Version 43.52 by Xiaoling on 2023/05/16 16:10

Hide last authors
Xiaoling 41.2 1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
Edwin Chen 2.1 3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
Edwin Chen 5.1 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
Edwin Chen 2.1 18
Xiaoling 43.2 19
Edwin Chen 4.1 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 21
Edwin Chen 4.1 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
Edwin Chen 2.1 23
Edwin Chen 4.1 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
Edwin Chen 2.1 25
Edwin Chen 4.1 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 27
Edwin Chen 4.1 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 29
Edwin Chen 4.1 30
Edwin Chen 2.1 31 == 1.2 ​Features ==
32
Xiaoling 43.44 33
Edwin Chen 2.1 34 * LoRaWAN 1.0.3 Class A
35 * Ultra-low power consumption
Edwin Chen 5.1 36 * Open-Source hardware/software
Edwin Chen 2.1 37 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
38 * Support Bluetooth v5.1 and LoRaWAN remote configure
39 * Support wireless OTA update firmware
40 * Uplink on periodically
41 * Downlink to change configure
42 * 8500mAh Battery for long term use
43
44 == 1.3 Specification ==
45
Xiaoling 43.4 46
Edwin Chen 2.1 47 (% style="color:#037691" %)**Common DC Characteristics:**
48
49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
50 * Operating Temperature: -40 ~~ 85°C
51
Edwin Chen 5.1 52 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 53
Edwin Chen 5.1 54 * Battery output (2.6v ~~ 3.6v depends on battery)
55 * +5v controllable output
56 * 3 x Interrupt or Digital IN/OUT pins
57 * 3 x one-wire interfaces
58 * 1 x UART Interface
59 * 1 x I2C Interface
Edwin Chen 2.1 60
61 (% style="color:#037691" %)**LoRa Spec:**
62
63 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
64 * Max +22 dBm constant RF output vs.
65 * RX sensitivity: down to -139 dBm.
66 * Excellent blocking immunity
67
68 (% style="color:#037691" %)**Battery:**
69
70 * Li/SOCI2 un-chargeable battery
71 * Capacity: 8500mAh
72 * Self-Discharge: <1% / Year @ 25°C
73 * Max continuously current: 130mA
74 * Max boost current: 2A, 1 second
75
76 (% style="color:#037691" %)**Power Consumption**
77
78 * Sleep Mode: 5uA @ 3.3v
79 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
80
81 == 1.4 Sleep mode and working mode ==
82
Xiaoling 43.4 83
Edwin Chen 2.1 84 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
85
86 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
87
88
89 == 1.5 Button & LEDs ==
90
91
92 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
93
94
95 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
96 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
97 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
98 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
99 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
100 )))
101 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
102 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
103 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
104 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
105 )))
106 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
107
108 == 1.6 BLE connection ==
109
110
Edwin Chen 5.1 111 SN50v3-LB supports BLE remote configure.
Edwin Chen 2.1 112
113
114 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
115
116 * Press button to send an uplink
117 * Press button to active device.
118 * Device Power on or reset.
119
120 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
121
122
Edwin Chen 6.1 123 == 1.7 Pin Definitions ==
Edwin Chen 2.1 124
125
Saxer Lin 36.1 126 [[image:image-20230513102034-2.png]]
Edwin Chen 2.1 127
128
129 == 1.8 Mechanical ==
130
131
132 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
133
134 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
135
136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137
138
Edwin Chen 5.1 139 == Hole Option ==
140
Xiaoling 43.4 141
Edwin Chen 5.1 142 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
143
144 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
145
146 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
147
148
Edwin Chen 10.1 149 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
Edwin Chen 2.1 150
151 == 2.1 How it works ==
152
153
Edwin Chen 11.2 154 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 155
156
157 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
158
159
160 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
161
162 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
163
164
Edwin Chen 11.2 165 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
Edwin Chen 2.1 166
Edwin Chen 11.2 167 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 168
Edwin Chen 11.2 169 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 2.1 170
171
172 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
173
174
175 (% style="color:blue" %)**Register the device**
176
177 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
178
179
180 (% style="color:blue" %)**Add APP EUI and DEV EUI**
181
182 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
183
184
185 (% style="color:blue" %)**Add APP EUI in the application**
186
187
188 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
189
190
191 (% style="color:blue" %)**Add APP KEY**
192
193 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
194
195
Edwin Chen 11.2 196 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
Edwin Chen 2.1 197
198
Edwin Chen 11.2 199 Press the button for 5 seconds to activate the SN50v3-LB.
Edwin Chen 2.1 200
201 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
202
203 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
204
205
206 == 2.3 ​Uplink Payload ==
207
208 === 2.3.1 Device Status, FPORT~=5 ===
209
210
Edwin Chen 11.2 211 Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 212
213 The Payload format is as below.
214
215
216 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
217 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
218 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
219 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
220
221 Example parse in TTNv3
222
223
Edwin Chen 11.2 224 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
Edwin Chen 2.1 225
226 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
227
228 (% style="color:#037691" %)**Frequency Band**:
229
230 *0x01: EU868
231
232 *0x02: US915
233
234 *0x03: IN865
235
236 *0x04: AU915
237
238 *0x05: KZ865
239
240 *0x06: RU864
241
242 *0x07: AS923
243
244 *0x08: AS923-1
245
246 *0x09: AS923-2
247
248 *0x0a: AS923-3
249
250 *0x0b: CN470
251
252 *0x0c: EU433
253
254 *0x0d: KR920
255
256 *0x0e: MA869
257
258
259 (% style="color:#037691" %)**Sub-Band**:
260
261 AU915 and US915:value 0x00 ~~ 0x08
262
263 CN470: value 0x0B ~~ 0x0C
264
265 Other Bands: Always 0x00
266
267
268 (% style="color:#037691" %)**Battery Info**:
269
270 Check the battery voltage.
271
272 Ex1: 0x0B45 = 2885mV
273
274 Ex2: 0x0B49 = 2889mV
275
276
Edwin Chen 12.1 277 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 278
279
Edwin Chen 12.1 280 SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
281
282 For example:
283
284 **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
285
286
Edwin Chen 13.1 287 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 288
289 1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
Edwin Chen 13.1 290 1. All modes share the same Payload Explanation from HERE.
291 1. By default, the device will send an uplink message every 20 minutes.
Edwin Chen 12.1 292
Edwin Chen 13.1 293 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 294
Xiaoling 43.5 295
Edwin Chen 12.1 296 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
297
Xiaoling 43.5 298 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 299 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
Saxer Lin 40.1 300 |**Value**|Bat|(% style="width:191px" %)(((
Xiaoling 43.12 301 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 302 )))|(% style="width:78px" %)(((
Xiaoling 43.12 303 ADC(PA4)
Saxer Lin 26.2 304 )))|(% style="width:216px" %)(((
Xiaoling 43.13 305 Digital in(PB15)&Digital Interrupt(PA8)
Saxer Lin 40.1 306 )))|(% style="width:308px" %)(((
Xiaoling 43.12 307 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 308 )))|(% style="width:154px" %)(((
Xiaoling 43.12 309 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 310 )))
311
Edwin Chen 12.1 312 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
313
314
Xiaoling 43.45 315
Edwin Chen 13.1 316 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
317
Xiaoling 43.45 318
Edwin Chen 12.1 319 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
320
Xiaoling 43.14 321 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 322 |(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
Saxer Lin 40.1 323 |**Value**|BAT|(% style="width:196px" %)(((
Xiaoling 43.16 324 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 325 )))|(% style="width:87px" %)(((
Xiaoling 43.16 326 ADC(PA4)
Saxer Lin 40.1 327 )))|(% style="width:189px" %)(((
Xiaoling 43.16 328 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 329 )))|(% style="width:208px" %)(((
Xiaoling 43.16 330 Distance measure by:1) LIDAR-Lite V3HP
331 Or 2) Ultrasonic Sensor
Saxer Lin 40.1 332 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 333
334 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
335
Xiaoling 43.45 336
Xiaoling 43.17 337 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
Edwin Chen 12.1 338
Saxer Lin 26.2 339 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 340
Xiaoling 43.45 341
Xiaoling 43.17 342 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
Edwin Chen 12.1 343
Saxer Lin 36.1 344 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
345
Saxer Lin 26.2 346 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 347
Xiaoling 43.45 348
Edwin Chen 12.1 349 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
350
Xiaoling 43.19 351 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 352 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
Saxer Lin 40.1 353 |**Value**|BAT|(% style="width:183px" %)(((
Xiaoling 43.19 354 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 355 )))|(% style="width:173px" %)(((
Xiaoling 43.19 356 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 357 )))|(% style="width:84px" %)(((
Xiaoling 43.19 358 ADC(PA4)
Saxer Lin 40.1 359 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 360 Distance measure by:1)TF-Mini plus LiDAR
Xiaoling 43.22 361 Or 
362 2) TF-Luna LiDAR
Saxer Lin 40.1 363 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 364
365 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
366
Xiaoling 43.45 367
Edwin Chen 12.1 368 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
369
Saxer Lin 36.1 370 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
Edwin Chen 12.1 371
Saxer Lin 26.2 372 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 373
Xiaoling 43.45 374
Edwin Chen 12.1 375 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
376
Saxer Lin 36.1 377 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
Edwin Chen 12.1 378
Saxer Lin 36.1 379 [[image:image-20230513105207-4.png||height="469" width="802"]]
Edwin Chen 12.1 380
381
Edwin Chen 13.1 382 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
383
Xiaoling 43.45 384
Edwin Chen 12.1 385 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
386
Xiaoling 43.21 387 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.25 388 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
389 **Size(bytes)**
Xiaoling 43.24 390 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
Saxer Lin 26.2 391 |**Value**|(% style="width:68px" %)(((
Xiaoling 43.23 392 ADC1(PA4)
Saxer Lin 26.2 393 )))|(% style="width:75px" %)(((
Xiaoling 43.23 394 ADC2(PA5)
Saxer Lin 36.1 395 )))|(((
Xiaoling 43.23 396 ADC3(PA8)
Saxer Lin 36.1 397 )))|(((
398 Digital Interrupt(PB15)
399 )))|(% style="width:304px" %)(((
Xiaoling 43.23 400 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 36.1 401 )))|(% style="width:163px" %)(((
Xiaoling 43.23 402 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 403 )))|(% style="width:53px" %)Bat
404
405 [[image:image-20230513110214-6.png]]
406
407
Edwin Chen 13.1 408 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
409
Edwin Chen 12.1 410
Saxer Lin 26.2 411 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 412
Xiaoling 43.26 413 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 414 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
Saxer Lin 26.2 415 |**Value**|BAT|(% style="width:186px" %)(((
Xiaoling 43.27 416 Temperature1(DS18B20)(PC13)
Saxer Lin 26.2 417 )))|(% style="width:82px" %)(((
Xiaoling 43.27 418 ADC(PA4)
Saxer Lin 26.2 419 )))|(% style="width:210px" %)(((
Xiaoling 43.27 420 Digital in(PB15) & Digital Interrupt(PA8) 
Saxer Lin 26.2 421 )))|(% style="width:191px" %)Temperature2(DS18B20)
Xiaoling 43.27 422 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
Edwin Chen 12.1 423
424 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
425
Saxer Lin 39.2 426 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 427
Saxer Lin 39.1 428
Xiaoling 43.45 429
Edwin Chen 13.1 430 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
431
Xiaoling 43.45 432
Saxer Lin 26.2 433 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 434
435 Each HX711 need to be calibrated before used. User need to do below two steps:
436
437 1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
438 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
439 1. (((
Saxer Lin 26.2 440 Weight has 4 bytes, the unit is g.
Edwin Chen 12.1 441 )))
442
443 For example:
444
Saxer Lin 26.2 445 **AT+GETSENSORVALUE =0**
Edwin Chen 12.1 446
447 Response:  Weight is 401 g
448
449 Check the response of this command and adjust the value to match the real value for thing.
450
Xiaoling 43.29 451 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
452 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 453 **Size(bytes)**
Xiaoling 43.30 454 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
Saxer Lin 40.1 455 |**Value**|BAT|(% style="width:193px" %)(((
Saxer Lin 36.1 456 Temperature(DS18B20)
Saxer Lin 26.2 457 (PC13)
Saxer Lin 40.1 458 )))|(% style="width:85px" %)(((
Xiaoling 43.31 459 ADC(PA4)
Saxer Lin 40.1 460 )))|(% style="width:186px" %)(((
Saxer Lin 36.1 461 Digital in(PB15) &
462 Digital Interrupt(PA8)
Saxer Lin 40.1 463 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 464
Edwin Chen 12.1 465 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
466
467
Xiaoling 43.45 468
Edwin Chen 13.1 469 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
470
Xiaoling 43.45 471
Edwin Chen 12.1 472 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
473
474 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
475
Saxer Lin 26.2 476 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 477
Xiaoling 43.45 478 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
Edwin Chen 12.1 479
Xiaoling 43.38 480 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.32 481 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
Saxer Lin 36.1 482 |**Value**|BAT|(% style="width:256px" %)(((
Xiaoling 43.31 483 Temperature(DS18B20)(PC13)
Saxer Lin 36.1 484 )))|(% style="width:108px" %)(((
Xiaoling 43.31 485 ADC(PA4)
Saxer Lin 36.1 486 )))|(% style="width:126px" %)(((
Xiaoling 43.31 487 Digital in(PB15)
Saxer Lin 36.1 488 )))|(% style="width:145px" %)(((
Xiaoling 43.31 489 Count(PA8)
Saxer Lin 36.1 490 )))
491
Edwin Chen 12.1 492 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
493
494
Xiaoling 43.45 495
Edwin Chen 13.1 496 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
497
Xiaoling 43.45 498
Xiaoling 43.38 499 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.33 500 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 501 **Size(bytes)**
Xiaoling 43.34 502 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
Saxer Lin 40.1 503 |**Value**|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 504 Temperature(DS18B20)
505 (PC13)
Saxer Lin 40.1 506 )))|(% style="width:83px" %)(((
Xiaoling 43.35 507 ADC(PA5)
Saxer Lin 40.1 508 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 509 Digital Interrupt1(PA8)
Saxer Lin 40.1 510 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 511
512 [[image:image-20230513111203-7.png||height="324" width="975"]]
513
Xiaoling 43.45 514
Edwin Chen 13.1 515 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
516
Xiaoling 43.45 517
Xiaoling 43.38 518 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.35 519 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 520 **Size(bytes)**
Xiaoling 43.37 521 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
Saxer Lin 36.1 522 |**Value**|BAT|(% style="width:207px" %)(((
523 Temperature(DS18B20)
524 (PC13)
525 )))|(% style="width:94px" %)(((
Xiaoling 43.36 526 ADC1(PA4)
Saxer Lin 36.1 527 )))|(% style="width:198px" %)(((
528 Digital Interrupt(PB15)
529 )))|(% style="width:84px" %)(((
Xiaoling 43.36 530 ADC2(PA5)
Saxer Lin 40.1 531 )))|(% style="width:82px" %)(((
Xiaoling 43.36 532 ADC3(PA8)
Edwin Chen 12.1 533 )))
534
Saxer Lin 36.1 535 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 536
537
Edwin Chen 13.1 538 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
539
Xiaoling 43.45 540
Xiaoling 43.38 541 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
542 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 543 **Size(bytes)**
Xiaoling 43.39 544 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
Edwin Chen 12.1 545 |**Value**|BAT|(((
Saxer Lin 36.1 546 Temperature1(DS18B20)
547 (PC13)
Edwin Chen 12.1 548 )))|(((
Saxer Lin 36.1 549 Temperature2(DS18B20)
550 (PB9)
Edwin Chen 12.1 551 )))|(((
Saxer Lin 36.1 552 Digital Interrupt
553 (PB15)
554 )))|(% style="width:193px" %)(((
555 Temperature3(DS18B20)
556 (PB8)
557 )))|(% style="width:78px" %)(((
Xiaoling 43.39 558 Count1(PA8)
Saxer Lin 36.1 559 )))|(% style="width:78px" %)(((
Xiaoling 43.39 560 Count2(PA4)
Edwin Chen 12.1 561 )))
562
Saxer Lin 36.1 563 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 564
Xiaoling 43.40 565 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
Edwin Chen 12.1 566
Xiaoling 43.44 567 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
Edwin Chen 12.1 568
Xiaoling 43.44 569 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
Edwin Chen 12.1 570
Xiaoling 43.44 571 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
Edwin Chen 12.1 572
573
Xiaoling 43.41 574 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
575
Saxer Lin 36.1 576 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 577
Saxer Lin 36.1 578 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 579
580
Edwin Chen 14.1 581 === 2.3.3  ​Decode payload ===
582
Xiaoling 43.45 583
Edwin Chen 12.1 584 While using TTN V3 network, you can add the payload format to decode the payload.
585
586 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
587
588 The payload decoder function for TTN V3 are here:
589
Edwin Chen 14.1 590 SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 591
592
Edwin Chen 14.1 593 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 594
Xiaoling 43.45 595
Edwin Chen 14.1 596 Check the battery voltage for SN50v3.
Edwin Chen 2.1 597
598 Ex1: 0x0B45 = 2885mV
599
600 Ex2: 0x0B49 = 2889mV
601
602
Edwin Chen 14.1 603 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 604
Xiaoling 43.45 605
Saxer Lin 42.1 606 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 607
Xiaoling 43.45 608 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
Edwin Chen 14.1 609
Xiaoling 43.41 610 (% style="color:blue" %)**Connection:**
Edwin Chen 14.1 611
Saxer Lin 26.2 612 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 613
Xiaoling 43.46 614
Xiaoling 43.41 615 (% style="color:blue" %)**Example**:
Edwin Chen 2.1 616
617 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
618
619 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
620
621 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
622
623
Edwin Chen 14.1 624 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 625
Xiaoling 43.46 626
Saxer Lin 26.2 627 The digital input for pin PB15,
Edwin Chen 2.1 628
Saxer Lin 26.2 629 * When PB15 is high, the bit 1 of payload byte 6 is 1.
630 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 631
Saxer Lin 26.2 632 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
633 (((
Saxer Lin 36.1 634 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
635
Xiaoling 43.46 636 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
637
638
Saxer Lin 26.2 639 )))
640
Edwin Chen 14.1 641 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 642
Xiaoling 43.46 643
Saxer Lin 36.1 644 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 645
Saxer Lin 36.1 646 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 647
Saxer Lin 26.2 648 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 649
Xiaoling 43.46 650 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
Edwin Chen 14.1 651
Saxer Lin 43.1 652
Edwin Chen 14.1 653 ==== 2.3.3.5 Digital Interrupt ====
654
Xiaoling 43.46 655
Saxer Lin 36.1 656 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
Edwin Chen 14.1 657
Xiaoling 43.44 658 (% style="color:blue" %)** Interrupt connection method:**
Edwin Chen 14.1 659
Saxer Lin 36.1 660 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 661
Xiaoling 43.46 662
Xiaoling 43.8 663 (% style="color:blue" %)**Example to use with door sensor :**
Edwin Chen 14.1 664
665 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
666
667 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
668
Saxer Lin 36.1 669 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 670
671
Xiaoling 43.46 672 (% style="color:blue" %)**Below is the installation example:**
673
Saxer Lin 36.1 674 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
Edwin Chen 14.1 675
676 * (((
Saxer Lin 36.1 677 One pin to SN50_v3's PA8 pin
Edwin Chen 14.1 678 )))
679 * (((
Saxer Lin 36.1 680 The other pin to SN50_v3's VDD pin
Edwin Chen 14.1 681 )))
682
Saxer Lin 36.1 683 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 684
Xiaoling 43.46 685 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
Edwin Chen 14.1 686
Saxer Lin 36.1 687 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 688
689 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
690
691 The above photos shows the two parts of the magnetic switch fitted to a door.
692
693 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
694
695 The command is:
696
Xiaoling 43.44 697 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 698
699 Below shows some screen captures in TTN V3:
700
701 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
702
Xiaoling 43.47 703
Edwin Chen 14.1 704 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
705
706 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
707
708
Saxer Lin 26.2 709 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 710
Xiaoling 43.47 711
Saxer Lin 26.2 712 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 713
Saxer Lin 40.1 714 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 715
Saxer Lin 40.1 716 Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
Edwin Chen 14.1 717
718 Below is the connection to SHT20/ SHT31. The connection is as below:
719
720
Saxer Lin 40.1 721 [[image:image-20230513103633-3.png||height="448" width="716"]]
Saxer Lin 36.1 722
Edwin Chen 14.1 723 The device will be able to get the I2C sensor data now and upload to IoT Server.
724
725 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
726
727 Convert the read byte to decimal and divide it by ten.
728
Edwin Chen 2.1 729 **Example:**
730
Edwin Chen 14.1 731 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 732
Edwin Chen 14.1 733 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 734
Edwin Chen 14.1 735 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 736
737
Edwin Chen 14.1 738 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 739
Xiaoling 43.48 740
Xiaoling 43.42 741 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
Edwin Chen 14.1 742
743
744 ==== 2.3.3.8 Ultrasonic Sensor ====
745
Xiaoling 43.48 746
Saxer Lin 26.2 747 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 748
Saxer Lin 36.1 749 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 750
Xiaoling 43.44 751 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
Saxer Lin 36.1 752
Edwin Chen 14.1 753 The picture below shows the connection:
754
Saxer Lin 36.1 755 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 756
Xiaoling 43.50 757
Xiaoling 43.44 758 Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 759
760 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
761
762 **Example:**
763
764 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
765
766
767 ==== 2.3.3.9  Battery Output - BAT pin ====
768
Xiaoling 43.50 769
Edwin Chen 14.1 770 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
771
772
773 ==== 2.3.3.10  +5V Output ====
774
Xiaoling 43.50 775
Edwin Chen 14.1 776 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
777
778 The 5V output time can be controlled by AT Command.
779
Xiaoling 43.9 780 (% style="color:blue" %)**AT+5VT=1000**
Edwin Chen 14.1 781
782 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
783
784 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
785
786
787 ==== 2.3.3.11  BH1750 Illumination Sensor ====
788
Xiaoling 43.50 789
Edwin Chen 14.1 790 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
791
Saxer Lin 40.1 792 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 793
Xiaoling 43.51 794
Saxer Lin 40.1 795 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 796
797
798 ==== 2.3.3.12  Working MOD ====
799
Xiaoling 43.51 800
Edwin Chen 14.1 801 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
802
803 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
804
805 Case 7^^th^^ Byte >> 2 & 0x1f:
806
807 * 0: MOD1
808 * 1: MOD2
809 * 2: MOD3
810 * 3: MOD4
811 * 4: MOD5
812 * 5: MOD6
Saxer Lin 36.1 813 * 6: MOD7
814 * 7: MOD8
815 * 8: MOD9
Edwin Chen 14.1 816
Xiaoling 43.51 817
818
Edwin Chen 2.1 819 == 2.4 Payload Decoder file ==
820
821
822 In TTN, use can add a custom payload so it shows friendly reading
823
824 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
825
Saxer Lin 40.1 826 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 827
828
Edwin Chen 15.1 829 == 2.5 Frequency Plans ==
Edwin Chen 2.1 830
831
Edwin Chen 15.1 832 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 2.1 833
834 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
835
836
Edwin Chen 16.1 837 = 3. Configure SN50v3-LB =
Edwin Chen 2.1 838
839 == 3.1 Configure Methods ==
840
841
Edwin Chen 16.1 842 SN50v3-LB supports below configure method:
Edwin Chen 2.1 843
844 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
845 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
846 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
847
Xiaoling 43.51 848
849
Edwin Chen 2.1 850 == 3.2 General Commands ==
851
852
853 These commands are to configure:
854
855 * General system settings like: uplink interval.
856 * LoRaWAN protocol & radio related command.
857
858 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
859
860 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
861
862
Edwin Chen 16.1 863 == 3.3 Commands special design for SN50v3-LB ==
Edwin Chen 2.1 864
865
866 These commands only valid for S31x-LB, as below:
867
868
869 === 3.3.1 Set Transmit Interval Time ===
870
Xiaoling 43.51 871
Edwin Chen 2.1 872 Feature: Change LoRaWAN End Node Transmit Interval.
873
874 (% style="color:blue" %)**AT Command: AT+TDC**
875
876 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
877 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
878 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
879 30000
880 OK
881 the interval is 30000ms = 30s
882 )))
883 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
884 OK
885 Set transmit interval to 60000ms = 60 seconds
886 )))
887
888 (% style="color:blue" %)**Downlink Command: 0x01**
889
890 Format: Command Code (0x01) followed by 3 bytes time value.
891
892 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
893
894 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
895 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
896
Xiaoling 43.52 897
898
Edwin Chen 2.1 899 === 3.3.2 Get Device Status ===
900
Xiaoling 43.52 901
Saxer Lin 40.1 902 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 903
904 (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
905
906 Sensor will upload Device Status via FPORT=5. See payload section for detail.
907
908
Saxer Lin 36.1 909 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 910
Xiaoling 43.52 911
Edwin Chen 2.1 912 Feature, Set Interrupt mode for GPIO_EXIT.
913
Saxer Lin 36.1 914 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
Edwin Chen 2.1 915
916 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
917 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
Saxer Lin 36.1 918 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
Edwin Chen 2.1 919 0
920 OK
921 the mode is 0 =Disable Interrupt
922 )))
Saxer Lin 36.1 923 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
Edwin Chen 2.1 924 Set Transmit Interval
925 0. (Disable Interrupt),
926 ~1. (Trigger by rising and falling edge)
927 2. (Trigger by falling edge)
928 3. (Trigger by rising edge)
929 )))|(% style="width:157px" %)OK
Saxer Lin 36.1 930 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
931 Set Transmit Interval
Edwin Chen 2.1 932
Saxer Lin 36.1 933 trigger by rising edge.
934 )))|(% style="width:157px" %)OK
935 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
936
Edwin Chen 2.1 937 (% style="color:blue" %)**Downlink Command: 0x06**
938
939 Format: Command Code (0x06) followed by 3 bytes.
940
941 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
942
Saxer Lin 36.1 943 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
944 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
945 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
946 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
Edwin Chen 2.1 947
Xiaoling 43.52 948
949
Saxer Lin 36.1 950 === 3.3.4 Set Power Output Duration ===
951
Xiaoling 43.52 952
Saxer Lin 36.1 953 Control the output duration 5V . Before each sampling, device will
954
955 ~1. first enable the power output to external sensor,
956
957 2. keep it on as per duration, read sensor value and construct uplink payload
958
959 3. final, close the power output.
960
961 (% style="color:blue" %)**AT Command: AT+5VT**
962
963 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
964 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
965 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
966 500(default)
967 OK
968 )))
969 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
970 Close after a delay of 1000 milliseconds.
971 )))|(% style="width:157px" %)OK
972
973 (% style="color:blue" %)**Downlink Command: 0x07**
974
975 Format: Command Code (0x07) followed by 2 bytes.
976
977 The first and second bytes are the time to turn on.
978
Saxer Lin 40.1 979 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
980 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 981
Xiaoling 43.52 982
983
Saxer Lin 36.1 984 === 3.3.5 Set Weighing parameters ===
985
Xiaoling 43.52 986
Saxer Lin 37.1 987 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 988
989 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
990
991 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
992 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
Saxer Lin 37.1 993 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
994 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
995 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 996
997 (% style="color:blue" %)**Downlink Command: 0x08**
998
Saxer Lin 37.1 999 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 1000
Saxer Lin 37.1 1001 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 1002
Saxer Lin 37.1 1003 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 1004
Saxer Lin 37.1 1005 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1006 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1007 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1008
Xiaoling 43.52 1009
1010
Saxer Lin 36.1 1011 === 3.3.6 Set Digital pulse count value ===
1012
Xiaoling 43.52 1013
Saxer Lin 36.1 1014 Feature: Set the pulse count value.
1015
Saxer Lin 37.1 1016 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1017
Saxer Lin 36.1 1018 (% style="color:blue" %)**AT Command: AT+SETCNT**
1019
1020 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1021 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1022 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1023 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1024
1025 (% style="color:blue" %)**Downlink Command: 0x09**
1026
1027 Format: Command Code (0x09) followed by 5 bytes.
1028
1029 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1030
1031 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 1032 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 1033
Xiaoling 43.52 1034
1035
Saxer Lin 36.1 1036 === 3.3.7 Set Workmode ===
1037
Xiaoling 43.52 1038
Saxer Lin 37.1 1039 Feature: Switch working mode.
Saxer Lin 36.1 1040
1041 (% style="color:blue" %)**AT Command: AT+MOD**
1042
1043 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1044 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1045 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1046 OK
1047 )))
1048 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1049 OK
1050 Attention:Take effect after ATZ
1051 )))
1052
1053 (% style="color:blue" %)**Downlink Command: 0x0A**
1054
1055 Format: Command Code (0x0A) followed by 1 bytes.
1056
1057 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1058 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1059
Xiaoling 43.52 1060
1061
Edwin Chen 2.1 1062 = 4. Battery & Power Consumption =
1063
1064
Edwin Chen 11.1 1065 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1066
1067 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1068
1069
1070 = 5. OTA Firmware update =
1071
1072
1073 (% class="wikigeneratedid" %)
Edwin Chen 11.1 1074 User can change firmware SN50v3-LB to:
Edwin Chen 2.1 1075
1076 * Change Frequency band/ region.
1077 * Update with new features.
1078 * Fix bugs.
1079
1080 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1081
1082
1083 Methods to Update Firmware:
1084
1085 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1086 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1087
Xiaoling 43.52 1088
1089
Edwin Chen 2.1 1090 = 6. FAQ =
1091
Edwin Chen 17.1 1092 == 6.1 Where can i find source code of SN50v3-LB? ==
Edwin Chen 2.1 1093
Xiaoling 43.52 1094
Edwin Chen 17.1 1095 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1096 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
Edwin Chen 2.1 1097
Xiaoling 43.52 1098
1099
Edwin Chen 2.1 1100 = 7. Order Info =
1101
1102
Edwin Chen 10.1 1103 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
Edwin Chen 2.1 1104
1105 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1106
Edwin Chen 2.1 1107 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1108 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1109 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1110 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1111 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1112 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1113 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1114 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1115
Edwin Chen 10.1 1116 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1117
Edwin Chen 10.1 1118 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1119 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1120 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1121 * (% style="color:red" %)**NH**(%%): No Hole
1122
Xiaoling 43.52 1123
1124
Edwin Chen 2.1 1125 = 8. ​Packing Info =
1126
Xiaoling 43.52 1127
Edwin Chen 2.1 1128 (% style="color:#037691" %)**Package Includes**:
1129
Edwin Chen 10.1 1130 * SN50v3-LB LoRaWAN Generic Node
Edwin Chen 2.1 1131
1132 (% style="color:#037691" %)**Dimension and weight**:
1133
1134 * Device Size: cm
1135 * Device Weight: g
1136 * Package Size / pcs : cm
1137 * Weight / pcs : g
1138
Xiaoling 43.52 1139
1140
Edwin Chen 2.1 1141 = 9. Support =
1142
1143
1144 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 43.10 1145
Xiaoling 41.4 1146 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]