Version 44.1 by Ellie Zhang on 2023/05/17 15:29

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18
19
20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21
22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23
24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25
26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27
28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29
30
31 == 1.2 ​Features ==
32
33
34 * LoRaWAN 1.0.3 Class A
35 * Ultra-low power consumption
36 * Open-Source hardware/software
37 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
38 * Support Bluetooth v5.1 and LoRaWAN remote configure
39 * Support wireless OTA update firmware
40 * Uplink on periodically
41 * Downlink to change configure
42 * 8500mAh Battery for long term use
43
44
45 == 1.3 Specification ==
46
47
48 (% style="color:#037691" %)**Common DC Characteristics:**
49
50 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
51 * Operating Temperature: -40 ~~ 85°C
52
53 (% style="color:#037691" %)**I/O Interface:**
54
55 * Battery output (2.6v ~~ 3.6v depends on battery)
56 * +5v controllable output
57 * 3 x Interrupt or Digital IN/OUT pins
58 * 3 x one-wire interfaces
59 * 1 x UART Interface
60 * 1 x I2C Interface
61
62 (% style="color:#037691" %)**LoRa Spec:**
63
64 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
65 * Max +22 dBm constant RF output vs.
66 * RX sensitivity: down to -139 dBm.
67 * Excellent blocking immunity
68
69 (% style="color:#037691" %)**Battery:**
70
71 * Li/SOCI2 un-chargeable battery
72 * Capacity: 8500mAh
73 * Self-Discharge: <1% / Year @ 25°C
74 * Max continuously current: 130mA
75 * Max boost current: 2A, 1 second
76
77 (% style="color:#037691" %)**Power Consumption**
78
79 * Sleep Mode: 5uA @ 3.3v
80 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
81
82
83 == 1.4 Sleep mode and working mode ==
84
85
86 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
87
88 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
89
90
91 == 1.5 Button & LEDs ==
92
93
94 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
95
96
97 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
98 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
99 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
100 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
101 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
102 )))
103 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
104 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
105 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
106 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
107 )))
108 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
109
110
111 == 1.6 BLE connection ==
112
113
114 SN50v3-LB supports BLE remote configure.
115
116
117 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
118
119 * Press button to send an uplink
120 * Press button to active device.
121 * Device Power on or reset.
122
123 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
124
125
126 == 1.7 Pin Definitions ==
127
128
129 [[image:image-20230513102034-2.png]]
130
131
132 == 1.8 Mechanical ==
133
134
135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
136
137 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
138
139 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
140
141
142 == Hole Option ==
143
144
145 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
146
147 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
148
149 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
150
151
152 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
153
154 == 2.1 How it works ==
155
156
157 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
158
159
160 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
161
162
163 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
164
165 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
166
167
168 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
169
170 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
171
172 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
173
174
175 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
176
177
178 (% style="color:blue" %)**Register the device**
179
180 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
181
182
183 (% style="color:blue" %)**Add APP EUI and DEV EUI**
184
185 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
186
187
188 (% style="color:blue" %)**Add APP EUI in the application**
189
190
191 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
192
193
194 (% style="color:blue" %)**Add APP KEY**
195
196 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
197
198
199 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
200
201
202 Press the button for 5 seconds to activate the SN50v3-LB.
203
204 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
205
206 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
207
208
209 == 2.3 ​Uplink Payload ==
210
211 === 2.3.1 Device Status, FPORT~=5 ===
212
213
214 Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
215
216 The Payload format is as below.
217
218
219 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
220 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
221 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
222 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
223
224 Example parse in TTNv3
225
226
227 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
228
229 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
230
231 (% style="color:#037691" %)**Frequency Band**:
232
233 *0x01: EU868
234
235 *0x02: US915
236
237 *0x03: IN865
238
239 *0x04: AU915
240
241 *0x05: KZ865
242
243 *0x06: RU864
244
245 *0x07: AS923
246
247 *0x08: AS923-1
248
249 *0x09: AS923-2
250
251 *0x0a: AS923-3
252
253 *0x0b: CN470
254
255 *0x0c: EU433
256
257 *0x0d: KR920
258
259 *0x0e: MA869
260
261
262 (% style="color:#037691" %)**Sub-Band**:
263
264 AU915 and US915:value 0x00 ~~ 0x08
265
266 CN470: value 0x0B ~~ 0x0C
267
268 Other Bands: Always 0x00
269
270
271 (% style="color:#037691" %)**Battery Info**:
272
273 Check the battery voltage.
274
275 Ex1: 0x0B45 = 2885mV
276
277 Ex2: 0x0B49 = 2889mV
278
279
280 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
281
282
283 SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
284
285 For example:
286
287 **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
288
289
290 (% style="color:red" %) **Important Notice:**
291
292 1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
293 1. All modes share the same Payload Explanation from HERE.
294 1. By default, the device will send an uplink message every 20 minutes.
295
296
297 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
298
299
300 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
301
302 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
303 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
304 |**Value**|Bat|(% style="width:191px" %)(((
305 Temperature(DS18B20)(PC13)
306 )))|(% style="width:78px" %)(((
307 ADC(PA4)
308 )))|(% style="width:216px" %)(((
309 Digital in(PB15)&Digital Interrupt(PA8)
310 )))|(% style="width:308px" %)(((
311 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
312 )))|(% style="width:154px" %)(((
313 Humidity(SHT20 or SHT31)
314 )))
315
316 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
317
318
319
320 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
321
322
323 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
324
325 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
326 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
327 |**Value**|BAT|(% style="width:196px" %)(((
328 Temperature(DS18B20)(PC13)
329 )))|(% style="width:87px" %)(((
330 ADC(PA4)
331 )))|(% style="width:189px" %)(((
332 Digital in(PB15) & Digital Interrupt(PA8)
333 )))|(% style="width:208px" %)(((
334 Distance measure by:1) LIDAR-Lite V3HP
335 Or
336 2) Ultrasonic Sensor
337 )))|(% style="width:117px" %)Reserved
338
339 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
340
341
342 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
343
344 [[image:image-20230512173758-5.png||height="563" width="712"]]
345
346
347 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
348
349 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
350
351 [[image:image-20230512173903-6.png||height="596" width="715"]]
352
353
354 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
355
356 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
357 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
358 |**Value**|BAT|(% style="width:183px" %)(((
359 Temperature(DS18B20)(PC13)
360 )))|(% style="width:173px" %)(((
361 Digital in(PB15) & Digital Interrupt(PA8)
362 )))|(% style="width:84px" %)(((
363 ADC(PA4)
364 )))|(% style="width:323px" %)(((
365 Distance measure by:1)TF-Mini plus LiDAR
366 Or 
367 2) TF-Luna LiDAR
368 )))|(% style="width:188px" %)Distance signal  strength
369
370 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
371
372
373 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
374
375 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
376
377 [[image:image-20230512180609-7.png||height="555" width="802"]]
378
379
380 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
381
382 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
383
384 [[image:image-20230513105207-4.png||height="469" width="802"]]
385
386
387 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
388
389
390 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
391
392 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
393 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
394 **Size(bytes)**
395 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
396 |**Value**|(% style="width:68px" %)(((
397 ADC1(PA4)
398 )))|(% style="width:75px" %)(((
399 ADC2(PA5)
400 )))|(((
401 ADC3(PA8)
402 )))|(((
403 Digital Interrupt(PB15)
404 )))|(% style="width:304px" %)(((
405 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
406 )))|(% style="width:163px" %)(((
407 Humidity(SHT20 or SHT31)
408 )))|(% style="width:53px" %)Bat
409
410 [[image:image-20230513110214-6.png]]
411
412
413 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
414
415
416 This mode has total 11 bytes. As shown below:
417
418 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
419 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
420 |**Value**|BAT|(% style="width:186px" %)(((
421 Temperature1(DS18B20)(PC13)
422 )))|(% style="width:82px" %)(((
423 ADC(PA4)
424 )))|(% style="width:210px" %)(((
425 Digital in(PB15) & Digital Interrupt(PA8) 
426 )))|(% style="width:191px" %)Temperature2(DS18B20)
427 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
428
429 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
430
431 [[image:image-20230513134006-1.png||height="559" width="736"]]
432
433
434
435 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
436
437
438 [[image:image-20230512164658-2.png||height="532" width="729"]]
439
440 Each HX711 need to be calibrated before used. User need to do below two steps:
441
442 1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
443 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
444 1. (((
445 Weight has 4 bytes, the unit is g.
446
447
448
449 )))
450
451 For example:
452
453 **AT+GETSENSORVALUE =0**
454
455 Response:  Weight is 401 g
456
457 Check the response of this command and adjust the value to match the real value for thing.
458
459 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
460 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
461 **Size(bytes)**
462 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
463 |**Value**|BAT|(% style="width:193px" %)(((
464 Temperature(DS18B20)(PC13)
465 )))|(% style="width:85px" %)(((
466 ADC(PA4)
467 )))|(% style="width:186px" %)(((
468 Digital in(PB15) & Digital Interrupt(PA8)
469 )))|(% style="width:100px" %)Weight
470
471 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
472
473
474
475 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
476
477
478 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
479
480 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
481
482 [[image:image-20230512181814-9.png||height="543" width="697"]]
483
484
485 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
486
487 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
488 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
489 |**Value**|BAT|(% style="width:256px" %)(((
490 Temperature(DS18B20)(PC13)
491 )))|(% style="width:108px" %)(((
492 ADC(PA4)
493 )))|(% style="width:126px" %)(((
494 Digital in(PB15)
495 )))|(% style="width:145px" %)(((
496 Count(PA8)
497 )))
498
499 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
500
501
502
503 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
504
505
506 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
507 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
508 **Size(bytes)**
509 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
510 |**Value**|BAT|(% style="width:188px" %)(((
511 Temperature(DS18B20)
512 (PC13)
513 )))|(% style="width:83px" %)(((
514 ADC(PA5)
515 )))|(% style="width:184px" %)(((
516 Digital Interrupt1(PA8)
517 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
518
519 [[image:image-20230513111203-7.png||height="324" width="975"]]
520
521
522 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
523
524
525 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
526 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
527 **Size(bytes)**
528 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
529 |**Value**|BAT|(% style="width:207px" %)(((
530 Temperature(DS18B20)
531 (PC13)
532 )))|(% style="width:94px" %)(((
533 ADC1(PA4)
534 )))|(% style="width:198px" %)(((
535 Digital Interrupt(PB15)
536 )))|(% style="width:84px" %)(((
537 ADC2(PA5)
538 )))|(% style="width:82px" %)(((
539 ADC3(PA8)
540 )))
541
542 [[image:image-20230513111231-8.png||height="335" width="900"]]
543
544
545 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
546
547
548 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
549 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
550 **Size(bytes)**
551 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
552 |**Value**|BAT|(((
553 Temperature
554 (DS18B20)(PC13)
555 )))|(((
556 Temperature2
557 (DS18B20)(PB9)
558 )))|(((
559 Digital Interrupt
560 (PB15)
561 )))|(% style="width:193px" %)(((
562 Temperature3
563 (DS18B20)(PB8)
564 )))|(% style="width:78px" %)(((
565 Count1(PA8)
566 )))|(% style="width:78px" %)(((
567 Count2(PA4)
568 )))
569
570 [[image:image-20230513111255-9.png||height="341" width="899"]]
571
572 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
573
574 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
575
576 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
577
578 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
579
580
581 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
582
583 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
584
585 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
586
587
588 === 2.3.3  ​Decode payload ===
589
590
591 While using TTN V3 network, you can add the payload format to decode the payload.
592
593 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
594
595 The payload decoder function for TTN V3 are here:
596
597 SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
598
599
600 ==== 2.3.3.1 Battery Info ====
601
602
603 Check the battery voltage for SN50v3.
604
605 Ex1: 0x0B45 = 2885mV
606
607 Ex2: 0x0B49 = 2889mV
608
609
610 ==== 2.3.3.2  Temperature (DS18B20) ====
611
612
613 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
614
615 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
616
617 (% style="color:blue" %)**Connection:**
618
619 [[image:image-20230512180718-8.png||height="538" width="647"]]
620
621
622 (% style="color:blue" %)**Example**:
623
624 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
625
626 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
627
628 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
629
630
631 ==== 2.3.3.3 Digital Input ====
632
633
634 The digital input for pin PB15,
635
636 * When PB15 is high, the bit 1 of payload byte 6 is 1.
637 * When PB15 is low, the bit 1 of payload byte 6 is 0.
638
639 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
640 (((
641 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
642
643 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
644
645
646 )))
647
648 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
649
650
651 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
652
653 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
654
655 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
656
657 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
658
659
660 ==== 2.3.3.5 Digital Interrupt ====
661
662
663 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
664
665 (% style="color:blue" %)** Interrupt connection method:**
666
667 [[image:image-20230513105351-5.png||height="147" width="485"]]
668
669
670 (% style="color:blue" %)**Example to use with door sensor :**
671
672 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
673
674 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
675
676 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
677
678
679 (% style="color:blue" %)**Below is the installation example:**
680
681 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
682
683 * (((
684 One pin to SN50_v3's PA8 pin
685 )))
686 * (((
687 The other pin to SN50_v3's VDD pin
688 )))
689
690 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
691
692 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
693
694 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
695
696 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
697
698 The above photos shows the two parts of the magnetic switch fitted to a door.
699
700 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
701
702 The command is:
703
704 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
705
706 Below shows some screen captures in TTN V3:
707
708 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
709
710
711 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
712
713 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
714
715
716 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
717
718
719 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
720
721 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
722
723 Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
724
725 Below is the connection to SHT20/ SHT31. The connection is as below:
726
727
728 [[image:image-20230513103633-3.png||height="448" width="716"]]
729
730 The device will be able to get the I2C sensor data now and upload to IoT Server.
731
732 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
733
734 Convert the read byte to decimal and divide it by ten.
735
736 **Example:**
737
738 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
739
740 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
741
742 If you want to use other I2C device, please refer the SHT20 part source code as reference.
743
744
745 ==== 2.3.3.7  ​Distance Reading ====
746
747
748 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
749
750
751 ==== 2.3.3.8 Ultrasonic Sensor ====
752
753
754 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
755
756 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
757
758 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
759
760 The picture below shows the connection:
761
762 [[image:image-20230512173903-6.png||height="596" width="715"]]
763
764
765 Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
766
767 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
768
769 **Example:**
770
771 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
772
773
774 ==== 2.3.3.9  Battery Output - BAT pin ====
775
776
777 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
778
779
780 ==== 2.3.3.10  +5V Output ====
781
782
783 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
784
785 The 5V output time can be controlled by AT Command.
786
787 (% style="color:blue" %)**AT+5VT=1000**
788
789 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
790
791 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
792
793
794 ==== 2.3.3.11  BH1750 Illumination Sensor ====
795
796
797 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
798
799 [[image:image-20230512172447-4.png||height="416" width="712"]]
800
801
802 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
803
804
805 ==== 2.3.3.12  Working MOD ====
806
807
808 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
809
810 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
811
812 Case 7^^th^^ Byte >> 2 & 0x1f:
813
814 * 0: MOD1
815 * 1: MOD2
816 * 2: MOD3
817 * 3: MOD4
818 * 4: MOD5
819 * 5: MOD6
820 * 6: MOD7
821 * 7: MOD8
822 * 8: MOD9
823
824
825 == 2.4 Payload Decoder file ==
826
827
828 In TTN, use can add a custom payload so it shows friendly reading
829
830 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
831
832 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
833
834
835 == 2.5 Frequency Plans ==
836
837
838 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
839
840 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
841
842
843 = 3. Configure SN50v3-LB =
844
845 == 3.1 Configure Methods ==
846
847
848 SN50v3-LB supports below configure method:
849
850 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
851 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
852 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
853
854
855 == 3.2 General Commands ==
856
857
858 These commands are to configure:
859
860 * General system settings like: uplink interval.
861 * LoRaWAN protocol & radio related command.
862
863 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
864
865 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
866
867
868 == 3.3 Commands special design for SN50v3-LB ==
869
870
871 These commands only valid for S31x-LB, as below:
872
873
874 === 3.3.1 Set Transmit Interval Time ===
875
876
877 Feature: Change LoRaWAN End Node Transmit Interval.
878
879 (% style="color:blue" %)**AT Command: AT+TDC**
880
881 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
882 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
883 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
884 30000
885 OK
886 the interval is 30000ms = 30s
887 )))
888 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
889 OK
890 Set transmit interval to 60000ms = 60 seconds
891 )))
892
893 (% style="color:blue" %)**Downlink Command: 0x01**
894
895 Format: Command Code (0x01) followed by 3 bytes time value.
896
897 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
898
899 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
900 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
901
902
903 === 3.3.2 Get Device Status ===
904
905
906 Send a LoRaWAN downlink to ask the device to send its status.
907
908 (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
909
910 Sensor will upload Device Status via FPORT=5. See payload section for detail.
911
912
913 === 3.3.3 Set Interrupt Mode ===
914
915
916 Feature, Set Interrupt mode for GPIO_EXIT.
917
918 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
919
920 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
921 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
922 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
923 0
924 OK
925 the mode is 0 =Disable Interrupt
926 )))
927 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
928 Set Transmit Interval
929 0. (Disable Interrupt),
930 ~1. (Trigger by rising and falling edge)
931 2. (Trigger by falling edge)
932 3. (Trigger by rising edge)
933 )))|(% style="width:157px" %)OK
934 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
935 Set Transmit Interval
936 trigger by rising edge.
937 )))|(% style="width:157px" %)OK
938 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
939
940 (% style="color:blue" %)**Downlink Command: 0x06**
941
942 Format: Command Code (0x06) followed by 3 bytes.
943
944 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
945
946 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
947 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
948 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
949 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
950
951
952 === 3.3.4 Set Power Output Duration ===
953
954
955 Control the output duration 5V . Before each sampling, device will
956
957 ~1. first enable the power output to external sensor,
958
959 2. keep it on as per duration, read sensor value and construct uplink payload
960
961 3. final, close the power output.
962
963 (% style="color:blue" %)**AT Command: AT+5VT**
964
965 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
966 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
967 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
968 500(default)
969 OK
970 )))
971 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
972 Close after a delay of 1000 milliseconds.
973 )))|(% style="width:157px" %)OK
974
975 (% style="color:blue" %)**Downlink Command: 0x07**
976
977 Format: Command Code (0x07) followed by 2 bytes.
978
979 The first and second bytes are the time to turn on.
980
981 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
982 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
983
984
985 === 3.3.5 Set Weighing parameters ===
986
987
988 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
989
990 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
991
992 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
993 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
994 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
995 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
996 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
997
998 (% style="color:blue" %)**Downlink Command: 0x08**
999
1000 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1001
1002 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1003
1004 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1005
1006 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1007 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1008 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1009
1010
1011 === 3.3.6 Set Digital pulse count value ===
1012
1013
1014 Feature: Set the pulse count value.
1015
1016 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1017
1018 (% style="color:blue" %)**AT Command: AT+SETCNT**
1019
1020 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1021 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1022 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1023 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1024
1025 (% style="color:blue" %)**Downlink Command: 0x09**
1026
1027 Format: Command Code (0x09) followed by 5 bytes.
1028
1029 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1030
1031 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1032 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1033
1034
1035 === 3.3.7 Set Workmode ===
1036
1037
1038 Feature: Switch working mode.
1039
1040 (% style="color:blue" %)**AT Command: AT+MOD**
1041
1042 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1043 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1044 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1045 OK
1046 )))
1047 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1048 OK
1049 Attention:Take effect after ATZ
1050 )))
1051
1052 (% style="color:blue" %)**Downlink Command: 0x0A**
1053
1054 Format: Command Code (0x0A) followed by 1 bytes.
1055
1056 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1057 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1058
1059
1060 = 4. Battery & Power Consumption =
1061
1062
1063 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1064
1065 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1066
1067
1068 = 5. OTA Firmware update =
1069
1070
1071 (% class="wikigeneratedid" %)
1072 User can change firmware SN50v3-LB to:
1073
1074 * Change Frequency band/ region.
1075 * Update with new features.
1076 * Fix bugs.
1077
1078 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1079
1080
1081 Methods to Update Firmware:
1082
1083 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1084 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1085
1086
1087 = 6. FAQ =
1088
1089 == 6.1 Where can i find source code of SN50v3-LB? ==
1090
1091
1092 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1093 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1094
1095
1096 = 7. Order Info =
1097
1098
1099 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1100
1101 (% style="color:red" %)**XX**(%%): The default frequency band
1102
1103 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1104 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1105 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1106 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1107 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1108 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1109 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1110 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1111
1112 (% style="color:red" %)**YY: ** (%%)Hole Option
1113
1114 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1115 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1116 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1117 * (% style="color:red" %)**NH**(%%): No Hole
1118
1119
1120 = 8. ​Packing Info =
1121
1122
1123 (% style="color:#037691" %)**Package Includes**:
1124
1125 * SN50v3-LB LoRaWAN Generic Node
1126
1127 (% style="color:#037691" %)**Dimension and weight**:
1128
1129 * Device Size: cm
1130 * Device Weight: g
1131 * Package Size / pcs : cm
1132 * Weight / pcs : g
1133
1134
1135 = 9. Support =
1136
1137
1138 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1139
1140 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]