Version 43.49 by Xiaoling on 2023/05/16 15:49

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18
19
20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21
22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23
24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25
26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27
28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29
30
31 == 1.2 ​Features ==
32
33
34 * LoRaWAN 1.0.3 Class A
35 * Ultra-low power consumption
36 * Open-Source hardware/software
37 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
38 * Support Bluetooth v5.1 and LoRaWAN remote configure
39 * Support wireless OTA update firmware
40 * Uplink on periodically
41 * Downlink to change configure
42 * 8500mAh Battery for long term use
43
44 == 1.3 Specification ==
45
46
47 (% style="color:#037691" %)**Common DC Characteristics:**
48
49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
50 * Operating Temperature: -40 ~~ 85°C
51
52 (% style="color:#037691" %)**I/O Interface:**
53
54 * Battery output (2.6v ~~ 3.6v depends on battery)
55 * +5v controllable output
56 * 3 x Interrupt or Digital IN/OUT pins
57 * 3 x one-wire interfaces
58 * 1 x UART Interface
59 * 1 x I2C Interface
60
61 (% style="color:#037691" %)**LoRa Spec:**
62
63 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
64 * Max +22 dBm constant RF output vs.
65 * RX sensitivity: down to -139 dBm.
66 * Excellent blocking immunity
67
68 (% style="color:#037691" %)**Battery:**
69
70 * Li/SOCI2 un-chargeable battery
71 * Capacity: 8500mAh
72 * Self-Discharge: <1% / Year @ 25°C
73 * Max continuously current: 130mA
74 * Max boost current: 2A, 1 second
75
76 (% style="color:#037691" %)**Power Consumption**
77
78 * Sleep Mode: 5uA @ 3.3v
79 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
80
81 == 1.4 Sleep mode and working mode ==
82
83
84 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
85
86 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
87
88
89 == 1.5 Button & LEDs ==
90
91
92 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
93
94
95 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
96 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
97 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
98 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
99 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
100 )))
101 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
102 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
103 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
104 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
105 )))
106 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
107
108 == 1.6 BLE connection ==
109
110
111 SN50v3-LB supports BLE remote configure.
112
113
114 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
115
116 * Press button to send an uplink
117 * Press button to active device.
118 * Device Power on or reset.
119
120 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
121
122
123 == 1.7 Pin Definitions ==
124
125
126 [[image:image-20230513102034-2.png]]
127
128
129 == 1.8 Mechanical ==
130
131
132 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
133
134 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
135
136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137
138
139 == Hole Option ==
140
141
142 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
143
144 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
145
146 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
147
148
149 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
150
151 == 2.1 How it works ==
152
153
154 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
155
156
157 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
158
159
160 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
161
162 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
163
164
165 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
166
167 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
168
169 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
170
171
172 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
173
174
175 (% style="color:blue" %)**Register the device**
176
177 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
178
179
180 (% style="color:blue" %)**Add APP EUI and DEV EUI**
181
182 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
183
184
185 (% style="color:blue" %)**Add APP EUI in the application**
186
187
188 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
189
190
191 (% style="color:blue" %)**Add APP KEY**
192
193 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
194
195
196 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
197
198
199 Press the button for 5 seconds to activate the SN50v3-LB.
200
201 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
202
203 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
204
205
206 == 2.3 ​Uplink Payload ==
207
208 === 2.3.1 Device Status, FPORT~=5 ===
209
210
211 Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
212
213 The Payload format is as below.
214
215
216 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
217 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
218 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
219 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
220
221 Example parse in TTNv3
222
223
224 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
225
226 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
227
228 (% style="color:#037691" %)**Frequency Band**:
229
230 *0x01: EU868
231
232 *0x02: US915
233
234 *0x03: IN865
235
236 *0x04: AU915
237
238 *0x05: KZ865
239
240 *0x06: RU864
241
242 *0x07: AS923
243
244 *0x08: AS923-1
245
246 *0x09: AS923-2
247
248 *0x0a: AS923-3
249
250 *0x0b: CN470
251
252 *0x0c: EU433
253
254 *0x0d: KR920
255
256 *0x0e: MA869
257
258
259 (% style="color:#037691" %)**Sub-Band**:
260
261 AU915 and US915:value 0x00 ~~ 0x08
262
263 CN470: value 0x0B ~~ 0x0C
264
265 Other Bands: Always 0x00
266
267
268 (% style="color:#037691" %)**Battery Info**:
269
270 Check the battery voltage.
271
272 Ex1: 0x0B45 = 2885mV
273
274 Ex2: 0x0B49 = 2889mV
275
276
277 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
278
279
280 SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
281
282 For example:
283
284 **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
285
286
287 (% style="color:red" %) **Important Notice:**
288
289 1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
290 1. All modes share the same Payload Explanation from HERE.
291 1. By default, the device will send an uplink message every 20 minutes.
292
293 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
294
295
296 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
297
298 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
299 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
300 |**Value**|Bat|(% style="width:191px" %)(((
301 Temperature(DS18B20)(PC13)
302 )))|(% style="width:78px" %)(((
303 ADC(PA4)
304 )))|(% style="width:216px" %)(((
305 Digital in(PB15)&Digital Interrupt(PA8)
306 )))|(% style="width:308px" %)(((
307 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
308 )))|(% style="width:154px" %)(((
309 Humidity(SHT20 or SHT31)
310 )))
311
312 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
313
314
315
316 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
317
318
319 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
320
321 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
322 |(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
323 |**Value**|BAT|(% style="width:196px" %)(((
324 Temperature(DS18B20)(PC13)
325 )))|(% style="width:87px" %)(((
326 ADC(PA4)
327 )))|(% style="width:189px" %)(((
328 Digital in(PB15) & Digital Interrupt(PA8)
329 )))|(% style="width:208px" %)(((
330 Distance measure by:1) LIDAR-Lite V3HP
331 Or 2) Ultrasonic Sensor
332 )))|(% style="width:117px" %)Reserved
333
334 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
335
336
337 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
338
339 [[image:image-20230512173758-5.png||height="563" width="712"]]
340
341
342 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
343
344 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
345
346 [[image:image-20230512173903-6.png||height="596" width="715"]]
347
348
349 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
350
351 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
352 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
353 |**Value**|BAT|(% style="width:183px" %)(((
354 Temperature(DS18B20)(PC13)
355 )))|(% style="width:173px" %)(((
356 Digital in(PB15) & Digital Interrupt(PA8)
357 )))|(% style="width:84px" %)(((
358 ADC(PA4)
359 )))|(% style="width:323px" %)(((
360 Distance measure by:1)TF-Mini plus LiDAR
361 Or 
362 2) TF-Luna LiDAR
363 )))|(% style="width:188px" %)Distance signal  strength
364
365 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
366
367
368 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
369
370 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
371
372 [[image:image-20230512180609-7.png||height="555" width="802"]]
373
374
375 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
376
377 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
378
379 [[image:image-20230513105207-4.png||height="469" width="802"]]
380
381
382 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
383
384
385 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
386
387 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
388 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
389 **Size(bytes)**
390 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
391 |**Value**|(% style="width:68px" %)(((
392 ADC1(PA4)
393 )))|(% style="width:75px" %)(((
394 ADC2(PA5)
395 )))|(((
396 ADC3(PA8)
397 )))|(((
398 Digital Interrupt(PB15)
399 )))|(% style="width:304px" %)(((
400 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
401 )))|(% style="width:163px" %)(((
402 Humidity(SHT20 or SHT31)
403 )))|(% style="width:53px" %)Bat
404
405 [[image:image-20230513110214-6.png]]
406
407
408 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
409
410
411 This mode has total 11 bytes. As shown below:
412
413 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
414 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
415 |**Value**|BAT|(% style="width:186px" %)(((
416 Temperature1(DS18B20)(PC13)
417 )))|(% style="width:82px" %)(((
418 ADC(PA4)
419 )))|(% style="width:210px" %)(((
420 Digital in(PB15) & Digital Interrupt(PA8) 
421 )))|(% style="width:191px" %)Temperature2(DS18B20)
422 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
423
424 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
425
426 [[image:image-20230513134006-1.png||height="559" width="736"]]
427
428
429
430 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
431
432
433 [[image:image-20230512164658-2.png||height="532" width="729"]]
434
435 Each HX711 need to be calibrated before used. User need to do below two steps:
436
437 1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
438 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
439 1. (((
440 Weight has 4 bytes, the unit is g.
441 )))
442
443 For example:
444
445 **AT+GETSENSORVALUE =0**
446
447 Response:  Weight is 401 g
448
449 Check the response of this command and adjust the value to match the real value for thing.
450
451 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
452 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
453 **Size(bytes)**
454 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
455 |**Value**|BAT|(% style="width:193px" %)(((
456 Temperature(DS18B20)
457 (PC13)
458 )))|(% style="width:85px" %)(((
459 ADC(PA4)
460 )))|(% style="width:186px" %)(((
461 Digital in(PB15) &
462 Digital Interrupt(PA8)
463 )))|(% style="width:100px" %)Weight
464
465 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
466
467
468
469 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
470
471
472 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
473
474 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
475
476 [[image:image-20230512181814-9.png||height="543" width="697"]]
477
478 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
479
480 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
481 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
482 |**Value**|BAT|(% style="width:256px" %)(((
483 Temperature(DS18B20)(PC13)
484 )))|(% style="width:108px" %)(((
485 ADC(PA4)
486 )))|(% style="width:126px" %)(((
487 Digital in(PB15)
488 )))|(% style="width:145px" %)(((
489 Count(PA8)
490 )))
491
492 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
493
494
495
496 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
497
498
499 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
500 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
501 **Size(bytes)**
502 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
503 |**Value**|BAT|(% style="width:188px" %)(((
504 Temperature(DS18B20)
505 (PC13)
506 )))|(% style="width:83px" %)(((
507 ADC(PA5)
508 )))|(% style="width:184px" %)(((
509 Digital Interrupt1(PA8)
510 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
511
512 [[image:image-20230513111203-7.png||height="324" width="975"]]
513
514
515 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
516
517
518 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
519 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
520 **Size(bytes)**
521 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
522 |**Value**|BAT|(% style="width:207px" %)(((
523 Temperature(DS18B20)
524 (PC13)
525 )))|(% style="width:94px" %)(((
526 ADC1(PA4)
527 )))|(% style="width:198px" %)(((
528 Digital Interrupt(PB15)
529 )))|(% style="width:84px" %)(((
530 ADC2(PA5)
531 )))|(% style="width:82px" %)(((
532 ADC3(PA8)
533 )))
534
535 [[image:image-20230513111231-8.png||height="335" width="900"]]
536
537
538 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
539
540
541 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
542 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
543 **Size(bytes)**
544 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
545 |**Value**|BAT|(((
546 Temperature1(DS18B20)
547 (PC13)
548 )))|(((
549 Temperature2(DS18B20)
550 (PB9)
551 )))|(((
552 Digital Interrupt
553 (PB15)
554 )))|(% style="width:193px" %)(((
555 Temperature3(DS18B20)
556 (PB8)
557 )))|(% style="width:78px" %)(((
558 Count1(PA8)
559 )))|(% style="width:78px" %)(((
560 Count2(PA4)
561 )))
562
563 [[image:image-20230513111255-9.png||height="341" width="899"]]
564
565 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
566
567 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
568
569 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
570
571 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
572
573
574 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
575
576 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
577
578 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
579
580
581 === 2.3.3  ​Decode payload ===
582
583
584 While using TTN V3 network, you can add the payload format to decode the payload.
585
586 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
587
588 The payload decoder function for TTN V3 are here:
589
590 SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
591
592
593 ==== 2.3.3.1 Battery Info ====
594
595
596 Check the battery voltage for SN50v3.
597
598 Ex1: 0x0B45 = 2885mV
599
600 Ex2: 0x0B49 = 2889mV
601
602
603 ==== 2.3.3.2  Temperature (DS18B20) ====
604
605
606 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
607
608 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
609
610 (% style="color:blue" %)**Connection:**
611
612 [[image:image-20230512180718-8.png||height="538" width="647"]]
613
614
615 (% style="color:blue" %)**Example**:
616
617 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
618
619 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
620
621 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
622
623
624 ==== 2.3.3.3 Digital Input ====
625
626
627 The digital input for pin PB15,
628
629 * When PB15 is high, the bit 1 of payload byte 6 is 1.
630 * When PB15 is low, the bit 1 of payload byte 6 is 0.
631
632 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
633 (((
634 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
635
636 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
637
638
639 )))
640
641 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
642
643
644 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
645
646 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
647
648 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
649
650 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
651
652
653 ==== 2.3.3.5 Digital Interrupt ====
654
655
656 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
657
658 (% style="color:blue" %)** Interrupt connection method:**
659
660 [[image:image-20230513105351-5.png||height="147" width="485"]]
661
662
663 (% style="color:blue" %)**Example to use with door sensor :**
664
665 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
666
667 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
668
669 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
670
671
672 (% style="color:blue" %)**Below is the installation example:**
673
674 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
675
676 * (((
677 One pin to SN50_v3's PA8 pin
678 )))
679 * (((
680 The other pin to SN50_v3's VDD pin
681 )))
682
683 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
684
685 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
686
687 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
688
689 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
690
691 The above photos shows the two parts of the magnetic switch fitted to a door.
692
693 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
694
695 The command is:
696
697 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
698
699 Below shows some screen captures in TTN V3:
700
701 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
702
703
704 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
705
706 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
707
708
709 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
710
711
712 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
713
714 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
715
716 Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
717
718 Below is the connection to SHT20/ SHT31. The connection is as below:
719
720
721 [[image:image-20230513103633-3.png||height="448" width="716"]]
722
723 The device will be able to get the I2C sensor data now and upload to IoT Server.
724
725 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
726
727 Convert the read byte to decimal and divide it by ten.
728
729 **Example:**
730
731 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
732
733 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
734
735 If you want to use other I2C device, please refer the SHT20 part source code as reference.
736
737
738 ==== 2.3.3.7  ​Distance Reading ====
739
740
741 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
742
743
744 ==== 2.3.3.8 Ultrasonic Sensor ====
745
746
747 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
748
749 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
750
751 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
752
753 The picture below shows the connection:
754
755 [[image:image-20230512173903-6.png||height="596" width="715"]]
756
757 Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
758
759 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
760
761 **Example:**
762
763 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
764
765
766
767 ==== 2.3.3.9  Battery Output - BAT pin ====
768
769 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
770
771
772 ==== 2.3.3.10  +5V Output ====
773
774 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
775
776 The 5V output time can be controlled by AT Command.
777
778 (% style="color:blue" %)**AT+5VT=1000**
779
780 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
781
782 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
783
784
785
786 ==== 2.3.3.11  BH1750 Illumination Sensor ====
787
788 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
789
790 [[image:image-20230512172447-4.png||height="416" width="712"]]
791
792 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
793
794
795 ==== 2.3.3.12  Working MOD ====
796
797 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
798
799 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
800
801 Case 7^^th^^ Byte >> 2 & 0x1f:
802
803 * 0: MOD1
804 * 1: MOD2
805 * 2: MOD3
806 * 3: MOD4
807 * 4: MOD5
808 * 5: MOD6
809 * 6: MOD7
810 * 7: MOD8
811 * 8: MOD9
812
813 == 2.4 Payload Decoder file ==
814
815
816 In TTN, use can add a custom payload so it shows friendly reading
817
818 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
819
820 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
821
822
823
824 == 2.5 Frequency Plans ==
825
826
827 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
828
829 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
830
831
832 = 3. Configure SN50v3-LB =
833
834 == 3.1 Configure Methods ==
835
836
837 SN50v3-LB supports below configure method:
838
839 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
840 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
841 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
842
843 == 3.2 General Commands ==
844
845
846 These commands are to configure:
847
848 * General system settings like: uplink interval.
849 * LoRaWAN protocol & radio related command.
850
851 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
852
853 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
854
855
856 == 3.3 Commands special design for SN50v3-LB ==
857
858
859 These commands only valid for S31x-LB, as below:
860
861
862 === 3.3.1 Set Transmit Interval Time ===
863
864 Feature: Change LoRaWAN End Node Transmit Interval.
865
866 (% style="color:blue" %)**AT Command: AT+TDC**
867
868 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
869 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
870 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
871 30000
872 OK
873 the interval is 30000ms = 30s
874 )))
875 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
876 OK
877 Set transmit interval to 60000ms = 60 seconds
878 )))
879
880 (% style="color:blue" %)**Downlink Command: 0x01**
881
882 Format: Command Code (0x01) followed by 3 bytes time value.
883
884 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
885
886 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
887 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
888
889 === 3.3.2 Get Device Status ===
890
891 Send a LoRaWAN downlink to ask the device to send its status.
892
893 (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
894
895 Sensor will upload Device Status via FPORT=5. See payload section for detail.
896
897
898 === 3.3.3 Set Interrupt Mode ===
899
900 Feature, Set Interrupt mode for GPIO_EXIT.
901
902 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
903
904 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
905 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
906 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
907 0
908 OK
909 the mode is 0 =Disable Interrupt
910 )))
911 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
912 Set Transmit Interval
913 0. (Disable Interrupt),
914 ~1. (Trigger by rising and falling edge)
915 2. (Trigger by falling edge)
916 3. (Trigger by rising edge)
917 )))|(% style="width:157px" %)OK
918 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
919 Set Transmit Interval
920
921 trigger by rising edge.
922 )))|(% style="width:157px" %)OK
923 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
924
925 (% style="color:blue" %)**Downlink Command: 0x06**
926
927 Format: Command Code (0x06) followed by 3 bytes.
928
929 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
930
931 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
932 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
933 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
934 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
935
936 === 3.3.4 Set Power Output Duration ===
937
938 Control the output duration 5V . Before each sampling, device will
939
940 ~1. first enable the power output to external sensor,
941
942 2. keep it on as per duration, read sensor value and construct uplink payload
943
944 3. final, close the power output.
945
946 (% style="color:blue" %)**AT Command: AT+5VT**
947
948 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
949 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
950 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
951 500(default)
952 OK
953 )))
954 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
955 Close after a delay of 1000 milliseconds.
956 )))|(% style="width:157px" %)OK
957
958 (% style="color:blue" %)**Downlink Command: 0x07**
959
960 Format: Command Code (0x07) followed by 2 bytes.
961
962 The first and second bytes are the time to turn on.
963
964 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
965 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
966
967 === 3.3.5 Set Weighing parameters ===
968
969 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
970
971 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
972
973 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
974 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
975 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
976 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
977 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
978
979 (% style="color:blue" %)**Downlink Command: 0x08**
980
981 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
982
983 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
984
985 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
986
987 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
988 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
989 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
990
991 === 3.3.6 Set Digital pulse count value ===
992
993 Feature: Set the pulse count value.
994
995 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
996
997 (% style="color:blue" %)**AT Command: AT+SETCNT**
998
999 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1000 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1001 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1002 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1003
1004 (% style="color:blue" %)**Downlink Command: 0x09**
1005
1006 Format: Command Code (0x09) followed by 5 bytes.
1007
1008 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1009
1010 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1011 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1012
1013 === 3.3.7 Set Workmode ===
1014
1015 Feature: Switch working mode.
1016
1017 (% style="color:blue" %)**AT Command: AT+MOD**
1018
1019 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1020 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1021 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1022 OK
1023 )))
1024 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1025 OK
1026 Attention:Take effect after ATZ
1027 )))
1028
1029 (% style="color:blue" %)**Downlink Command: 0x0A**
1030
1031 Format: Command Code (0x0A) followed by 1 bytes.
1032
1033 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1034 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1035
1036 = 4. Battery & Power Consumption =
1037
1038
1039 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1040
1041 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1042
1043
1044 = 5. OTA Firmware update =
1045
1046
1047 (% class="wikigeneratedid" %)
1048 User can change firmware SN50v3-LB to:
1049
1050 * Change Frequency band/ region.
1051 * Update with new features.
1052 * Fix bugs.
1053
1054 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1055
1056
1057 Methods to Update Firmware:
1058
1059 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1060 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1061
1062 = 6. FAQ =
1063
1064 == 6.1 Where can i find source code of SN50v3-LB? ==
1065
1066 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1067 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1068
1069 = 7. Order Info =
1070
1071
1072 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1073
1074 (% style="color:red" %)**XX**(%%): The default frequency band
1075
1076 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1077 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1078 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1079 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1080 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1081 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1082 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1083 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1084
1085 (% style="color:red" %)**YY: ** (%%)Hole Option
1086
1087 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1088 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1089 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1090 * (% style="color:red" %)**NH**(%%): No Hole
1091
1092 = 8. ​Packing Info =
1093
1094 (% style="color:#037691" %)**Package Includes**:
1095
1096 * SN50v3-LB LoRaWAN Generic Node
1097
1098 (% style="color:#037691" %)**Dimension and weight**:
1099
1100 * Device Size: cm
1101 * Device Weight: g
1102 * Package Size / pcs : cm
1103 * Weight / pcs : g
1104
1105 = 9. Support =
1106
1107
1108 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1109
1110 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]