Version 49.1 by Saxer Lin on 2023/06/10 16:32

Hide last authors
Xiaoling 41.2 1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
Edwin Chen 2.1 3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
Edwin Chen 5.1 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
Edwin Chen 2.1 18
Xiaoling 43.2 19
Edwin Chen 4.1 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 21
Edwin Chen 4.1 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
Edwin Chen 2.1 23
Edwin Chen 4.1 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
Edwin Chen 2.1 25
Edwin Chen 4.1 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 27
Edwin Chen 4.1 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 29
Edwin Chen 4.1 30
Edwin Chen 2.1 31 == 1.2 ​Features ==
32
Xiaoling 43.44 33
Edwin Chen 2.1 34 * LoRaWAN 1.0.3 Class A
35 * Ultra-low power consumption
Edwin Chen 5.1 36 * Open-Source hardware/software
Edwin Chen 2.1 37 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
38 * Support Bluetooth v5.1 and LoRaWAN remote configure
39 * Support wireless OTA update firmware
40 * Uplink on periodically
41 * Downlink to change configure
42 * 8500mAh Battery for long term use
43
44 == 1.3 Specification ==
45
Xiaoling 43.4 46
Edwin Chen 2.1 47 (% style="color:#037691" %)**Common DC Characteristics:**
48
49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
50 * Operating Temperature: -40 ~~ 85°C
51
Edwin Chen 5.1 52 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 53
Edwin Chen 5.1 54 * Battery output (2.6v ~~ 3.6v depends on battery)
55 * +5v controllable output
56 * 3 x Interrupt or Digital IN/OUT pins
57 * 3 x one-wire interfaces
58 * 1 x UART Interface
59 * 1 x I2C Interface
Edwin Chen 2.1 60
61 (% style="color:#037691" %)**LoRa Spec:**
62
63 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
64 * Max +22 dBm constant RF output vs.
65 * RX sensitivity: down to -139 dBm.
66 * Excellent blocking immunity
67
68 (% style="color:#037691" %)**Battery:**
69
70 * Li/SOCI2 un-chargeable battery
71 * Capacity: 8500mAh
72 * Self-Discharge: <1% / Year @ 25°C
73 * Max continuously current: 130mA
74 * Max boost current: 2A, 1 second
75
76 (% style="color:#037691" %)**Power Consumption**
77
78 * Sleep Mode: 5uA @ 3.3v
79 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
80
81 == 1.4 Sleep mode and working mode ==
82
Xiaoling 43.4 83
Edwin Chen 2.1 84 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
85
86 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
87
88
89 == 1.5 Button & LEDs ==
90
91
92 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
93
94
95 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
96 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
97 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
98 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
99 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
100 )))
101 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
102 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
103 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
104 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
105 )))
106 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
107
108 == 1.6 BLE connection ==
109
110
Edwin Chen 5.1 111 SN50v3-LB supports BLE remote configure.
Edwin Chen 2.1 112
113
114 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
115
116 * Press button to send an uplink
117 * Press button to active device.
118 * Device Power on or reset.
119
120 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
121
122
Edwin Chen 6.1 123 == 1.7 Pin Definitions ==
Edwin Chen 2.1 124
125
Saxer Lin 49.1 126 [[image:image-20230610163213-1.png||height="404" width="699"]]
Edwin Chen 2.1 127
128
129 == 1.8 Mechanical ==
130
131
132 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
133
134 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
135
136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137
138
Saxer Lin 44.5 139 == 1.9 Hole Option ==
Edwin Chen 5.1 140
Xiaoling 43.4 141
Edwin Chen 5.1 142 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
143
144 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
145
146 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
147
148
Edwin Chen 10.1 149 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
Edwin Chen 2.1 150
151 == 2.1 How it works ==
152
153
Xiaoling 44.3 154 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 155
156
157 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
158
159
160 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
161
Xiaoling 44.3 162 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
Edwin Chen 2.1 163
164
Edwin Chen 11.2 165 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
Edwin Chen 2.1 166
Edwin Chen 11.2 167 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 168
Edwin Chen 11.2 169 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 2.1 170
171
172 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
173
174
175 (% style="color:blue" %)**Register the device**
176
177 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
178
179
180 (% style="color:blue" %)**Add APP EUI and DEV EUI**
181
182 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
183
184
185 (% style="color:blue" %)**Add APP EUI in the application**
186
187
188 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
189
190
191 (% style="color:blue" %)**Add APP KEY**
192
193 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
194
195
Edwin Chen 11.2 196 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
Edwin Chen 2.1 197
198
Edwin Chen 11.2 199 Press the button for 5 seconds to activate the SN50v3-LB.
Edwin Chen 2.1 200
201 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
202
203 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
204
205
206 == 2.3 ​Uplink Payload ==
207
208 === 2.3.1 Device Status, FPORT~=5 ===
209
210
Xiaoling 44.3 211 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 212
213 The Payload format is as below.
214
215
216 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
217 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
218 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
Xiaoling 45.4 219 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
Edwin Chen 2.1 220
221 Example parse in TTNv3
222
223
Xiaoling 44.3 224 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
Edwin Chen 2.1 225
226 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
227
228 (% style="color:#037691" %)**Frequency Band**:
229
230 *0x01: EU868
231
232 *0x02: US915
233
234 *0x03: IN865
235
236 *0x04: AU915
237
238 *0x05: KZ865
239
240 *0x06: RU864
241
242 *0x07: AS923
243
244 *0x08: AS923-1
245
246 *0x09: AS923-2
247
248 *0x0a: AS923-3
249
250 *0x0b: CN470
251
252 *0x0c: EU433
253
254 *0x0d: KR920
255
256 *0x0e: MA869
257
258
259 (% style="color:#037691" %)**Sub-Band**:
260
261 AU915 and US915:value 0x00 ~~ 0x08
262
263 CN470: value 0x0B ~~ 0x0C
264
265 Other Bands: Always 0x00
266
267
268 (% style="color:#037691" %)**Battery Info**:
269
270 Check the battery voltage.
271
272 Ex1: 0x0B45 = 2885mV
273
274 Ex2: 0x0B49 = 2889mV
275
276
Edwin Chen 12.1 277 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 278
279
Xiaoling 44.2 280 SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
Edwin Chen 12.1 281
282 For example:
283
Xiaoling 44.2 284 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
Edwin Chen 12.1 285
286
Edwin Chen 13.1 287 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 288
Xiaoling 44.3 289 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
Edwin Chen 12.1 290
Xiaoling 44.2 291 2. All modes share the same Payload Explanation from HERE.
Xiaoling 43.53 292
Xiaoling 44.2 293 3. By default, the device will send an uplink message every 20 minutes.
294
295
Edwin Chen 13.1 296 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 297
Xiaoling 43.5 298
Edwin Chen 12.1 299 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
300
Xiaoling 43.5 301 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.54 302 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
Xiaoling 45.4 303 |Value|Bat|(% style="width:191px" %)(((
Xiaoling 43.12 304 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 305 )))|(% style="width:78px" %)(((
Xiaoling 43.12 306 ADC(PA4)
Saxer Lin 26.2 307 )))|(% style="width:216px" %)(((
Xiaoling 43.13 308 Digital in(PB15)&Digital Interrupt(PA8)
Saxer Lin 40.1 309 )))|(% style="width:308px" %)(((
Xiaoling 43.12 310 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 311 )))|(% style="width:154px" %)(((
Xiaoling 43.12 312 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 313 )))
314
Edwin Chen 12.1 315 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
316
317
Edwin Chen 13.1 318 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
319
Xiaoling 43.45 320
Edwin Chen 12.1 321 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
322
Xiaoling 43.14 323 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.54 324 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
Xiaoling 45.4 325 |Value|BAT|(% style="width:196px" %)(((
Xiaoling 43.16 326 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 327 )))|(% style="width:87px" %)(((
Xiaoling 43.16 328 ADC(PA4)
Saxer Lin 40.1 329 )))|(% style="width:189px" %)(((
Xiaoling 43.16 330 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 331 )))|(% style="width:208px" %)(((
Xiaoling 43.16 332 Distance measure by:1) LIDAR-Lite V3HP
Xiaoling 43.60 333 Or
Xiaoling 43.54 334 2) Ultrasonic Sensor
Saxer Lin 40.1 335 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 336
337 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
338
Xiaoling 43.45 339
Xiaoling 43.17 340 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
Edwin Chen 12.1 341
Saxer Lin 26.2 342 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 343
Xiaoling 43.45 344
Xiaoling 43.17 345 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
Edwin Chen 12.1 346
Ellie Zhang 44.1 347 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
Saxer Lin 36.1 348
Saxer Lin 26.2 349 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 350
Xiaoling 43.45 351
Edwin Chen 12.1 352 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
353
Xiaoling 43.19 354 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 355 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
Xiaoling 45.5 356 |Value|BAT|(% style="width:183px" %)(((
Xiaoling 43.19 357 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 358 )))|(% style="width:173px" %)(((
Xiaoling 43.19 359 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 360 )))|(% style="width:84px" %)(((
Xiaoling 43.19 361 ADC(PA4)
Saxer Lin 40.1 362 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 363 Distance measure by:1)TF-Mini plus LiDAR
Xiaoling 43.22 364 Or 
365 2) TF-Luna LiDAR
Saxer Lin 40.1 366 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 367
368 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
369
Xiaoling 43.45 370
Edwin Chen 12.1 371 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
372
Ellie Zhang 44.1 373 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 374
Saxer Lin 26.2 375 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 376
Xiaoling 43.45 377
Edwin Chen 12.1 378 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
379
Ellie Zhang 44.1 380 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 381
Saxer Lin 36.1 382 [[image:image-20230513105207-4.png||height="469" width="802"]]
Edwin Chen 12.1 383
384
Edwin Chen 13.1 385 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
386
Xiaoling 43.45 387
Edwin Chen 12.1 388 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
389
Xiaoling 43.21 390 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.25 391 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
392 **Size(bytes)**
Xiaoling 43.54 393 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
Xiaoling 45.4 394 |Value|(% style="width:68px" %)(((
Xiaoling 43.23 395 ADC1(PA4)
Saxer Lin 26.2 396 )))|(% style="width:75px" %)(((
Xiaoling 43.23 397 ADC2(PA5)
Saxer Lin 36.1 398 )))|(((
Xiaoling 43.23 399 ADC3(PA8)
Saxer Lin 36.1 400 )))|(((
401 Digital Interrupt(PB15)
402 )))|(% style="width:304px" %)(((
Xiaoling 43.23 403 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 36.1 404 )))|(% style="width:163px" %)(((
Xiaoling 43.23 405 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 406 )))|(% style="width:53px" %)Bat
407
408 [[image:image-20230513110214-6.png]]
409
410
Edwin Chen 13.1 411 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
412
Edwin Chen 12.1 413
Saxer Lin 26.2 414 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 415
Xiaoling 43.26 416 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 417 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
Xiaoling 45.4 418 |Value|BAT|(% style="width:186px" %)(((
Xiaoling 43.27 419 Temperature1(DS18B20)(PC13)
Saxer Lin 26.2 420 )))|(% style="width:82px" %)(((
Xiaoling 43.27 421 ADC(PA4)
Saxer Lin 26.2 422 )))|(% style="width:210px" %)(((
Xiaoling 43.27 423 Digital in(PB15) & Digital Interrupt(PA8) 
Saxer Lin 26.2 424 )))|(% style="width:191px" %)Temperature2(DS18B20)
Xiaoling 43.27 425 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
Edwin Chen 12.1 426
427 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
428
Xiaoling 44.4 429
Saxer Lin 39.2 430 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 431
Saxer Lin 39.1 432
Edwin Chen 13.1 433 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
434
Xiaoling 43.45 435
Saxer Lin 26.2 436 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 437
438 Each HX711 need to be calibrated before used. User need to do below two steps:
439
Xiaoling 44.2 440 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
441 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
Edwin Chen 12.1 442 1. (((
Saxer Lin 26.2 443 Weight has 4 bytes, the unit is g.
Xiaoling 43.53 444
445
446
Edwin Chen 12.1 447 )))
448
449 For example:
450
Xiaoling 44.2 451 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
Edwin Chen 12.1 452
453 Response:  Weight is 401 g
454
455 Check the response of this command and adjust the value to match the real value for thing.
456
Xiaoling 43.29 457 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
458 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 459 **Size(bytes)**
Xiaoling 43.30 460 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
Xiaoling 45.4 461 |Value|BAT|(% style="width:193px" %)(((
Xiaoling 43.55 462 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 463 )))|(% style="width:85px" %)(((
Xiaoling 43.31 464 ADC(PA4)
Saxer Lin 40.1 465 )))|(% style="width:186px" %)(((
Xiaoling 43.55 466 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 467 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 468
Edwin Chen 12.1 469 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
470
471
Xiaoling 43.45 472
Edwin Chen 13.1 473 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
474
Xiaoling 43.45 475
Edwin Chen 12.1 476 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
477
478 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
479
Saxer Lin 26.2 480 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 481
Xiaoling 43.53 482
Xiaoling 43.45 483 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
Edwin Chen 12.1 484
Xiaoling 43.38 485 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.57 486 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
Xiaoling 45.4 487 |Value|BAT|(% style="width:256px" %)(((
Xiaoling 43.31 488 Temperature(DS18B20)(PC13)
Saxer Lin 36.1 489 )))|(% style="width:108px" %)(((
Xiaoling 43.31 490 ADC(PA4)
Saxer Lin 36.1 491 )))|(% style="width:126px" %)(((
Xiaoling 43.31 492 Digital in(PB15)
Saxer Lin 36.1 493 )))|(% style="width:145px" %)(((
Xiaoling 43.31 494 Count(PA8)
Saxer Lin 36.1 495 )))
496
Edwin Chen 12.1 497 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
498
499
Edwin Chen 13.1 500 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
501
Xiaoling 43.45 502
Xiaoling 43.38 503 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.33 504 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 505 **Size(bytes)**
Xiaoling 43.34 506 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
Xiaoling 45.4 507 |Value|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 508 Temperature(DS18B20)
509 (PC13)
Saxer Lin 40.1 510 )))|(% style="width:83px" %)(((
Xiaoling 43.35 511 ADC(PA5)
Saxer Lin 40.1 512 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 513 Digital Interrupt1(PA8)
Saxer Lin 40.1 514 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 515
516 [[image:image-20230513111203-7.png||height="324" width="975"]]
517
Xiaoling 43.45 518
Edwin Chen 13.1 519 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
520
Xiaoling 43.45 521
Xiaoling 43.38 522 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.35 523 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 524 **Size(bytes)**
Xiaoling 43.55 525 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
Xiaoling 45.4 526 |Value|BAT|(% style="width:207px" %)(((
Saxer Lin 36.1 527 Temperature(DS18B20)
528 (PC13)
529 )))|(% style="width:94px" %)(((
Xiaoling 43.36 530 ADC1(PA4)
Saxer Lin 36.1 531 )))|(% style="width:198px" %)(((
532 Digital Interrupt(PB15)
533 )))|(% style="width:84px" %)(((
Xiaoling 43.36 534 ADC2(PA5)
Saxer Lin 40.1 535 )))|(% style="width:82px" %)(((
Xiaoling 43.36 536 ADC3(PA8)
Edwin Chen 12.1 537 )))
538
Saxer Lin 36.1 539 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 540
541
Edwin Chen 13.1 542 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
543
Xiaoling 43.45 544
Xiaoling 43.38 545 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
546 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 547 **Size(bytes)**
Xiaoling 43.56 548 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
Xiaoling 45.4 549 |Value|BAT|(((
Xiaoling 43.58 550 Temperature
551 (DS18B20)(PC13)
Edwin Chen 12.1 552 )))|(((
Xiaoling 43.58 553 Temperature2
554 (DS18B20)(PB9)
Edwin Chen 12.1 555 )))|(((
Saxer Lin 36.1 556 Digital Interrupt
557 (PB15)
558 )))|(% style="width:193px" %)(((
Xiaoling 43.58 559 Temperature3
560 (DS18B20)(PB8)
Saxer Lin 36.1 561 )))|(% style="width:78px" %)(((
Xiaoling 43.39 562 Count1(PA8)
Saxer Lin 36.1 563 )))|(% style="width:78px" %)(((
Xiaoling 43.39 564 Count2(PA4)
Edwin Chen 12.1 565 )))
566
Saxer Lin 36.1 567 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 568
Xiaoling 43.40 569 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
Edwin Chen 12.1 570
Xiaoling 43.44 571 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
Edwin Chen 12.1 572
Xiaoling 43.44 573 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
Edwin Chen 12.1 574
Xiaoling 43.44 575 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
Edwin Chen 12.1 576
577
Xiaoling 43.41 578 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
579
Saxer Lin 36.1 580 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 581
Saxer Lin 36.1 582 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 583
584
Edwin Chen 14.1 585 === 2.3.3  ​Decode payload ===
586
Xiaoling 43.45 587
Edwin Chen 12.1 588 While using TTN V3 network, you can add the payload format to decode the payload.
589
590 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
591
592 The payload decoder function for TTN V3 are here:
593
Xiaoling 44.2 594 SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 595
596
Edwin Chen 14.1 597 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 598
Xiaoling 43.45 599
Xiaoling 44.2 600 Check the battery voltage for SN50v3-LB.
Edwin Chen 2.1 601
602 Ex1: 0x0B45 = 2885mV
603
604 Ex2: 0x0B49 = 2889mV
605
606
Edwin Chen 14.1 607 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 608
Xiaoling 43.45 609
Saxer Lin 42.1 610 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 611
Xiaoling 43.45 612 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
Edwin Chen 14.1 613
Xiaoling 43.41 614 (% style="color:blue" %)**Connection:**
Edwin Chen 14.1 615
Saxer Lin 26.2 616 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 617
Xiaoling 43.46 618
Xiaoling 43.41 619 (% style="color:blue" %)**Example**:
Edwin Chen 2.1 620
621 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
622
623 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
624
625 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
626
627
Edwin Chen 14.1 628 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 629
Xiaoling 43.46 630
Saxer Lin 26.2 631 The digital input for pin PB15,
Edwin Chen 2.1 632
Saxer Lin 26.2 633 * When PB15 is high, the bit 1 of payload byte 6 is 1.
634 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 635
Saxer Lin 26.2 636 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
637 (((
Saxer Lin 36.1 638 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
639
Xiaoling 43.46 640 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
641
642
Saxer Lin 26.2 643 )))
644
Edwin Chen 14.1 645 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 646
Xiaoling 43.46 647
Saxer Lin 36.1 648 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 649
Saxer Lin 36.1 650 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 651
Saxer Lin 26.2 652 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 653
Xiaoling 44.2 654
Xiaoling 43.46 655 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
Edwin Chen 14.1 656
Saxer Lin 43.1 657
Edwin Chen 14.1 658 ==== 2.3.3.5 Digital Interrupt ====
659
Xiaoling 43.46 660
Xiaoling 44.2 661 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
Edwin Chen 14.1 662
Xiaoling 43.44 663 (% style="color:blue" %)** Interrupt connection method:**
Edwin Chen 14.1 664
Saxer Lin 36.1 665 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 666
Xiaoling 43.46 667
Xiaoling 43.8 668 (% style="color:blue" %)**Example to use with door sensor :**
Edwin Chen 14.1 669
670 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
671
672 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
673
Xiaoling 44.2 674 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 675
676
Xiaoling 43.46 677 (% style="color:blue" %)**Below is the installation example:**
678
Xiaoling 44.2 679 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
Edwin Chen 14.1 680
681 * (((
Xiaoling 44.2 682 One pin to SN50v3-LB's PA8 pin
Edwin Chen 14.1 683 )))
684 * (((
Xiaoling 44.2 685 The other pin to SN50v3-LB's VDD pin
Edwin Chen 14.1 686 )))
687
Saxer Lin 36.1 688 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 689
Xiaoling 43.46 690 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
Edwin Chen 14.1 691
Saxer Lin 36.1 692 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 693
694 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
695
696 The above photos shows the two parts of the magnetic switch fitted to a door.
697
698 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
699
700 The command is:
701
Xiaoling 44.2 702 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 703
704 Below shows some screen captures in TTN V3:
705
706 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
707
Xiaoling 43.47 708
Xiaoling 44.4 709 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
Edwin Chen 14.1 710
711 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
712
713
Saxer Lin 26.2 714 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 715
Xiaoling 43.47 716
Saxer Lin 26.2 717 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 718
Saxer Lin 40.1 719 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 720
Xiaoling 44.2 721 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
Edwin Chen 14.1 722
Xiaoling 44.2 723
Edwin Chen 14.1 724 Below is the connection to SHT20/ SHT31. The connection is as below:
725
Saxer Lin 40.1 726 [[image:image-20230513103633-3.png||height="448" width="716"]]
Saxer Lin 36.1 727
Xiaoling 44.4 728
Edwin Chen 14.1 729 The device will be able to get the I2C sensor data now and upload to IoT Server.
730
731 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
732
733 Convert the read byte to decimal and divide it by ten.
734
Edwin Chen 2.1 735 **Example:**
736
Edwin Chen 14.1 737 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 738
Edwin Chen 14.1 739 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 740
Edwin Chen 14.1 741 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 742
743
Edwin Chen 14.1 744 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 745
Xiaoling 43.48 746
Xiaoling 43.42 747 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
Edwin Chen 14.1 748
749
750 ==== 2.3.3.8 Ultrasonic Sensor ====
751
Xiaoling 43.48 752
Saxer Lin 26.2 753 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 754
Xiaoling 44.2 755 The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 756
Xiaoling 43.44 757 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
Saxer Lin 36.1 758
Edwin Chen 14.1 759 The picture below shows the connection:
760
Saxer Lin 36.1 761 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 762
Xiaoling 43.50 763
Xiaoling 44.2 764 Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 765
766 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
767
768 **Example:**
769
770 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
771
772
773 ==== 2.3.3.9  Battery Output - BAT pin ====
774
Xiaoling 43.50 775
Xiaoling 44.4 776 The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
Edwin Chen 14.1 777
778
779 ==== 2.3.3.10  +5V Output ====
780
Xiaoling 43.50 781
Xiaoling 44.2 782 SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
Edwin Chen 14.1 783
784 The 5V output time can be controlled by AT Command.
785
Xiaoling 43.9 786 (% style="color:blue" %)**AT+5VT=1000**
Edwin Chen 14.1 787
788 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
789
Xiaoling 44.4 790 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
Edwin Chen 14.1 791
792
793 ==== 2.3.3.11  BH1750 Illumination Sensor ====
794
Xiaoling 43.50 795
Edwin Chen 14.1 796 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
797
Saxer Lin 40.1 798 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 799
Xiaoling 43.51 800
Saxer Lin 40.1 801 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 802
803
804 ==== 2.3.3.12  Working MOD ====
805
Xiaoling 43.51 806
Edwin Chen 14.1 807 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
808
809 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
810
811 Case 7^^th^^ Byte >> 2 & 0x1f:
812
813 * 0: MOD1
814 * 1: MOD2
815 * 2: MOD3
816 * 3: MOD4
817 * 4: MOD5
818 * 5: MOD6
Saxer Lin 36.1 819 * 6: MOD7
820 * 7: MOD8
821 * 8: MOD9
Edwin Chen 14.1 822
Edwin Chen 2.1 823 == 2.4 Payload Decoder file ==
824
825
826 In TTN, use can add a custom payload so it shows friendly reading
827
828 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
829
Saxer Lin 40.1 830 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 831
832
Edwin Chen 15.1 833 == 2.5 Frequency Plans ==
Edwin Chen 2.1 834
835
Edwin Chen 15.1 836 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 2.1 837
838 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
839
840
Edwin Chen 16.1 841 = 3. Configure SN50v3-LB =
Edwin Chen 2.1 842
843 == 3.1 Configure Methods ==
844
845
Edwin Chen 16.1 846 SN50v3-LB supports below configure method:
Edwin Chen 2.1 847
848 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
849 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
850 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
851
852 == 3.2 General Commands ==
853
854
855 These commands are to configure:
856
857 * General system settings like: uplink interval.
858 * LoRaWAN protocol & radio related command.
859
860 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
861
862 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
863
864
Edwin Chen 16.1 865 == 3.3 Commands special design for SN50v3-LB ==
Edwin Chen 2.1 866
867
Xiaoling 44.2 868 These commands only valid for SN50v3-LB, as below:
Edwin Chen 2.1 869
870
871 === 3.3.1 Set Transmit Interval Time ===
872
Xiaoling 43.51 873
Edwin Chen 2.1 874 Feature: Change LoRaWAN End Node Transmit Interval.
875
876 (% style="color:blue" %)**AT Command: AT+TDC**
877
878 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
879 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
880 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
881 30000
882 OK
883 the interval is 30000ms = 30s
884 )))
885 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
886 OK
887 Set transmit interval to 60000ms = 60 seconds
888 )))
889
890 (% style="color:blue" %)**Downlink Command: 0x01**
891
892 Format: Command Code (0x01) followed by 3 bytes time value.
893
894 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
895
896 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
897 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
898
899 === 3.3.2 Get Device Status ===
900
Xiaoling 43.52 901
Saxer Lin 40.1 902 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 903
Xiaoling 44.4 904 (% style="color:blue" %)**Downlink Payload: 0x26 01**
Edwin Chen 2.1 905
Xiaoling 44.4 906 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
Edwin Chen 2.1 907
908
Saxer Lin 36.1 909 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 910
Xiaoling 43.52 911
Edwin Chen 2.1 912 Feature, Set Interrupt mode for GPIO_EXIT.
913
Saxer Lin 36.1 914 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
Edwin Chen 2.1 915
916 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 45.2 917 |=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
Saxer Lin 36.1 918 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
Edwin Chen 2.1 919 0
920 OK
921 the mode is 0 =Disable Interrupt
922 )))
Saxer Lin 36.1 923 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
Edwin Chen 2.1 924 Set Transmit Interval
925 0. (Disable Interrupt),
926 ~1. (Trigger by rising and falling edge)
927 2. (Trigger by falling edge)
928 3. (Trigger by rising edge)
929 )))|(% style="width:157px" %)OK
Saxer Lin 36.1 930 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
931 Set Transmit Interval
932 trigger by rising edge.
933 )))|(% style="width:157px" %)OK
934 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
935
Edwin Chen 2.1 936 (% style="color:blue" %)**Downlink Command: 0x06**
937
938 Format: Command Code (0x06) followed by 3 bytes.
939
940 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
941
Saxer Lin 36.1 942 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
943 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
944 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
945 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
Edwin Chen 2.1 946
Saxer Lin 36.1 947 === 3.3.4 Set Power Output Duration ===
948
Xiaoling 43.52 949
Saxer Lin 36.1 950 Control the output duration 5V . Before each sampling, device will
951
952 ~1. first enable the power output to external sensor,
953
954 2. keep it on as per duration, read sensor value and construct uplink payload
955
956 3. final, close the power output.
957
958 (% style="color:blue" %)**AT Command: AT+5VT**
959
960 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 45.2 961 |=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
Saxer Lin 36.1 962 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
963 500(default)
964 OK
965 )))
966 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
967 Close after a delay of 1000 milliseconds.
968 )))|(% style="width:157px" %)OK
969
970 (% style="color:blue" %)**Downlink Command: 0x07**
971
972 Format: Command Code (0x07) followed by 2 bytes.
973
974 The first and second bytes are the time to turn on.
975
Saxer Lin 40.1 976 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
977 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 978
979 === 3.3.5 Set Weighing parameters ===
980
Xiaoling 43.52 981
Saxer Lin 37.1 982 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 983
984 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
985
986 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 45.3 987 |=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
Saxer Lin 37.1 988 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
989 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
990 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 991
992 (% style="color:blue" %)**Downlink Command: 0x08**
993
Saxer Lin 37.1 994 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 995
Saxer Lin 37.1 996 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 997
Saxer Lin 37.1 998 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 999
Saxer Lin 37.1 1000 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1001 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1002 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1003
Saxer Lin 36.1 1004 === 3.3.6 Set Digital pulse count value ===
1005
Xiaoling 43.52 1006
Saxer Lin 36.1 1007 Feature: Set the pulse count value.
1008
Saxer Lin 37.1 1009 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1010
Saxer Lin 36.1 1011 (% style="color:blue" %)**AT Command: AT+SETCNT**
1012
1013 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 45.3 1014 |=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
Saxer Lin 36.1 1015 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1016 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1017
1018 (% style="color:blue" %)**Downlink Command: 0x09**
1019
1020 Format: Command Code (0x09) followed by 5 bytes.
1021
1022 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1023
1024 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 1025 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 1026
1027 === 3.3.7 Set Workmode ===
1028
Xiaoling 43.52 1029
Saxer Lin 37.1 1030 Feature: Switch working mode.
Saxer Lin 36.1 1031
1032 (% style="color:blue" %)**AT Command: AT+MOD**
1033
1034 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 45.3 1035 |=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
Saxer Lin 36.1 1036 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1037 OK
1038 )))
1039 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1040 OK
1041 Attention:Take effect after ATZ
1042 )))
1043
1044 (% style="color:blue" %)**Downlink Command: 0x0A**
1045
1046 Format: Command Code (0x0A) followed by 1 bytes.
1047
1048 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1049 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1050
Edwin Chen 2.1 1051 = 4. Battery & Power Consumption =
1052
1053
Edwin Chen 11.1 1054 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1055
1056 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1057
1058
1059 = 5. OTA Firmware update =
1060
1061
1062 (% class="wikigeneratedid" %)
Xiaoling 44.4 1063 **User can change firmware SN50v3-LB to:**
Edwin Chen 2.1 1064
1065 * Change Frequency band/ region.
1066 * Update with new features.
1067 * Fix bugs.
1068
Xiaoling 44.4 1069 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
Edwin Chen 2.1 1070
Xiaoling 44.4 1071 **Methods to Update Firmware:**
Edwin Chen 2.1 1072
1073 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1074 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1075
1076 = 6. FAQ =
1077
Edwin Chen 17.1 1078 == 6.1 Where can i find source code of SN50v3-LB? ==
Edwin Chen 2.1 1079
Xiaoling 43.52 1080
Edwin Chen 17.1 1081 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1082 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
Edwin Chen 2.1 1083
1084 = 7. Order Info =
1085
1086
Edwin Chen 10.1 1087 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
Edwin Chen 2.1 1088
1089 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1090
Edwin Chen 2.1 1091 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1092 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1093 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1094 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1095 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1096 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1097 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1098 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1099
Edwin Chen 10.1 1100 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1101
Edwin Chen 10.1 1102 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1103 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1104 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1105 * (% style="color:red" %)**NH**(%%): No Hole
1106
Edwin Chen 2.1 1107 = 8. ​Packing Info =
1108
Xiaoling 43.52 1109
Edwin Chen 2.1 1110 (% style="color:#037691" %)**Package Includes**:
1111
Edwin Chen 10.1 1112 * SN50v3-LB LoRaWAN Generic Node
Edwin Chen 2.1 1113
1114 (% style="color:#037691" %)**Dimension and weight**:
1115
1116 * Device Size: cm
1117 * Device Weight: g
1118 * Package Size / pcs : cm
1119 * Weight / pcs : g
1120
1121 = 9. Support =
1122
1123
1124 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 43.10 1125
Xiaoling 41.4 1126 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]