Version 43.7 by Xiaoling on 2023/05/16 13:45

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18
19
20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21
22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23
24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25
26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27
28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29
30
31 == 1.2 ​Features ==
32
33 * LoRaWAN 1.0.3 Class A
34 * Ultra-low power consumption
35 * Open-Source hardware/software
36 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
37 * Support Bluetooth v5.1 and LoRaWAN remote configure
38 * Support wireless OTA update firmware
39 * Uplink on periodically
40 * Downlink to change configure
41 * 8500mAh Battery for long term use
42
43 == 1.3 Specification ==
44
45
46 (% style="color:#037691" %)**Common DC Characteristics:**
47
48 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
49 * Operating Temperature: -40 ~~ 85°C
50
51 (% style="color:#037691" %)**I/O Interface:**
52
53 * Battery output (2.6v ~~ 3.6v depends on battery)
54 * +5v controllable output
55 * 3 x Interrupt or Digital IN/OUT pins
56 * 3 x one-wire interfaces
57 * 1 x UART Interface
58 * 1 x I2C Interface
59
60 (% style="color:#037691" %)**LoRa Spec:**
61
62 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
63 * Max +22 dBm constant RF output vs.
64 * RX sensitivity: down to -139 dBm.
65 * Excellent blocking immunity
66
67 (% style="color:#037691" %)**Battery:**
68
69 * Li/SOCI2 un-chargeable battery
70 * Capacity: 8500mAh
71 * Self-Discharge: <1% / Year @ 25°C
72 * Max continuously current: 130mA
73 * Max boost current: 2A, 1 second
74
75 (% style="color:#037691" %)**Power Consumption**
76
77 * Sleep Mode: 5uA @ 3.3v
78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79
80 == 1.4 Sleep mode and working mode ==
81
82
83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84
85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
86
87
88 == 1.5 Button & LEDs ==
89
90
91 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
92
93
94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
96 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
97 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
98 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
99 )))
100 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
101 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
102 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
103 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
104 )))
105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106
107 == 1.6 BLE connection ==
108
109
110 SN50v3-LB supports BLE remote configure.
111
112
113 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
114
115 * Press button to send an uplink
116 * Press button to active device.
117 * Device Power on or reset.
118
119 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
120
121
122 == 1.7 Pin Definitions ==
123
124
125 [[image:image-20230513102034-2.png]]
126
127
128 == 1.8 Mechanical ==
129
130
131 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132
133 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134
135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136
137
138 == Hole Option ==
139
140
141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142
143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
144
145 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
146
147
148 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
149
150 == 2.1 How it works ==
151
152
153 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154
155
156 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
157
158
159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160
161 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162
163
164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
165
166 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
167
168 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
169
170
171 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
172
173
174 (% style="color:blue" %)**Register the device**
175
176 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
177
178
179 (% style="color:blue" %)**Add APP EUI and DEV EUI**
180
181 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
182
183
184 (% style="color:blue" %)**Add APP EUI in the application**
185
186
187 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
188
189
190 (% style="color:blue" %)**Add APP KEY**
191
192 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
193
194
195 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
196
197
198 Press the button for 5 seconds to activate the SN50v3-LB.
199
200 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
201
202 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
203
204
205 == 2.3 ​Uplink Payload ==
206
207 === 2.3.1 Device Status, FPORT~=5 ===
208
209
210 Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
211
212 The Payload format is as below.
213
214
215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219
220 Example parse in TTNv3
221
222
223 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
224
225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226
227 (% style="color:#037691" %)**Frequency Band**:
228
229 *0x01: EU868
230
231 *0x02: US915
232
233 *0x03: IN865
234
235 *0x04: AU915
236
237 *0x05: KZ865
238
239 *0x06: RU864
240
241 *0x07: AS923
242
243 *0x08: AS923-1
244
245 *0x09: AS923-2
246
247 *0x0a: AS923-3
248
249 *0x0b: CN470
250
251 *0x0c: EU433
252
253 *0x0d: KR920
254
255 *0x0e: MA869
256
257
258 (% style="color:#037691" %)**Sub-Band**:
259
260 AU915 and US915:value 0x00 ~~ 0x08
261
262 CN470: value 0x0B ~~ 0x0C
263
264 Other Bands: Always 0x00
265
266
267 (% style="color:#037691" %)**Battery Info**:
268
269 Check the battery voltage.
270
271 Ex1: 0x0B45 = 2885mV
272
273 Ex2: 0x0B49 = 2889mV
274
275
276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277
278
279 SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280
281 For example:
282
283 **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284
285
286 (% style="color:red" %) **Important Notice:**
287
288 1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 1. All modes share the same Payload Explanation from HERE.
290 1. By default, the device will send an uplink message every 20 minutes.
291
292 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293
294
295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296
297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 |(% style="background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:191px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:78px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:216px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:308px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:154px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 |**Value**|Bat|(% style="width:191px" %)(((
300 Temperature(DS18B20)
301 (PC13)
302 )))|(% style="width:78px" %)(((
303 ADC
304 (PA4)
305 )))|(% style="width:216px" %)(((
306 Digital in(PB15) &
307 Digital Interrupt(PA8)
308 )))|(% style="width:308px" %)(((
309 Temperature
310 (SHT20 or SHT31 or BH1750 Illumination Sensor)
311 )))|(% style="width:154px" %)(((
312 Humidity
313 (SHT20 or SHT31)
314 )))
315
316 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
317
318
319 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
320
321 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
322
323 (% style="width:1011px" %)
324 |**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**
325 |**Value**|BAT|(% style="width:196px" %)(((
326 Temperature(DS18B20)
327
328 (PC13)
329 )))|(% style="width:87px" %)(((
330 ADC
331
332 (PA4)
333 )))|(% style="width:189px" %)(((
334 Digital in(PB15) &
335
336 Digital Interrupt(PA8)
337 )))|(% style="width:208px" %)(((
338 Distance measure by:
339 1) LIDAR-Lite V3HP
340 Or
341 2) Ultrasonic Sensor
342 )))|(% style="width:117px" %)Reserved
343
344 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
345
346 **Connection of LIDAR-Lite V3HP:**
347
348 [[image:image-20230512173758-5.png||height="563" width="712"]]
349
350 **Connection to Ultrasonic Sensor:**
351
352 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
353
354 [[image:image-20230512173903-6.png||height="596" width="715"]]
355
356 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
357
358 (% style="width:1113px" %)
359 |**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
360 |**Value**|BAT|(% style="width:183px" %)(((
361 Temperature(DS18B20)
362
363 (PC13)
364 )))|(% style="width:173px" %)(((
365 Digital in(PB15) &
366
367 Digital Interrupt(PA8)
368 )))|(% style="width:84px" %)(((
369 ADC
370
371 (PA4)
372 )))|(% style="width:323px" %)(((
373 Distance measure by:1)TF-Mini plus LiDAR
374 Or 
375 2) TF-Luna LiDAR
376 )))|(% style="width:188px" %)Distance signal  strength
377
378 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
379
380 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
381
382 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
383
384 [[image:image-20230512180609-7.png||height="555" width="802"]]
385
386 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
387
388 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
389
390 [[image:image-20230513105207-4.png||height="469" width="802"]]
391
392
393 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
394
395 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
396
397 (% style="width:1031px" %)
398 |=(((
399 **Size(bytes)**
400 )))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
401 |**Value**|(% style="width:68px" %)(((
402 ADC1
403
404 (PA4)
405 )))|(% style="width:75px" %)(((
406 ADC2
407
408 (PA5)
409 )))|(((
410 ADC3
411
412 (PA8)
413 )))|(((
414 Digital Interrupt(PB15)
415 )))|(% style="width:304px" %)(((
416 Temperature
417
418 (SHT20 or SHT31 or BH1750 Illumination Sensor)
419 )))|(% style="width:163px" %)(((
420 Humidity
421
422 (SHT20 or SHT31)
423 )))|(% style="width:53px" %)Bat
424
425 [[image:image-20230513110214-6.png]]
426
427
428 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
429
430
431 This mode has total 11 bytes. As shown below:
432
433 (% style="width:1017px" %)
434 |**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
435 |**Value**|BAT|(% style="width:186px" %)(((
436 Temperature1(DS18B20)
437 (PC13)
438 )))|(% style="width:82px" %)(((
439 ADC
440
441 (PA4)
442 )))|(% style="width:210px" %)(((
443 Digital in(PB15) &
444
445 Digital Interrupt(PA8) 
446 )))|(% style="width:191px" %)Temperature2(DS18B20)
447 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)
448 (PB8)
449
450 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
451
452 [[image:image-20230513134006-1.png||height="559" width="736"]]
453
454
455 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
456
457 [[image:image-20230512164658-2.png||height="532" width="729"]]
458
459 Each HX711 need to be calibrated before used. User need to do below two steps:
460
461 1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
462 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
463 1. (((
464 Weight has 4 bytes, the unit is g.
465 )))
466
467 For example:
468
469 **AT+GETSENSORVALUE =0**
470
471 Response:  Weight is 401 g
472
473 Check the response of this command and adjust the value to match the real value for thing.
474
475 (% style="width:767px" %)
476 |=(((
477 **Size(bytes)**
478 )))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
479 |**Value**|BAT|(% style="width:193px" %)(((
480 Temperature(DS18B20)
481
482 (PC13)
483
484
485 )))|(% style="width:85px" %)(((
486 ADC
487
488 (PA4)
489 )))|(% style="width:186px" %)(((
490 Digital in(PB15) &
491
492 Digital Interrupt(PA8)
493 )))|(% style="width:100px" %)Weight
494
495 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
496
497
498 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
499
500 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
501
502 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
503
504 [[image:image-20230512181814-9.png||height="543" width="697"]]
505
506 **Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
507
508 (% style="width:961px" %)
509 |=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
510 |**Value**|BAT|(% style="width:256px" %)(((
511 Temperature(DS18B20)
512
513 (PC13)
514 )))|(% style="width:108px" %)(((
515 ADC
516
517 (PA4)
518 )))|(% style="width:126px" %)(((
519 Digital in
520
521 (PB15)
522 )))|(% style="width:145px" %)(((
523 Count
524
525 (PA8)
526 )))
527
528 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
529
530
531 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
532
533 (% style="width:1108px" %)
534 |=(((
535 **Size(bytes)**
536 )))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
537 |**Value**|BAT|(% style="width:188px" %)(((
538 Temperature(DS18B20)
539
540 (PC13)
541 )))|(% style="width:83px" %)(((
542 ADC
543
544 (PA5)
545 )))|(% style="width:184px" %)(((
546 Digital Interrupt1(PA8)
547 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
548
549 [[image:image-20230513111203-7.png||height="324" width="975"]]
550
551 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
552
553 (% style="width:922px" %)
554 |=(((
555 **Size(bytes)**
556 )))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
557 |**Value**|BAT|(% style="width:207px" %)(((
558 Temperature(DS18B20)
559
560 (PC13)
561 )))|(% style="width:94px" %)(((
562 ADC1
563
564 (PA4)
565 )))|(% style="width:198px" %)(((
566 Digital Interrupt(PB15)
567 )))|(% style="width:84px" %)(((
568 ADC2
569
570 (PA5)
571 )))|(% style="width:82px" %)(((
572 ADC3
573
574 (PA8)
575 )))
576
577 [[image:image-20230513111231-8.png||height="335" width="900"]]
578
579
580 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
581
582 (% style="width:1010px" %)
583 |=(((
584 **Size(bytes)**
585 )))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
586 |**Value**|BAT|(((
587 Temperature1(DS18B20)
588
589 (PC13)
590 )))|(((
591 Temperature2(DS18B20)
592
593 (PB9)
594 )))|(((
595 Digital Interrupt
596
597 (PB15)
598 )))|(% style="width:193px" %)(((
599 Temperature3(DS18B20)
600
601 (PB8)
602 )))|(% style="width:78px" %)(((
603 Count1
604
605 (PA8)
606 )))|(% style="width:78px" %)(((
607 Count2
608
609 (PA4)
610 )))
611
612 [[image:image-20230513111255-9.png||height="341" width="899"]]
613
614 **The newly added AT command is issued correspondingly:**
615
616 **~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
617
618 **~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
619
620 **~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
621
622 **AT+SETCNT=aa,bb** 
623
624 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
625
626 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
627
628
629
630 === 2.3.3  ​Decode payload ===
631
632 While using TTN V3 network, you can add the payload format to decode the payload.
633
634 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
635
636 The payload decoder function for TTN V3 are here:
637
638 SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
639
640
641 ==== 2.3.3.1 Battery Info ====
642
643 Check the battery voltage for SN50v3.
644
645 Ex1: 0x0B45 = 2885mV
646
647 Ex2: 0x0B49 = 2889mV
648
649
650 ==== 2.3.3.2  Temperature (DS18B20) ====
651
652 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
653
654 More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
655
656 **Connection:**
657
658 [[image:image-20230512180718-8.png||height="538" width="647"]]
659
660 **Example**:
661
662 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
663
664 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
665
666 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
667
668
669 ==== 2.3.3.3 Digital Input ====
670
671 The digital input for pin PB15,
672
673 * When PB15 is high, the bit 1 of payload byte 6 is 1.
674 * When PB15 is low, the bit 1 of payload byte 6 is 0.
675
676 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
677 (((
678 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
679
680 **Note:**The maximum voltage input supports 3.6V.
681
682
683 )))
684
685 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
686
687 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
688
689 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
690
691 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
692
693 **Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
694
695
696 ==== 2.3.3.5 Digital Interrupt ====
697
698 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
699
700 **~ Interrupt connection method:**
701
702 [[image:image-20230513105351-5.png||height="147" width="485"]]
703
704 **Example to use with door sensor :**
705
706 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
707
708 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
709
710 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
711
712 **~ Below is the installation example:**
713
714 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
715
716 * (((
717 One pin to SN50_v3's PA8 pin
718 )))
719 * (((
720 The other pin to SN50_v3's VDD pin
721 )))
722
723 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
724
725 Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
726
727 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
728
729 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
730
731 The above photos shows the two parts of the magnetic switch fitted to a door.
732
733 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
734
735 The command is:
736
737 **AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
738
739 Below shows some screen captures in TTN V3:
740
741 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
742
743 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
744
745 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
746
747
748 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
749
750 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
751
752 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
753
754 Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
755
756 Below is the connection to SHT20/ SHT31. The connection is as below:
757
758
759 [[image:image-20230513103633-3.png||height="448" width="716"]]
760
761 The device will be able to get the I2C sensor data now and upload to IoT Server.
762
763 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
764
765 Convert the read byte to decimal and divide it by ten.
766
767 **Example:**
768
769 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
770
771 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
772
773 If you want to use other I2C device, please refer the SHT20 part source code as reference.
774
775
776 ==== 2.3.3.7  ​Distance Reading ====
777
778 Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
779
780
781 ==== 2.3.3.8 Ultrasonic Sensor ====
782
783 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
784
785 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
786
787 The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
788
789 The picture below shows the connection:
790
791 [[image:image-20230512173903-6.png||height="596" width="715"]]
792
793 Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
794
795 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
796
797 **Example:**
798
799 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
800
801
802
803 ==== 2.3.3.9  Battery Output - BAT pin ====
804
805 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
806
807
808 ==== 2.3.3.10  +5V Output ====
809
810 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
811
812 The 5V output time can be controlled by AT Command.
813
814 **AT+5VT=1000**
815
816 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
817
818 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
819
820
821
822 ==== 2.3.3.11  BH1750 Illumination Sensor ====
823
824 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
825
826 [[image:image-20230512172447-4.png||height="416" width="712"]]
827
828 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
829
830
831 ==== 2.3.3.12  Working MOD ====
832
833 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
834
835 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
836
837 Case 7^^th^^ Byte >> 2 & 0x1f:
838
839 * 0: MOD1
840 * 1: MOD2
841 * 2: MOD3
842 * 3: MOD4
843 * 4: MOD5
844 * 5: MOD6
845 * 6: MOD7
846 * 7: MOD8
847 * 8: MOD9
848
849 == ==
850
851 == 2.4 Payload Decoder file ==
852
853
854 In TTN, use can add a custom payload so it shows friendly reading
855
856 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
857
858 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
859
860
861
862 == 2.5 Frequency Plans ==
863
864
865 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
866
867 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
868
869
870 = 3. Configure SN50v3-LB =
871
872 == 3.1 Configure Methods ==
873
874
875 SN50v3-LB supports below configure method:
876
877 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
878 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
879 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
880
881 == 3.2 General Commands ==
882
883
884 These commands are to configure:
885
886 * General system settings like: uplink interval.
887 * LoRaWAN protocol & radio related command.
888
889 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
890
891 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
892
893
894 == 3.3 Commands special design for SN50v3-LB ==
895
896
897 These commands only valid for S31x-LB, as below:
898
899
900 === 3.3.1 Set Transmit Interval Time ===
901
902 Feature: Change LoRaWAN End Node Transmit Interval.
903
904 (% style="color:blue" %)**AT Command: AT+TDC**
905
906 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
907 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
908 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
909 30000
910 OK
911 the interval is 30000ms = 30s
912 )))
913 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
914 OK
915 Set transmit interval to 60000ms = 60 seconds
916 )))
917
918 (% style="color:blue" %)**Downlink Command: 0x01**
919
920 Format: Command Code (0x01) followed by 3 bytes time value.
921
922 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
923
924 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
925 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
926
927 === ===
928
929 === 3.3.2 Get Device Status ===
930
931 Send a LoRaWAN downlink to ask the device to send its status.
932
933 (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
934
935 Sensor will upload Device Status via FPORT=5. See payload section for detail.
936
937
938 === 3.3.3 Set Interrupt Mode ===
939
940 Feature, Set Interrupt mode for GPIO_EXIT.
941
942 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
943
944 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
945 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
946 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
947 0
948 OK
949 the mode is 0 =Disable Interrupt
950 )))
951 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
952 Set Transmit Interval
953 0. (Disable Interrupt),
954 ~1. (Trigger by rising and falling edge)
955 2. (Trigger by falling edge)
956 3. (Trigger by rising edge)
957 )))|(% style="width:157px" %)OK
958 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
959 Set Transmit Interval
960
961 trigger by rising edge.
962 )))|(% style="width:157px" %)OK
963 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
964
965 (% style="color:blue" %)**Downlink Command: 0x06**
966
967 Format: Command Code (0x06) followed by 3 bytes.
968
969 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
970
971 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
972 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
973 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
974 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
975
976 === ===
977
978 === 3.3.4 Set Power Output Duration ===
979
980 Control the output duration 5V . Before each sampling, device will
981
982 ~1. first enable the power output to external sensor,
983
984 2. keep it on as per duration, read sensor value and construct uplink payload
985
986 3. final, close the power output.
987
988 (% style="color:blue" %)**AT Command: AT+5VT**
989
990 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
991 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
992 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
993 500(default)
994
995 OK
996 )))
997 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
998 Close after a delay of 1000 milliseconds.
999 )))|(% style="width:157px" %)OK
1000
1001 (% style="color:blue" %)**Downlink Command: 0x07**
1002
1003 Format: Command Code (0x07) followed by 2 bytes.
1004
1005 The first and second bytes are the time to turn on.
1006
1007 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1008 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1009
1010 === ===
1011
1012 === 3.3.5 Set Weighing parameters ===
1013
1014 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1015
1016 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1017
1018 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1019 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1020 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1021 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1022 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1023
1024 (% style="color:blue" %)**Downlink Command: 0x08**
1025
1026 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1027
1028 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1029
1030 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1031
1032 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1033 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1034 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1035
1036 === ===
1037
1038 === 3.3.6 Set Digital pulse count value ===
1039
1040 Feature: Set the pulse count value.
1041
1042 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1043
1044 (% style="color:blue" %)**AT Command: AT+SETCNT**
1045
1046 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1047 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1048 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1049 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1050
1051 (% style="color:blue" %)**Downlink Command: 0x09**
1052
1053 Format: Command Code (0x09) followed by 5 bytes.
1054
1055 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1056
1057 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1058 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1059
1060 === ===
1061
1062 === 3.3.7 Set Workmode ===
1063
1064 Feature: Switch working mode.
1065
1066 (% style="color:blue" %)**AT Command: AT+MOD**
1067
1068 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1069 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1070 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1071 OK
1072 )))
1073 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1074 OK
1075
1076 Attention:Take effect after ATZ
1077 )))
1078
1079 (% style="color:blue" %)**Downlink Command: 0x0A**
1080
1081 Format: Command Code (0x0A) followed by 1 bytes.
1082
1083 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1084 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1085
1086 = =
1087
1088 = 4. Battery & Power Consumption =
1089
1090
1091 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1092
1093 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1094
1095
1096 = 5. OTA Firmware update =
1097
1098
1099 (% class="wikigeneratedid" %)
1100 User can change firmware SN50v3-LB to:
1101
1102 * Change Frequency band/ region.
1103 * Update with new features.
1104 * Fix bugs.
1105
1106 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1107
1108
1109 Methods to Update Firmware:
1110
1111 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1112 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1113
1114 = 6. FAQ =
1115
1116 == 6.1 Where can i find source code of SN50v3-LB? ==
1117
1118 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1119 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1120
1121 = 7. Order Info =
1122
1123
1124 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1125
1126 (% style="color:red" %)**XX**(%%): The default frequency band
1127
1128 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1129 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1130 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1131 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1132 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1133 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1134 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1135 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1136
1137 (% style="color:red" %)**YY: ** (%%)Hole Option
1138
1139 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1140 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1141 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1142 * (% style="color:red" %)**NH**(%%): No Hole
1143
1144 = 8. ​Packing Info =
1145
1146 (% style="color:#037691" %)**Package Includes**:
1147
1148 * SN50v3-LB LoRaWAN Generic Node
1149
1150 (% style="color:#037691" %)**Dimension and weight**:
1151
1152 * Device Size: cm
1153 * Device Weight: g
1154 * Package Size / pcs : cm
1155 * Weight / pcs : g
1156
1157 = 9. Support =
1158
1159
1160 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1161 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]