 664
Xiaoling 44.2 665 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
Edwin Chen 14.1 666
Xiaoling 43.44 667 (% style="color:blue" %)** Interrupt connection method:**
Edwin Chen 14.1 668
Saxer Lin 36.1 669 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 670
Xiaoling 43.46 671
Xiaoling 43.8 672 (% style="color:blue" %)**Example to use with door sensor :**
Edwin Chen 14.1 673
674 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
675
676 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
677
Xiaoling 44.2 678 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 679
680
Xiaoling 43.46 681 (% style="color:blue" %)**Below is the installation example:**
682
Xiaoling 44.2 683 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
Edwin Chen 14.1 684
685 * (((
Xiaoling 44.2 686 One pin to SN50v3-LB's PA8 pin
Edwin Chen 14.1 687 )))
688 * (((
Xiaoling 44.2 689 The other pin to SN50v3-LB's VDD pin
Edwin Chen 14.1 690 )))
691
Saxer Lin 36.1 692 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 693
Xiaoling 43.46 694 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
Edwin Chen 14.1 695
Saxer Lin 36.1 696 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 697
698 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
699
700 The above photos shows the two parts of the magnetic switch fitted to a door.
701
702 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
703
704 The command is:
705
Xiaoling 44.2 706 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 707
708 Below shows some screen captures in TTN V3:
709
710 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
711
Xiaoling 43.47 712
Xiaoling 44.4 713 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
Edwin Chen 14.1 714
715 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
716
717
Saxer Lin 26.2 718 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 719
Xiaoling 43.47 720
Saxer Lin 26.2 721 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 722
Saxer Lin 40.1 723 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 724
Xiaoling 44.2 725 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
Edwin Chen 14.1 726
Xiaoling 44.2 727
Edwin Chen 14.1 728 Below is the connection to SHT20/ SHT31. The connection is as below:
729
Saxer Lin 52.1 730 [[image:image-20230610170152-2.png||height="501" width="846"]]
Saxer Lin 36.1 731
Xiaoling 44.4 732
Edwin Chen 14.1 733 The device will be able to get the I2C sensor data now and upload to IoT Server.
734
735 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
736
737 Convert the read byte to decimal and divide it by ten.
738
Edwin Chen 2.1 739 **Example:**
740
Edwin Chen 14.1 741 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 742
Edwin Chen 14.1 743 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 744
Edwin Chen 14.1 745 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 746
747
Edwin Chen 14.1 748 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 749
Xiaoling 43.48 750
Xiaoling 43.42 751 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
Edwin Chen 14.1 752
753
754 ==== 2.3.3.8 Ultrasonic Sensor ====
755
Xiaoling 43.48 756
Saxer Lin 26.2 757 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 758
Xiaoling 44.2 759 The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 760
Xiaoling 43.44 761 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
Saxer Lin 36.1 762
Edwin Chen 14.1 763 The picture below shows the connection:
764
Saxer Lin 36.1 765 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 766
Xiaoling 43.50 767
Xiaoling 44.2 768 Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 769
770 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
771
772 **Example:**
773
774 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
775
776
777 ==== 2.3.3.9  Battery Output - BAT pin ====
778
Xiaoling 43.50 779
Xiaoling 44.4 780 The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
Edwin Chen 14.1 781
782
783 ==== 2.3.3.10  +5V Output ====
784
Xiaoling 43.50 785
Xiaoling 44.2 786 SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
Edwin Chen 14.1 787
788 The 5V output time can be controlled by AT Command.
789
Xiaoling 43.9 790 (% style="color:blue" %)**AT+5VT=1000**
Edwin Chen 14.1 791
792 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
793
Xiaoling 44.4 794 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
Edwin Chen 14.1 795
796
797 ==== 2.3.3.11  BH1750 Illumination Sensor ====
798
Xiaoling 43.50 799
Edwin Chen 14.1 800 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
801
Saxer Lin 40.1 802 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 803
Xiaoling 43.51 804
Saxer Lin 40.1 805 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 806
807
808 ==== 2.3.3.12  Working MOD ====
809
Xiaoling 43.51 810
Edwin Chen 14.1 811 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
812
813 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
814
815 Case 7^^th^^ Byte >> 2 & 0x1f:
816
817 * 0: MOD1
818 * 1: MOD2
819 * 2: MOD3
820 * 3: MOD4
821 * 4: MOD5
822 * 5: MOD6
Saxer Lin 36.1 823 * 6: MOD7
824 * 7: MOD8
825 * 8: MOD9
Edwin Chen 14.1 826
Xiaoling 53.3 827
Xiaoling 54.2 828
Edwin Chen 2.1 829 == 2.4 Payload Decoder file ==
830
831
832 In TTN, use can add a custom payload so it shows friendly reading
833
834 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
835
Saxer Lin 40.1 836 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 837
838
Edwin Chen 15.1 839 == 2.5 Frequency Plans ==
Edwin Chen 2.1 840
841
Edwin Chen 15.1 842 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 2.1 843
844 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
845
846
Edwin Chen 16.1 847 = 3. Configure SN50v3-LB =
Edwin Chen 2.1 848
849 == 3.1 Configure Methods ==
850
851
Edwin Chen 16.1 852 SN50v3-LB supports below configure method:
Edwin Chen 2.1 853
854 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
855 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
856 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
857
Xiaoling 53.3 858
Xiaoling 54.2 859
Edwin Chen 2.1 860 == 3.2 General Commands ==
861
862
863 These commands are to configure:
864
865 * General system settings like: uplink interval.
866 * LoRaWAN protocol & radio related command.
867
868 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
869
870 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
871
872
Edwin Chen 16.1 873 == 3.3 Commands special design for SN50v3-LB ==
Edwin Chen 2.1 874
875
Xiaoling 44.2 876 These commands only valid for SN50v3-LB, as below:
Edwin Chen 2.1 877
878
879 === 3.3.1 Set Transmit Interval Time ===
880
Xiaoling 43.51 881
Edwin Chen 2.1 882 Feature: Change LoRaWAN End Node Transmit Interval.
883
884 (% style="color:blue" %)**AT Command: AT+TDC**
885
886 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.2 887 |=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
Edwin Chen 2.1 888 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
889 30000
890 OK
891 the interval is 30000ms = 30s
892 )))
893 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
894 OK
895 Set transmit interval to 60000ms = 60 seconds
896 )))
897
898 (% style="color:blue" %)**Downlink Command: 0x01**
899
900 Format: Command Code (0x01) followed by 3 bytes time value.
901
902 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
903
904 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
905 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
906
Xiaoling 53.3 907
Xiaoling 54.2 908
Edwin Chen 2.1 909 === 3.3.2 Get Device Status ===
910
Xiaoling 43.52 911
Saxer Lin 40.1 912 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 913
Xiaoling 44.4 914 (% style="color:blue" %)**Downlink Payload: 0x26 01**
Edwin Chen 2.1 915
Xiaoling 44.4 916 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
Edwin Chen 2.1 917
918
Saxer Lin 36.1 919 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 920
Xiaoling 43.52 921
Edwin Chen 2.1 922 Feature, Set Interrupt mode for GPIO_EXIT.
923
Saxer Lin 36.1 924 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
Edwin Chen 2.1 925
926 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 927 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 928 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
Edwin Chen 2.1 929 0
930 OK
931 the mode is 0 =Disable Interrupt
932 )))
Saxer Lin 36.1 933 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
Edwin Chen 2.1 934 Set Transmit Interval
935 0. (Disable Interrupt),
936 ~1. (Trigger by rising and falling edge)
937 2. (Trigger by falling edge)
938 3. (Trigger by rising edge)
939 )))|(% style="width:157px" %)OK
Saxer Lin 36.1 940 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
941 Set Transmit Interval
942 trigger by rising edge.
943 )))|(% style="width:157px" %)OK
944 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
945
Edwin Chen 2.1 946 (% style="color:blue" %)**Downlink Command: 0x06**
947
948 Format: Command Code (0x06) followed by 3 bytes.
949
950 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
951
Saxer Lin 36.1 952 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
953 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
954 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
955 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
Edwin Chen 2.1 956
Xiaoling 53.3 957
Xiaoling 54.2 958
Saxer Lin 36.1 959 === 3.3.4 Set Power Output Duration ===
960
Xiaoling 43.52 961
Saxer Lin 36.1 962 Control the output duration 5V . Before each sampling, device will
963
964 ~1. first enable the power output to external sensor,
965
966 2. keep it on as per duration, read sensor value and construct uplink payload
967
968 3. final, close the power output.
969
970 (% style="color:blue" %)**AT Command: AT+5VT**
971
972 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 973 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 974 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
975 500(default)
976 OK
977 )))
978 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
979 Close after a delay of 1000 milliseconds.
980 )))|(% style="width:157px" %)OK
981
982 (% style="color:blue" %)**Downlink Command: 0x07**
983
984 Format: Command Code (0x07) followed by 2 bytes.
985
986 The first and second bytes are the time to turn on.
987
Saxer Lin 40.1 988 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
989 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 990
Xiaoling 53.3 991
Xiaoling 54.2 992
Saxer Lin 36.1 993 === 3.3.5 Set Weighing parameters ===
994
Xiaoling 43.52 995
Saxer Lin 37.1 996 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 997
998 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
999
1000 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1001 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 37.1 1002 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1003 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1004 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 1005
1006 (% style="color:blue" %)**Downlink Command: 0x08**
1007
Saxer Lin 37.1 1008 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 1009
Saxer Lin 37.1 1010 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 1011
Saxer Lin 37.1 1012 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 1013
Saxer Lin 37.1 1014 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1015 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1016 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1017
Xiaoling 53.3 1018
Xiaoling 54.2 1019
Saxer Lin 36.1 1020 === 3.3.6 Set Digital pulse count value ===
1021
Xiaoling 43.52 1022
Saxer Lin 36.1 1023 Feature: Set the pulse count value.
1024
Saxer Lin 37.1 1025 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1026
Saxer Lin 36.1 1027 (% style="color:blue" %)**AT Command: AT+SETCNT**
1028
1029 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1030 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1031 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1032 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1033
1034 (% style="color:blue" %)**Downlink Command: 0x09**
1035
1036 Format: Command Code (0x09) followed by 5 bytes.
1037
1038 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1039
1040 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 1041 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 1042
Xiaoling 53.3 1043
Xiaoling 54.2 1044
Saxer Lin 36.1 1045 === 3.3.7 Set Workmode ===
1046
Xiaoling 43.52 1047
Saxer Lin 37.1 1048 Feature: Switch working mode.
Saxer Lin 36.1 1049
1050 (% style="color:blue" %)**AT Command: AT+MOD**
1051
1052 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1053 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1054 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1055 OK
1056 )))
1057 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1058 OK
1059 Attention:Take effect after ATZ
1060 )))
1061
1062 (% style="color:blue" %)**Downlink Command: 0x0A**
1063
1064 Format: Command Code (0x0A) followed by 1 bytes.
1065
1066 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1067 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1068
Xiaoling 53.3 1069
Xiaoling 54.2 1070
Edwin Chen 2.1 1071 = 4. Battery & Power Consumption =
1072
1073
Edwin Chen 11.1 1074 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1075
1076 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1077
1078
1079 = 5. OTA Firmware update =
1080
1081
1082 (% class="wikigeneratedid" %)
Xiaoling 44.4 1083 **User can change firmware SN50v3-LB to:**
Edwin Chen 2.1 1084
1085 * Change Frequency band/ region.
1086 * Update with new features.
1087 * Fix bugs.
1088
Xiaoling 52.2 1089 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
Edwin Chen 2.1 1090
Xiaoling 44.4 1091 **Methods to Update Firmware:**
Edwin Chen 2.1 1092
Xiaoling 53.3 1093 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1094 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
Edwin Chen 2.1 1095
Xiaoling 53.3 1096
Xiaoling 54.2 1097
Edwin Chen 2.1 1098 = 6. FAQ =
1099
Edwin Chen 17.1 1100 == 6.1 Where can i find source code of SN50v3-LB? ==
Edwin Chen 2.1 1101
Xiaoling 43.52 1102
Edwin Chen 17.1 1103 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1104 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
Edwin Chen 2.1 1105
Xiaoling 53.3 1106
Xiaoling 54.2 1107
Edwin Chen 2.1 1108 = 7. Order Info =
1109
1110
Edwin Chen 10.1 1111 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
Edwin Chen 2.1 1112
1113 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1114
Edwin Chen 2.1 1115 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1116 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1117 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1118 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1119 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1120 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1121 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1122 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1123
Edwin Chen 10.1 1124 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1125
Edwin Chen 10.1 1126 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1127 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1128 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1129 * (% style="color:red" %)**NH**(%%): No Hole
1130
Xiaoling 53.3 1131
Xiaoling 54.2 1132
Edwin Chen 2.1 1133 = 8. ​Packing Info =
1134
Xiaoling 43.52 1135
Edwin Chen 2.1 1136 (% style="color:#037691" %)**Package Includes**:
1137
Edwin Chen 10.1 1138 * SN50v3-LB LoRaWAN Generic Node
Edwin Chen 2.1 1139
1140 (% style="color:#037691" %)**Dimension and weight**:
1141
1142 * Device Size: cm
1143 * Device Weight: g
1144 * Package Size / pcs : cm
1145 * Weight / pcs : g
1146
Xiaoling 53.3 1147
Xiaoling 54.2 1148
Edwin Chen 2.1 1149 = 9. Support =
1150
1151
1152 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 43.10 1153
Xiaoling 41.4 1154 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]