Version 43.46 by Xiaoling on 2023/05/16 15:40

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18
19
20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21
22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23
24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25
26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27
28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29
30
31 == 1.2 ​Features ==
32
33
34 * LoRaWAN 1.0.3 Class A
35 * Ultra-low power consumption
36 * Open-Source hardware/software
37 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
38 * Support Bluetooth v5.1 and LoRaWAN remote configure
39 * Support wireless OTA update firmware
40 * Uplink on periodically
41 * Downlink to change configure
42 * 8500mAh Battery for long term use
43
44
45 == 1.3 Specification ==
46
47
48 (% style="color:#037691" %)**Common DC Characteristics:**
49
50 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
51 * Operating Temperature: -40 ~~ 85°C
52
53 (% style="color:#037691" %)**I/O Interface:**
54
55 * Battery output (2.6v ~~ 3.6v depends on battery)
56 * +5v controllable output
57 * 3 x Interrupt or Digital IN/OUT pins
58 * 3 x one-wire interfaces
59 * 1 x UART Interface
60 * 1 x I2C Interface
61
62 (% style="color:#037691" %)**LoRa Spec:**
63
64 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
65 * Max +22 dBm constant RF output vs.
66 * RX sensitivity: down to -139 dBm.
67 * Excellent blocking immunity
68
69 (% style="color:#037691" %)**Battery:**
70
71 * Li/SOCI2 un-chargeable battery
72 * Capacity: 8500mAh
73 * Self-Discharge: <1% / Year @ 25°C
74 * Max continuously current: 130mA
75 * Max boost current: 2A, 1 second
76
77 (% style="color:#037691" %)**Power Consumption**
78
79 * Sleep Mode: 5uA @ 3.3v
80 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
81
82
83 == 1.4 Sleep mode and working mode ==
84
85
86 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
87
88 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
89
90
91 == 1.5 Button & LEDs ==
92
93
94 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
95
96
97 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
98 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
99 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
100 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
101 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
102 )))
103 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
104 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
105 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
106 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
107 )))
108 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
109
110
111 == 1.6 BLE connection ==
112
113
114 SN50v3-LB supports BLE remote configure.
115
116
117 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
118
119 * Press button to send an uplink
120 * Press button to active device.
121 * Device Power on or reset.
122
123 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
124
125
126 == 1.7 Pin Definitions ==
127
128
129 [[image:image-20230513102034-2.png]]
130
131
132 == 1.8 Mechanical ==
133
134
135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
136
137 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
138
139 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
140
141
142 == Hole Option ==
143
144
145 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
146
147 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
148
149 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
150
151
152 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
153
154 == 2.1 How it works ==
155
156
157 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
158
159
160 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
161
162
163 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
164
165 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
166
167
168 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
169
170 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
171
172 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
173
174
175 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
176
177
178 (% style="color:blue" %)**Register the device**
179
180 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
181
182
183 (% style="color:blue" %)**Add APP EUI and DEV EUI**
184
185 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
186
187
188 (% style="color:blue" %)**Add APP EUI in the application**
189
190
191 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
192
193
194 (% style="color:blue" %)**Add APP KEY**
195
196 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
197
198
199 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
200
201
202 Press the button for 5 seconds to activate the SN50v3-LB.
203
204 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
205
206 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
207
208
209 == 2.3 ​Uplink Payload ==
210
211 === 2.3.1 Device Status, FPORT~=5 ===
212
213
214 Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
215
216 The Payload format is as below.
217
218
219 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
220 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
221 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
222 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
223
224 Example parse in TTNv3
225
226
227 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
228
229 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
230
231 (% style="color:#037691" %)**Frequency Band**:
232
233 *0x01: EU868
234
235 *0x02: US915
236
237 *0x03: IN865
238
239 *0x04: AU915
240
241 *0x05: KZ865
242
243 *0x06: RU864
244
245 *0x07: AS923
246
247 *0x08: AS923-1
248
249 *0x09: AS923-2
250
251 *0x0a: AS923-3
252
253 *0x0b: CN470
254
255 *0x0c: EU433
256
257 *0x0d: KR920
258
259 *0x0e: MA869
260
261
262 (% style="color:#037691" %)**Sub-Band**:
263
264 AU915 and US915:value 0x00 ~~ 0x08
265
266 CN470: value 0x0B ~~ 0x0C
267
268 Other Bands: Always 0x00
269
270
271 (% style="color:#037691" %)**Battery Info**:
272
273 Check the battery voltage.
274
275 Ex1: 0x0B45 = 2885mV
276
277 Ex2: 0x0B49 = 2889mV
278
279
280 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
281
282
283 SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
284
285 For example:
286
287 **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
288
289
290 (% style="color:red" %) **Important Notice:**
291
292 1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
293 1. All modes share the same Payload Explanation from HERE.
294 1. By default, the device will send an uplink message every 20 minutes.
295
296
297 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
298
299
300 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
301
302 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
303 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
304 |**Value**|Bat|(% style="width:191px" %)(((
305 Temperature(DS18B20)(PC13)
306 )))|(% style="width:78px" %)(((
307 ADC(PA4)
308 )))|(% style="width:216px" %)(((
309 Digital in(PB15)&Digital Interrupt(PA8)
310 )))|(% style="width:308px" %)(((
311 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
312 )))|(% style="width:154px" %)(((
313 Humidity(SHT20 or SHT31)
314 )))
315
316 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
317
318
319
320 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
321
322
323 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
324
325 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
326 |(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
327 |**Value**|BAT|(% style="width:196px" %)(((
328 Temperature(DS18B20)(PC13)
329 )))|(% style="width:87px" %)(((
330 ADC(PA4)
331 )))|(% style="width:189px" %)(((
332 Digital in(PB15) & Digital Interrupt(PA8)
333 )))|(% style="width:208px" %)(((
334 Distance measure by:1) LIDAR-Lite V3HP
335 Or 2) Ultrasonic Sensor
336 )))|(% style="width:117px" %)Reserved
337
338 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
339
340
341 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
342
343 [[image:image-20230512173758-5.png||height="563" width="712"]]
344
345
346 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
347
348 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
349
350 [[image:image-20230512173903-6.png||height="596" width="715"]]
351
352
353 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
354
355 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
356 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
357 |**Value**|BAT|(% style="width:183px" %)(((
358 Temperature(DS18B20)(PC13)
359 )))|(% style="width:173px" %)(((
360 Digital in(PB15) & Digital Interrupt(PA8)
361 )))|(% style="width:84px" %)(((
362 ADC(PA4)
363 )))|(% style="width:323px" %)(((
364 Distance measure by:1)TF-Mini plus LiDAR
365 Or 
366 2) TF-Luna LiDAR
367 )))|(% style="width:188px" %)Distance signal  strength
368
369 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
370
371
372 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
373
374 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
375
376 [[image:image-20230512180609-7.png||height="555" width="802"]]
377
378
379 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
380
381 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
382
383 [[image:image-20230513105207-4.png||height="469" width="802"]]
384
385
386 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
387
388
389 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
390
391 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
392 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
393 **Size(bytes)**
394 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
395 |**Value**|(% style="width:68px" %)(((
396 ADC1(PA4)
397 )))|(% style="width:75px" %)(((
398 ADC2(PA5)
399 )))|(((
400 ADC3(PA8)
401 )))|(((
402 Digital Interrupt(PB15)
403 )))|(% style="width:304px" %)(((
404 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
405 )))|(% style="width:163px" %)(((
406 Humidity(SHT20 or SHT31)
407 )))|(% style="width:53px" %)Bat
408
409 [[image:image-20230513110214-6.png]]
410
411
412 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
413
414
415 This mode has total 11 bytes. As shown below:
416
417 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
418 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
419 |**Value**|BAT|(% style="width:186px" %)(((
420 Temperature1(DS18B20)(PC13)
421 )))|(% style="width:82px" %)(((
422 ADC(PA4)
423 )))|(% style="width:210px" %)(((
424 Digital in(PB15) & Digital Interrupt(PA8) 
425 )))|(% style="width:191px" %)Temperature2(DS18B20)
426 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
427
428 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
429
430 [[image:image-20230513134006-1.png||height="559" width="736"]]
431
432
433
434 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
435
436
437 [[image:image-20230512164658-2.png||height="532" width="729"]]
438
439 Each HX711 need to be calibrated before used. User need to do below two steps:
440
441 1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
442 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
443 1. (((
444 Weight has 4 bytes, the unit is g.
445 )))
446
447 For example:
448
449 **AT+GETSENSORVALUE =0**
450
451 Response:  Weight is 401 g
452
453 Check the response of this command and adjust the value to match the real value for thing.
454
455 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
456 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
457 **Size(bytes)**
458 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
459 |**Value**|BAT|(% style="width:193px" %)(((
460 Temperature(DS18B20)
461 (PC13)
462 )))|(% style="width:85px" %)(((
463 ADC(PA4)
464 )))|(% style="width:186px" %)(((
465 Digital in(PB15) &
466 Digital Interrupt(PA8)
467 )))|(% style="width:100px" %)Weight
468
469 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
470
471
472
473 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
474
475
476 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
477
478 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
479
480 [[image:image-20230512181814-9.png||height="543" width="697"]]
481
482 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
483
484 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
485 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
486 |**Value**|BAT|(% style="width:256px" %)(((
487 Temperature(DS18B20)(PC13)
488 )))|(% style="width:108px" %)(((
489 ADC(PA4)
490 )))|(% style="width:126px" %)(((
491 Digital in(PB15)
492 )))|(% style="width:145px" %)(((
493 Count(PA8)
494 )))
495
496 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
497
498
499
500 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
501
502
503 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
504 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
505 **Size(bytes)**
506 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
507 |**Value**|BAT|(% style="width:188px" %)(((
508 Temperature(DS18B20)
509 (PC13)
510 )))|(% style="width:83px" %)(((
511 ADC(PA5)
512 )))|(% style="width:184px" %)(((
513 Digital Interrupt1(PA8)
514 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
515
516 [[image:image-20230513111203-7.png||height="324" width="975"]]
517
518
519 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
520
521
522 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
523 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
524 **Size(bytes)**
525 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
526 |**Value**|BAT|(% style="width:207px" %)(((
527 Temperature(DS18B20)
528 (PC13)
529 )))|(% style="width:94px" %)(((
530 ADC1(PA4)
531 )))|(% style="width:198px" %)(((
532 Digital Interrupt(PB15)
533 )))|(% style="width:84px" %)(((
534 ADC2(PA5)
535 )))|(% style="width:82px" %)(((
536 ADC3(PA8)
537 )))
538
539 [[image:image-20230513111231-8.png||height="335" width="900"]]
540
541
542 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
543
544
545 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
546 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
547 **Size(bytes)**
548 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
549 |**Value**|BAT|(((
550 Temperature1(DS18B20)
551 (PC13)
552 )))|(((
553 Temperature2(DS18B20)
554 (PB9)
555 )))|(((
556 Digital Interrupt
557 (PB15)
558 )))|(% style="width:193px" %)(((
559 Temperature3(DS18B20)
560 (PB8)
561 )))|(% style="width:78px" %)(((
562 Count1(PA8)
563 )))|(% style="width:78px" %)(((
564 Count2(PA4)
565 )))
566
567 [[image:image-20230513111255-9.png||height="341" width="899"]]
568
569 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
570
571 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
572
573 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
574
575 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
576
577
578 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
579
580 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
581
582 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
583
584
585 === 2.3.3  ​Decode payload ===
586
587
588 While using TTN V3 network, you can add the payload format to decode the payload.
589
590 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
591
592 The payload decoder function for TTN V3 are here:
593
594 SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
595
596
597 ==== 2.3.3.1 Battery Info ====
598
599
600 Check the battery voltage for SN50v3.
601
602 Ex1: 0x0B45 = 2885mV
603
604 Ex2: 0x0B49 = 2889mV
605
606
607 ==== 2.3.3.2  Temperature (DS18B20) ====
608
609
610 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
611
612 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
613
614 (% style="color:blue" %)**Connection:**
615
616 [[image:image-20230512180718-8.png||height="538" width="647"]]
617
618
619 (% style="color:blue" %)**Example**:
620
621 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
622
623 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
624
625 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
626
627
628 ==== 2.3.3.3 Digital Input ====
629
630
631 The digital input for pin PB15,
632
633 * When PB15 is high, the bit 1 of payload byte 6 is 1.
634 * When PB15 is low, the bit 1 of payload byte 6 is 0.
635
636 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
637 (((
638 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
639
640 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
641
642
643 )))
644
645 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
646
647
648 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
649
650 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
651
652 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
653
654 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
655
656
657 ==== 2.3.3.5 Digital Interrupt ====
658
659
660 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
661
662 (% style="color:blue" %)** Interrupt connection method:**
663
664 [[image:image-20230513105351-5.png||height="147" width="485"]]
665
666
667 (% style="color:blue" %)**Example to use with door sensor :**
668
669 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
670
671 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
672
673 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
674
675
676 (% style="color:blue" %)**Below is the installation example:**
677
678 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
679
680 * (((
681 One pin to SN50_v3's PA8 pin
682 )))
683 * (((
684 The other pin to SN50_v3's VDD pin
685 )))
686
687 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
688
689 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
690
691 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
692
693 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
694
695 The above photos shows the two parts of the magnetic switch fitted to a door.
696
697 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
698
699 The command is:
700
701 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
702
703 Below shows some screen captures in TTN V3:
704
705 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
706
707 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
708
709 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
710
711
712 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
713
714 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
715
716 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
717
718 Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
719
720 Below is the connection to SHT20/ SHT31. The connection is as below:
721
722
723 [[image:image-20230513103633-3.png||height="448" width="716"]]
724
725 The device will be able to get the I2C sensor data now and upload to IoT Server.
726
727 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
728
729 Convert the read byte to decimal and divide it by ten.
730
731 **Example:**
732
733 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
734
735 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
736
737 If you want to use other I2C device, please refer the SHT20 part source code as reference.
738
739
740 ==== 2.3.3.7  ​Distance Reading ====
741
742 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
743
744
745 ==== 2.3.3.8 Ultrasonic Sensor ====
746
747 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
748
749 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
750
751 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
752
753 The picture below shows the connection:
754
755 [[image:image-20230512173903-6.png||height="596" width="715"]]
756
757 Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
758
759 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
760
761 **Example:**
762
763 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
764
765
766
767 ==== 2.3.3.9  Battery Output - BAT pin ====
768
769 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
770
771
772 ==== 2.3.3.10  +5V Output ====
773
774 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
775
776 The 5V output time can be controlled by AT Command.
777
778 (% style="color:blue" %)**AT+5VT=1000**
779
780 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
781
782 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
783
784
785
786 ==== 2.3.3.11  BH1750 Illumination Sensor ====
787
788 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
789
790 [[image:image-20230512172447-4.png||height="416" width="712"]]
791
792 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
793
794
795 ==== 2.3.3.12  Working MOD ====
796
797 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
798
799 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
800
801 Case 7^^th^^ Byte >> 2 & 0x1f:
802
803 * 0: MOD1
804 * 1: MOD2
805 * 2: MOD3
806 * 3: MOD4
807 * 4: MOD5
808 * 5: MOD6
809 * 6: MOD7
810 * 7: MOD8
811 * 8: MOD9
812
813 == 2.4 Payload Decoder file ==
814
815
816 In TTN, use can add a custom payload so it shows friendly reading
817
818 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
819
820 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
821
822
823
824 == 2.5 Frequency Plans ==
825
826
827 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
828
829 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
830
831
832 = 3. Configure SN50v3-LB =
833
834 == 3.1 Configure Methods ==
835
836
837 SN50v3-LB supports below configure method:
838
839 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
840 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
841 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
842
843 == 3.2 General Commands ==
844
845
846 These commands are to configure:
847
848 * General system settings like: uplink interval.
849 * LoRaWAN protocol & radio related command.
850
851 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
852
853 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
854
855
856 == 3.3 Commands special design for SN50v3-LB ==
857
858
859 These commands only valid for S31x-LB, as below:
860
861
862 === 3.3.1 Set Transmit Interval Time ===
863
864 Feature: Change LoRaWAN End Node Transmit Interval.
865
866 (% style="color:blue" %)**AT Command: AT+TDC**
867
868 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
869 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
870 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
871 30000
872 OK
873 the interval is 30000ms = 30s
874 )))
875 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
876 OK
877 Set transmit interval to 60000ms = 60 seconds
878 )))
879
880 (% style="color:blue" %)**Downlink Command: 0x01**
881
882 Format: Command Code (0x01) followed by 3 bytes time value.
883
884 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
885
886 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
887 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
888
889 === 3.3.2 Get Device Status ===
890
891 Send a LoRaWAN downlink to ask the device to send its status.
892
893 (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
894
895 Sensor will upload Device Status via FPORT=5. See payload section for detail.
896
897
898 === 3.3.3 Set Interrupt Mode ===
899
900 Feature, Set Interrupt mode for GPIO_EXIT.
901
902 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
903
904 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
905 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
906 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
907 0
908 OK
909 the mode is 0 =Disable Interrupt
910 )))
911 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
912 Set Transmit Interval
913 0. (Disable Interrupt),
914 ~1. (Trigger by rising and falling edge)
915 2. (Trigger by falling edge)
916 3. (Trigger by rising edge)
917 )))|(% style="width:157px" %)OK
918 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
919 Set Transmit Interval
920
921 trigger by rising edge.
922 )))|(% style="width:157px" %)OK
923 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
924
925 (% style="color:blue" %)**Downlink Command: 0x06**
926
927 Format: Command Code (0x06) followed by 3 bytes.
928
929 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
930
931 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
932 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
933 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
934 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
935
936 === 3.3.4 Set Power Output Duration ===
937
938 Control the output duration 5V . Before each sampling, device will
939
940 ~1. first enable the power output to external sensor,
941
942 2. keep it on as per duration, read sensor value and construct uplink payload
943
944 3. final, close the power output.
945
946 (% style="color:blue" %)**AT Command: AT+5VT**
947
948 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
949 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
950 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
951 500(default)
952 OK
953 )))
954 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
955 Close after a delay of 1000 milliseconds.
956 )))|(% style="width:157px" %)OK
957
958 (% style="color:blue" %)**Downlink Command: 0x07**
959
960 Format: Command Code (0x07) followed by 2 bytes.
961
962 The first and second bytes are the time to turn on.
963
964 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
965 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
966
967 === 3.3.5 Set Weighing parameters ===
968
969 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
970
971 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
972
973 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
974 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
975 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
976 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
977 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
978
979 (% style="color:blue" %)**Downlink Command: 0x08**
980
981 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
982
983 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
984
985 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
986
987 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
988 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
989 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
990
991 === 3.3.6 Set Digital pulse count value ===
992
993 Feature: Set the pulse count value.
994
995 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
996
997 (% style="color:blue" %)**AT Command: AT+SETCNT**
998
999 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1000 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1001 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1002 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1003
1004 (% style="color:blue" %)**Downlink Command: 0x09**
1005
1006 Format: Command Code (0x09) followed by 5 bytes.
1007
1008 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1009
1010 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1011 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1012
1013 === 3.3.7 Set Workmode ===
1014
1015 Feature: Switch working mode.
1016
1017 (% style="color:blue" %)**AT Command: AT+MOD**
1018
1019 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1020 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1021 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1022 OK
1023 )))
1024 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1025 OK
1026 Attention:Take effect after ATZ
1027 )))
1028
1029 (% style="color:blue" %)**Downlink Command: 0x0A**
1030
1031 Format: Command Code (0x0A) followed by 1 bytes.
1032
1033 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1034 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1035
1036 = 4. Battery & Power Consumption =
1037
1038
1039 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1040
1041 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1042
1043
1044 = 5. OTA Firmware update =
1045
1046
1047 (% class="wikigeneratedid" %)
1048 User can change firmware SN50v3-LB to:
1049
1050 * Change Frequency band/ region.
1051 * Update with new features.
1052 * Fix bugs.
1053
1054 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1055
1056
1057 Methods to Update Firmware:
1058
1059 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1060 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1061
1062 = 6. FAQ =
1063
1064 == 6.1 Where can i find source code of SN50v3-LB? ==
1065
1066 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1067 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1068
1069 = 7. Order Info =
1070
1071
1072 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1073
1074 (% style="color:red" %)**XX**(%%): The default frequency band
1075
1076 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1077 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1078 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1079 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1080 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1081 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1082 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1083 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1084
1085 (% style="color:red" %)**YY: ** (%%)Hole Option
1086
1087 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1088 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1089 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1090 * (% style="color:red" %)**NH**(%%): No Hole
1091
1092 = 8. ​Packing Info =
1093
1094 (% style="color:#037691" %)**Package Includes**:
1095
1096 * SN50v3-LB LoRaWAN Generic Node
1097
1098 (% style="color:#037691" %)**Dimension and weight**:
1099
1100 * Device Size: cm
1101 * Device Weight: g
1102 * Package Size / pcs : cm
1103 * Weight / pcs : g
1104
1105 = 9. Support =
1106
1107
1108 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1109
1110 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]