Version 43.6 by Xiaoling on 2023/05/16 13:45

Hide last authors
Xiaoling 41.2 1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
Edwin Chen 2.1 3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
Edwin Chen 5.1 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
Edwin Chen 2.1 18
Xiaoling 43.2 19
Edwin Chen 4.1 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 21
Edwin Chen 4.1 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
Edwin Chen 2.1 23
Edwin Chen 4.1 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
Edwin Chen 2.1 25
Edwin Chen 4.1 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 27
Edwin Chen 4.1 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 29
Edwin Chen 4.1 30
Edwin Chen 2.1 31 == 1.2 ​Features ==
32
33 * LoRaWAN 1.0.3 Class A
34 * Ultra-low power consumption
Edwin Chen 5.1 35 * Open-Source hardware/software
Edwin Chen 2.1 36 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
37 * Support Bluetooth v5.1 and LoRaWAN remote configure
38 * Support wireless OTA update firmware
39 * Uplink on periodically
40 * Downlink to change configure
41 * 8500mAh Battery for long term use
42
43 == 1.3 Specification ==
44
Xiaoling 43.4 45
Edwin Chen 2.1 46 (% style="color:#037691" %)**Common DC Characteristics:**
47
48 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
49 * Operating Temperature: -40 ~~ 85°C
50
Edwin Chen 5.1 51 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 52
Edwin Chen 5.1 53 * Battery output (2.6v ~~ 3.6v depends on battery)
54 * +5v controllable output
55 * 3 x Interrupt or Digital IN/OUT pins
56 * 3 x one-wire interfaces
57 * 1 x UART Interface
58 * 1 x I2C Interface
Edwin Chen 2.1 59
60 (% style="color:#037691" %)**LoRa Spec:**
61
62 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
63 * Max +22 dBm constant RF output vs.
64 * RX sensitivity: down to -139 dBm.
65 * Excellent blocking immunity
66
67 (% style="color:#037691" %)**Battery:**
68
69 * Li/SOCI2 un-chargeable battery
70 * Capacity: 8500mAh
71 * Self-Discharge: <1% / Year @ 25°C
72 * Max continuously current: 130mA
73 * Max boost current: 2A, 1 second
74
75 (% style="color:#037691" %)**Power Consumption**
76
77 * Sleep Mode: 5uA @ 3.3v
78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79
80 == 1.4 Sleep mode and working mode ==
81
Xiaoling 43.4 82
Edwin Chen 2.1 83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84
85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
86
87
88 == 1.5 Button & LEDs ==
89
90
91 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
92
93
94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
96 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
97 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
98 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
99 )))
100 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
101 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
102 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
103 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
104 )))
105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106
107 == 1.6 BLE connection ==
108
109
Edwin Chen 5.1 110 SN50v3-LB supports BLE remote configure.
Edwin Chen 2.1 111
112
113 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
114
115 * Press button to send an uplink
116 * Press button to active device.
117 * Device Power on or reset.
118
119 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
120
121
Edwin Chen 6.1 122 == 1.7 Pin Definitions ==
Edwin Chen 2.1 123
124
Saxer Lin 36.1 125 [[image:image-20230513102034-2.png]]
Edwin Chen 2.1 126
127
128 == 1.8 Mechanical ==
129
130
131 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132
133 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134
135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136
137
Edwin Chen 5.1 138 == Hole Option ==
139
Xiaoling 43.4 140
Edwin Chen 5.1 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142
143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
144
145 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
146
147
Edwin Chen 10.1 148 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
Edwin Chen 2.1 149
150 == 2.1 How it works ==
151
152
Edwin Chen 11.2 153 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 154
155
156 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
157
158
159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160
161 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162
163
Edwin Chen 11.2 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
Edwin Chen 2.1 165
Edwin Chen 11.2 166 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 167
Edwin Chen 11.2 168 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 2.1 169
170
171 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
172
173
174 (% style="color:blue" %)**Register the device**
175
176 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
177
178
179 (% style="color:blue" %)**Add APP EUI and DEV EUI**
180
181 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
182
183
184 (% style="color:blue" %)**Add APP EUI in the application**
185
186
187 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
188
189
190 (% style="color:blue" %)**Add APP KEY**
191
192 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
193
194
Edwin Chen 11.2 195 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
Edwin Chen 2.1 196
197
Edwin Chen 11.2 198 Press the button for 5 seconds to activate the SN50v3-LB.
Edwin Chen 2.1 199
200 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
201
202 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
203
204
205 == 2.3 ​Uplink Payload ==
206
207 === 2.3.1 Device Status, FPORT~=5 ===
208
209
Edwin Chen 11.2 210 Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 211
212 The Payload format is as below.
213
214
215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219
220 Example parse in TTNv3
221
222
Edwin Chen 11.2 223 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
Edwin Chen 2.1 224
225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226
227 (% style="color:#037691" %)**Frequency Band**:
228
229 *0x01: EU868
230
231 *0x02: US915
232
233 *0x03: IN865
234
235 *0x04: AU915
236
237 *0x05: KZ865
238
239 *0x06: RU864
240
241 *0x07: AS923
242
243 *0x08: AS923-1
244
245 *0x09: AS923-2
246
247 *0x0a: AS923-3
248
249 *0x0b: CN470
250
251 *0x0c: EU433
252
253 *0x0d: KR920
254
255 *0x0e: MA869
256
257
258 (% style="color:#037691" %)**Sub-Band**:
259
260 AU915 and US915:value 0x00 ~~ 0x08
261
262 CN470: value 0x0B ~~ 0x0C
263
264 Other Bands: Always 0x00
265
266
267 (% style="color:#037691" %)**Battery Info**:
268
269 Check the battery voltage.
270
271 Ex1: 0x0B45 = 2885mV
272
273 Ex2: 0x0B49 = 2889mV
274
275
Edwin Chen 12.1 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 277
278
Edwin Chen 12.1 279 SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280
281 For example:
282
283 **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284
285
Edwin Chen 13.1 286 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 287
288 1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
Edwin Chen 13.1 289 1. All modes share the same Payload Explanation from HERE.
290 1. By default, the device will send an uplink message every 20 minutes.
Edwin Chen 12.1 291
Edwin Chen 13.1 292 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 293
Xiaoling 43.5 294
Edwin Chen 12.1 295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296
Xiaoling 43.5 297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.6 298 |(% style="background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:191px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:78px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:216px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:308px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:154px;background-color:#D9E2F3;color:#0070C0" %)**2**
Saxer Lin 40.1 299 |**Value**|Bat|(% style="width:191px" %)(((
Saxer Lin 26.2 300 Temperature(DS18B20)
Edwin Chen 12.1 301
Saxer Lin 26.2 302 (PC13)
Saxer Lin 40.1 303 )))|(% style="width:78px" %)(((
Saxer Lin 26.2 304 ADC
305
306 (PA4)
307 )))|(% style="width:216px" %)(((
Saxer Lin 36.1 308 Digital in(PB15) &
Saxer Lin 26.2 309
Saxer Lin 36.1 310 Digital Interrupt(PA8)
311
Saxer Lin 26.2 312
Saxer Lin 40.1 313 )))|(% style="width:308px" %)(((
Saxer Lin 36.1 314 Temperature
Saxer Lin 26.2 315
Saxer Lin 36.1 316 (SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 317 )))|(% style="width:154px" %)(((
Saxer Lin 36.1 318 Humidity
319
320 (SHT20 or SHT31)
321 )))
322
Edwin Chen 12.1 323 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
324
325
Edwin Chen 13.1 326 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
327
Edwin Chen 12.1 328 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
329
Saxer Lin 40.1 330 (% style="width:1011px" %)
331 |**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**
332 |**Value**|BAT|(% style="width:196px" %)(((
Edwin Chen 12.1 333 Temperature(DS18B20)
Saxer Lin 36.1 334
335 (PC13)
Saxer Lin 40.1 336 )))|(% style="width:87px" %)(((
Saxer Lin 36.1 337 ADC
338
339 (PA4)
Saxer Lin 40.1 340 )))|(% style="width:189px" %)(((
Saxer Lin 36.1 341 Digital in(PB15) &
342
343 Digital Interrupt(PA8)
Saxer Lin 40.1 344 )))|(% style="width:208px" %)(((
Edwin Chen 12.1 345 Distance measure by:
346 1) LIDAR-Lite V3HP
347 Or
348 2) Ultrasonic Sensor
Saxer Lin 40.1 349 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 350
351 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
352
353 **Connection of LIDAR-Lite V3HP:**
354
Saxer Lin 26.2 355 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 356
357 **Connection to Ultrasonic Sensor:**
358
Saxer Lin 36.1 359 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
360
Saxer Lin 26.2 361 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 362
363 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
364
Saxer Lin 40.1 365 (% style="width:1113px" %)
366 |**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
367 |**Value**|BAT|(% style="width:183px" %)(((
Edwin Chen 12.1 368 Temperature(DS18B20)
Saxer Lin 36.1 369
370 (PC13)
Saxer Lin 40.1 371 )))|(% style="width:173px" %)(((
Saxer Lin 36.1 372 Digital in(PB15) &
373
374 Digital Interrupt(PA8)
Saxer Lin 40.1 375 )))|(% style="width:84px" %)(((
Saxer Lin 36.1 376 ADC
377
378 (PA4)
Saxer Lin 40.1 379 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 380 Distance measure by:1)TF-Mini plus LiDAR
381 Or 
382 2) TF-Luna LiDAR
Saxer Lin 40.1 383 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 384
385 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
386
387 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
388
Saxer Lin 36.1 389 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
Edwin Chen 12.1 390
Saxer Lin 26.2 391 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 392
393 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
394
Saxer Lin 36.1 395 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
Edwin Chen 12.1 396
Saxer Lin 36.1 397 [[image:image-20230513105207-4.png||height="469" width="802"]]
Edwin Chen 12.1 398
399
Edwin Chen 13.1 400 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
401
Edwin Chen 12.1 402 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
403
Saxer Lin 36.1 404 (% style="width:1031px" %)
Edwin Chen 12.1 405 |=(((
406 **Size(bytes)**
Saxer Lin 36.1 407 )))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
Saxer Lin 26.2 408 |**Value**|(% style="width:68px" %)(((
Saxer Lin 36.1 409 ADC1
Saxer Lin 26.2 410
Saxer Lin 36.1 411 (PA4)
Saxer Lin 26.2 412 )))|(% style="width:75px" %)(((
413 ADC2
414
Saxer Lin 36.1 415 (PA5)
416 )))|(((
417 ADC3
Edwin Chen 12.1 418
Saxer Lin 36.1 419 (PA8)
420 )))|(((
421 Digital Interrupt(PB15)
422 )))|(% style="width:304px" %)(((
423 Temperature
Edwin Chen 12.1 424
Saxer Lin 36.1 425 (SHT20 or SHT31 or BH1750 Illumination Sensor)
426 )))|(% style="width:163px" %)(((
427 Humidity
Edwin Chen 12.1 428
Saxer Lin 36.1 429 (SHT20 or SHT31)
430 )))|(% style="width:53px" %)Bat
431
432 [[image:image-20230513110214-6.png]]
433
434
Edwin Chen 13.1 435 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
436
Edwin Chen 12.1 437
Saxer Lin 26.2 438 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 439
Saxer Lin 26.2 440 (% style="width:1017px" %)
441 |**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
442 |**Value**|BAT|(% style="width:186px" %)(((
443 Temperature1(DS18B20)
444 (PC13)
445 )))|(% style="width:82px" %)(((
446 ADC
Edwin Chen 12.1 447
Saxer Lin 26.2 448 (PA4)
449 )))|(% style="width:210px" %)(((
Saxer Lin 36.1 450 Digital in(PB15) &
Edwin Chen 12.1 451
Saxer Lin 36.1 452 Digital Interrupt(PA8) 
Saxer Lin 26.2 453 )))|(% style="width:191px" %)Temperature2(DS18B20)
454 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)
455 (PB8)
Edwin Chen 12.1 456
457 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
458
Saxer Lin 39.2 459 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 460
Saxer Lin 39.1 461
Edwin Chen 13.1 462 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
463
Saxer Lin 26.2 464 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 465
466 Each HX711 need to be calibrated before used. User need to do below two steps:
467
468 1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
469 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
470 1. (((
Saxer Lin 26.2 471 Weight has 4 bytes, the unit is g.
Edwin Chen 12.1 472 )))
473
474 For example:
475
Saxer Lin 26.2 476 **AT+GETSENSORVALUE =0**
Edwin Chen 12.1 477
478 Response:  Weight is 401 g
479
480 Check the response of this command and adjust the value to match the real value for thing.
481
Saxer Lin 40.1 482 (% style="width:767px" %)
Edwin Chen 12.1 483 |=(((
484 **Size(bytes)**
Saxer Lin 40.1 485 )))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
486 |**Value**|BAT|(% style="width:193px" %)(((
Saxer Lin 36.1 487 Temperature(DS18B20)
Edwin Chen 12.1 488
Saxer Lin 26.2 489 (PC13)
490
491
Saxer Lin 40.1 492 )))|(% style="width:85px" %)(((
Saxer Lin 36.1 493 ADC
Saxer Lin 26.2 494
495 (PA4)
Saxer Lin 40.1 496 )))|(% style="width:186px" %)(((
Saxer Lin 36.1 497 Digital in(PB15) &
Saxer Lin 26.2 498
Saxer Lin 36.1 499 Digital Interrupt(PA8)
Saxer Lin 40.1 500 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 501
Edwin Chen 12.1 502 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
503
504
Edwin Chen 13.1 505 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
506
Edwin Chen 12.1 507 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
508
509 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
510
Saxer Lin 26.2 511 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 512
Saxer Lin 36.1 513 **Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
Edwin Chen 12.1 514
Saxer Lin 36.1 515 (% style="width:961px" %)
516 |=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
517 |**Value**|BAT|(% style="width:256px" %)(((
518 Temperature(DS18B20)
Edwin Chen 12.1 519
Saxer Lin 36.1 520 (PC13)
521 )))|(% style="width:108px" %)(((
522 ADC
523
524 (PA4)
525 )))|(% style="width:126px" %)(((
526 Digital in
527
528 (PB15)
529 )))|(% style="width:145px" %)(((
530 Count
531
532 (PA8)
533 )))
534
Edwin Chen 12.1 535 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
536
537
Edwin Chen 13.1 538 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
539
Saxer Lin 40.1 540 (% style="width:1108px" %)
Edwin Chen 12.1 541 |=(((
542 **Size(bytes)**
Saxer Lin 40.1 543 )))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
544 |**Value**|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 545 Temperature(DS18B20)
Edwin Chen 12.1 546
Saxer Lin 36.1 547 (PC13)
Saxer Lin 40.1 548 )))|(% style="width:83px" %)(((
Saxer Lin 36.1 549 ADC
550
551 (PA5)
Saxer Lin 40.1 552 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 553 Digital Interrupt1(PA8)
Saxer Lin 40.1 554 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 555
556 [[image:image-20230513111203-7.png||height="324" width="975"]]
557
Edwin Chen 13.1 558 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
559
Saxer Lin 40.1 560 (% style="width:922px" %)
Edwin Chen 12.1 561 |=(((
562 **Size(bytes)**
Saxer Lin 40.1 563 )))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
Saxer Lin 36.1 564 |**Value**|BAT|(% style="width:207px" %)(((
565 Temperature(DS18B20)
566
567 (PC13)
568 )))|(% style="width:94px" %)(((
569 ADC1
570
571 (PA4)
572 )))|(% style="width:198px" %)(((
573 Digital Interrupt(PB15)
574 )))|(% style="width:84px" %)(((
575 ADC2
576
577 (PA5)
Saxer Lin 40.1 578 )))|(% style="width:82px" %)(((
Saxer Lin 36.1 579 ADC3
580
581 (PA8)
Edwin Chen 12.1 582 )))
583
Saxer Lin 36.1 584 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 585
586
Edwin Chen 13.1 587 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
588
Saxer Lin 36.1 589 (% style="width:1010px" %)
Edwin Chen 12.1 590 |=(((
591 **Size(bytes)**
Saxer Lin 36.1 592 )))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
Edwin Chen 12.1 593 |**Value**|BAT|(((
Saxer Lin 36.1 594 Temperature1(DS18B20)
595
596 (PC13)
Edwin Chen 12.1 597 )))|(((
Saxer Lin 36.1 598 Temperature2(DS18B20)
599
600 (PB9)
Edwin Chen 12.1 601 )))|(((
Saxer Lin 36.1 602 Digital Interrupt
603
604 (PB15)
605 )))|(% style="width:193px" %)(((
606 Temperature3(DS18B20)
607
608 (PB8)
609 )))|(% style="width:78px" %)(((
610 Count1
611
612 (PA8)
613 )))|(% style="width:78px" %)(((
614 Count2
615
616 (PA4)
Edwin Chen 12.1 617 )))
618
Saxer Lin 36.1 619 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 620
621 **The newly added AT command is issued correspondingly:**
622
Saxer Lin 36.1 623 **~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
Edwin Chen 12.1 624
Saxer Lin 36.1 625 **~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
Edwin Chen 12.1 626
Saxer Lin 36.1 627 **~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
Edwin Chen 12.1 628
629 **AT+SETCNT=aa,bb** 
630
Saxer Lin 36.1 631 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 632
Saxer Lin 36.1 633 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 634
635
Edwin Chen 14.1 636
637 === 2.3.3  ​Decode payload ===
638
Edwin Chen 12.1 639 While using TTN V3 network, you can add the payload format to decode the payload.
640
641 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
642
643 The payload decoder function for TTN V3 are here:
644
Edwin Chen 14.1 645 SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 646
647
Edwin Chen 14.1 648 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 649
Edwin Chen 14.1 650 Check the battery voltage for SN50v3.
Edwin Chen 2.1 651
652 Ex1: 0x0B45 = 2885mV
653
654 Ex2: 0x0B49 = 2889mV
655
656
Edwin Chen 14.1 657 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 658
Saxer Lin 42.1 659 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 660
Edwin Chen 14.1 661 More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
662
663 **Connection:**
664
Saxer Lin 26.2 665 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 666
Edwin Chen 2.1 667 **Example**:
668
669 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
670
671 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
672
673 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
674
675
Edwin Chen 14.1 676 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 677
Saxer Lin 26.2 678 The digital input for pin PB15,
Edwin Chen 2.1 679
Saxer Lin 26.2 680 * When PB15 is high, the bit 1 of payload byte 6 is 1.
681 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 682
Saxer Lin 26.2 683 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
684 (((
Saxer Lin 36.1 685 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
686
687 **Note:**The maximum voltage input supports 3.6V.
Saxer Lin 43.1 688
689
Saxer Lin 26.2 690 )))
691
Edwin Chen 14.1 692 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 693
Saxer Lin 36.1 694 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 695
Saxer Lin 36.1 696 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 697
Saxer Lin 26.2 698 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 699
Saxer Lin 36.1 700 **Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
Edwin Chen 14.1 701
Saxer Lin 43.1 702
Edwin Chen 14.1 703 ==== 2.3.3.5 Digital Interrupt ====
704
Saxer Lin 36.1 705 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
Edwin Chen 14.1 706
707 **~ Interrupt connection method:**
708
Saxer Lin 36.1 709 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 710
711 **Example to use with door sensor :**
712
713 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
714
715 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
716
Saxer Lin 36.1 717 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 718
719 **~ Below is the installation example:**
720
Saxer Lin 36.1 721 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
Edwin Chen 14.1 722
723 * (((
Saxer Lin 36.1 724 One pin to SN50_v3's PA8 pin
Edwin Chen 14.1 725 )))
726 * (((
Saxer Lin 36.1 727 The other pin to SN50_v3's VDD pin
Edwin Chen 14.1 728 )))
729
Saxer Lin 36.1 730 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 731
732 Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
733
Saxer Lin 36.1 734 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 735
736 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
737
738 The above photos shows the two parts of the magnetic switch fitted to a door.
739
740 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
741
742 The command is:
743
Saxer Lin 36.1 744 **AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 745
746 Below shows some screen captures in TTN V3:
747
748 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
749
750 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
751
752 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
753
754
Saxer Lin 26.2 755 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 756
Saxer Lin 26.2 757 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 758
Saxer Lin 40.1 759 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 760
Saxer Lin 40.1 761 Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
Edwin Chen 14.1 762
763 Below is the connection to SHT20/ SHT31. The connection is as below:
764
765
Saxer Lin 40.1 766 [[image:image-20230513103633-3.png||height="448" width="716"]]
Saxer Lin 36.1 767
Edwin Chen 14.1 768 The device will be able to get the I2C sensor data now and upload to IoT Server.
769
770 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
771
772 Convert the read byte to decimal and divide it by ten.
773
Edwin Chen 2.1 774 **Example:**
775
Edwin Chen 14.1 776 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 777
Edwin Chen 14.1 778 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 779
Edwin Chen 14.1 780 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 781
782
Edwin Chen 14.1 783 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 784
Edwin Chen 14.1 785 Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
786
787
788 ==== 2.3.3.8 Ultrasonic Sensor ====
789
Saxer Lin 26.2 790 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 791
Saxer Lin 36.1 792 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 793
Saxer Lin 36.1 794 The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
795
Edwin Chen 14.1 796 The picture below shows the connection:
797
Saxer Lin 36.1 798 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 799
Saxer Lin 36.1 800 Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 801
802 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
803
804 **Example:**
805
806 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
807
808
809
810 ==== 2.3.3.9  Battery Output - BAT pin ====
811
812 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
813
814
815 ==== 2.3.3.10  +5V Output ====
816
817 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
818
819 The 5V output time can be controlled by AT Command.
820
821 **AT+5VT=1000**
822
823 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
824
825 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
826
827
828
829 ==== 2.3.3.11  BH1750 Illumination Sensor ====
830
831 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
832
Saxer Lin 40.1 833 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 834
Saxer Lin 40.1 835 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 836
837
838 ==== 2.3.3.12  Working MOD ====
839
840 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
841
842 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
843
844 Case 7^^th^^ Byte >> 2 & 0x1f:
845
846 * 0: MOD1
847 * 1: MOD2
848 * 2: MOD3
849 * 3: MOD4
850 * 4: MOD5
851 * 5: MOD6
Saxer Lin 36.1 852 * 6: MOD7
853 * 7: MOD8
854 * 8: MOD9
Edwin Chen 14.1 855
Saxer Lin 43.1 856 == ==
857
Edwin Chen 2.1 858 == 2.4 Payload Decoder file ==
859
860
861 In TTN, use can add a custom payload so it shows friendly reading
862
863 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
864
Saxer Lin 40.1 865 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 866
867
868
Edwin Chen 15.1 869 == 2.5 Frequency Plans ==
Edwin Chen 2.1 870
871
Edwin Chen 15.1 872 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 2.1 873
874 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
875
876
Edwin Chen 16.1 877 = 3. Configure SN50v3-LB =
Edwin Chen 2.1 878
879 == 3.1 Configure Methods ==
880
881
Edwin Chen 16.1 882 SN50v3-LB supports below configure method:
Edwin Chen 2.1 883
884 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
885 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
886 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
887
888 == 3.2 General Commands ==
889
890
891 These commands are to configure:
892
893 * General system settings like: uplink interval.
894 * LoRaWAN protocol & radio related command.
895
896 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
897
898 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
899
900
Edwin Chen 16.1 901 == 3.3 Commands special design for SN50v3-LB ==
Edwin Chen 2.1 902
903
904 These commands only valid for S31x-LB, as below:
905
906
907 === 3.3.1 Set Transmit Interval Time ===
908
909 Feature: Change LoRaWAN End Node Transmit Interval.
910
911 (% style="color:blue" %)**AT Command: AT+TDC**
912
913 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
914 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
915 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
916 30000
917 OK
918 the interval is 30000ms = 30s
919 )))
920 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
921 OK
922 Set transmit interval to 60000ms = 60 seconds
923 )))
924
925 (% style="color:blue" %)**Downlink Command: 0x01**
926
927 Format: Command Code (0x01) followed by 3 bytes time value.
928
929 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
930
931 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
932 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
933
Saxer Lin 43.1 934 === ===
Saxer Lin 40.1 935
Edwin Chen 2.1 936 === 3.3.2 Get Device Status ===
937
Saxer Lin 40.1 938 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 939
940 (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
941
942 Sensor will upload Device Status via FPORT=5. See payload section for detail.
943
944
Saxer Lin 36.1 945 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 946
947 Feature, Set Interrupt mode for GPIO_EXIT.
948
Saxer Lin 36.1 949 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
Edwin Chen 2.1 950
951 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
952 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
Saxer Lin 36.1 953 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
Edwin Chen 2.1 954 0
955 OK
956 the mode is 0 =Disable Interrupt
957 )))
Saxer Lin 36.1 958 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
Edwin Chen 2.1 959 Set Transmit Interval
960 0. (Disable Interrupt),
961 ~1. (Trigger by rising and falling edge)
962 2. (Trigger by falling edge)
963 3. (Trigger by rising edge)
964 )))|(% style="width:157px" %)OK
Saxer Lin 36.1 965 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
966 Set Transmit Interval
Edwin Chen 2.1 967
Saxer Lin 36.1 968 trigger by rising edge.
969 )))|(% style="width:157px" %)OK
970 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
971
Edwin Chen 2.1 972 (% style="color:blue" %)**Downlink Command: 0x06**
973
974 Format: Command Code (0x06) followed by 3 bytes.
975
976 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
977
Saxer Lin 36.1 978 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
979 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
980 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
981 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
Edwin Chen 2.1 982
Saxer Lin 43.1 983 === ===
Saxer Lin 40.1 984
Saxer Lin 36.1 985 === 3.3.4 Set Power Output Duration ===
986
987 Control the output duration 5V . Before each sampling, device will
988
989 ~1. first enable the power output to external sensor,
990
991 2. keep it on as per duration, read sensor value and construct uplink payload
992
993 3. final, close the power output.
994
995 (% style="color:blue" %)**AT Command: AT+5VT**
996
997 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
998 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
999 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1000 500(default)
1001
1002 OK
1003 )))
1004 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1005 Close after a delay of 1000 milliseconds.
1006 )))|(% style="width:157px" %)OK
1007
1008 (% style="color:blue" %)**Downlink Command: 0x07**
1009
1010 Format: Command Code (0x07) followed by 2 bytes.
1011
1012 The first and second bytes are the time to turn on.
1013
Saxer Lin 40.1 1014 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1015 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 1016
Saxer Lin 43.1 1017 === ===
Saxer Lin 40.1 1018
Saxer Lin 36.1 1019 === 3.3.5 Set Weighing parameters ===
1020
Saxer Lin 37.1 1021 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 1022
1023 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1024
1025 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1026 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
Saxer Lin 37.1 1027 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1028 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1029 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 1030
1031 (% style="color:blue" %)**Downlink Command: 0x08**
1032
Saxer Lin 37.1 1033 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 1034
Saxer Lin 37.1 1035 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 1036
Saxer Lin 37.1 1037 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 1038
Saxer Lin 37.1 1039 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1040 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1041 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1042
Saxer Lin 43.1 1043 === ===
Saxer Lin 40.1 1044
Saxer Lin 36.1 1045 === 3.3.6 Set Digital pulse count value ===
1046
1047 Feature: Set the pulse count value.
1048
Saxer Lin 37.1 1049 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1050
Saxer Lin 36.1 1051 (% style="color:blue" %)**AT Command: AT+SETCNT**
1052
1053 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1054 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1055 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1056 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1057
1058 (% style="color:blue" %)**Downlink Command: 0x09**
1059
1060 Format: Command Code (0x09) followed by 5 bytes.
1061
1062 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1063
1064 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 1065 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 1066
Saxer Lin 43.1 1067 === ===
Saxer Lin 40.1 1068
Saxer Lin 36.1 1069 === 3.3.7 Set Workmode ===
1070
Saxer Lin 37.1 1071 Feature: Switch working mode.
Saxer Lin 36.1 1072
1073 (% style="color:blue" %)**AT Command: AT+MOD**
1074
1075 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1076 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1077 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1078 OK
1079 )))
1080 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1081 OK
1082
1083 Attention:Take effect after ATZ
1084 )))
1085
1086 (% style="color:blue" %)**Downlink Command: 0x0A**
1087
1088 Format: Command Code (0x0A) followed by 1 bytes.
1089
1090 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1091 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1092
Saxer Lin 43.1 1093 = =
Saxer Lin 40.1 1094
Edwin Chen 2.1 1095 = 4. Battery & Power Consumption =
1096
1097
Edwin Chen 11.1 1098 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1099
1100 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1101
1102
1103 = 5. OTA Firmware update =
1104
1105
1106 (% class="wikigeneratedid" %)
Edwin Chen 11.1 1107 User can change firmware SN50v3-LB to:
Edwin Chen 2.1 1108
1109 * Change Frequency band/ region.
1110 * Update with new features.
1111 * Fix bugs.
1112
1113 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1114
1115
1116 Methods to Update Firmware:
1117
1118 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1119 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1120
1121 = 6. FAQ =
1122
Edwin Chen 17.1 1123 == 6.1 Where can i find source code of SN50v3-LB? ==
Edwin Chen 2.1 1124
Edwin Chen 17.1 1125 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1126 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
Edwin Chen 2.1 1127
1128 = 7. Order Info =
1129
1130
Edwin Chen 10.1 1131 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
Edwin Chen 2.1 1132
1133 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1134
Edwin Chen 2.1 1135 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1136 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1137 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1138 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1139 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1140 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1141 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1142 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1143
Edwin Chen 10.1 1144 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1145
Edwin Chen 10.1 1146 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1147 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1148 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1149 * (% style="color:red" %)**NH**(%%): No Hole
1150
Edwin Chen 2.1 1151 = 8. ​Packing Info =
1152
1153 (% style="color:#037691" %)**Package Includes**:
1154
Edwin Chen 10.1 1155 * SN50v3-LB LoRaWAN Generic Node
Edwin Chen 2.1 1156
1157 (% style="color:#037691" %)**Dimension and weight**:
1158
1159 * Device Size: cm
1160 * Device Weight: g
1161 * Package Size / pcs : cm
1162 * Weight / pcs : g
1163
1164 = 9. Support =
1165
1166
1167 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 41.4 1168 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]