Version 43.36 by Xiaoling on 2023/05/16 14:49

Hide last authors
Xiaoling 41.2 1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
Edwin Chen 2.1 3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
Edwin Chen 5.1 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
Edwin Chen 2.1 18
Xiaoling 43.2 19
Edwin Chen 4.1 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 21
Edwin Chen 4.1 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
Edwin Chen 2.1 23
Edwin Chen 4.1 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
Edwin Chen 2.1 25
Edwin Chen 4.1 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 27
Edwin Chen 4.1 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 29
Edwin Chen 4.1 30
Edwin Chen 2.1 31 == 1.2 ​Features ==
32
33 * LoRaWAN 1.0.3 Class A
34 * Ultra-low power consumption
Edwin Chen 5.1 35 * Open-Source hardware/software
Edwin Chen 2.1 36 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
37 * Support Bluetooth v5.1 and LoRaWAN remote configure
38 * Support wireless OTA update firmware
39 * Uplink on periodically
40 * Downlink to change configure
41 * 8500mAh Battery for long term use
42
43 == 1.3 Specification ==
44
Xiaoling 43.4 45
Edwin Chen 2.1 46 (% style="color:#037691" %)**Common DC Characteristics:**
47
48 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
49 * Operating Temperature: -40 ~~ 85°C
50
Edwin Chen 5.1 51 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 52
Edwin Chen 5.1 53 * Battery output (2.6v ~~ 3.6v depends on battery)
54 * +5v controllable output
55 * 3 x Interrupt or Digital IN/OUT pins
56 * 3 x one-wire interfaces
57 * 1 x UART Interface
58 * 1 x I2C Interface
Edwin Chen 2.1 59
60 (% style="color:#037691" %)**LoRa Spec:**
61
62 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
63 * Max +22 dBm constant RF output vs.
64 * RX sensitivity: down to -139 dBm.
65 * Excellent blocking immunity
66
67 (% style="color:#037691" %)**Battery:**
68
69 * Li/SOCI2 un-chargeable battery
70 * Capacity: 8500mAh
71 * Self-Discharge: <1% / Year @ 25°C
72 * Max continuously current: 130mA
73 * Max boost current: 2A, 1 second
74
75 (% style="color:#037691" %)**Power Consumption**
76
77 * Sleep Mode: 5uA @ 3.3v
78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79
80 == 1.4 Sleep mode and working mode ==
81
Xiaoling 43.4 82
Edwin Chen 2.1 83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84
85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
86
87
88 == 1.5 Button & LEDs ==
89
90
91 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
92
93
94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
96 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
97 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
98 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
99 )))
100 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
101 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
102 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
103 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
104 )))
105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106
107 == 1.6 BLE connection ==
108
109
Edwin Chen 5.1 110 SN50v3-LB supports BLE remote configure.
Edwin Chen 2.1 111
112
113 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
114
115 * Press button to send an uplink
116 * Press button to active device.
117 * Device Power on or reset.
118
119 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
120
121
Edwin Chen 6.1 122 == 1.7 Pin Definitions ==
Edwin Chen 2.1 123
124
Saxer Lin 36.1 125 [[image:image-20230513102034-2.png]]
Edwin Chen 2.1 126
127
128 == 1.8 Mechanical ==
129
130
131 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132
133 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134
135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136
137
Edwin Chen 5.1 138 == Hole Option ==
139
Xiaoling 43.4 140
Edwin Chen 5.1 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142
143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
144
145 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
146
147
Edwin Chen 10.1 148 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
Edwin Chen 2.1 149
150 == 2.1 How it works ==
151
152
Edwin Chen 11.2 153 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 154
155
156 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
157
158
159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160
161 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162
163
Edwin Chen 11.2 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
Edwin Chen 2.1 165
Edwin Chen 11.2 166 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 167
Edwin Chen 11.2 168 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 2.1 169
170
171 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
172
173
174 (% style="color:blue" %)**Register the device**
175
176 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
177
178
179 (% style="color:blue" %)**Add APP EUI and DEV EUI**
180
181 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
182
183
184 (% style="color:blue" %)**Add APP EUI in the application**
185
186
187 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
188
189
190 (% style="color:blue" %)**Add APP KEY**
191
192 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
193
194
Edwin Chen 11.2 195 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
Edwin Chen 2.1 196
197
Edwin Chen 11.2 198 Press the button for 5 seconds to activate the SN50v3-LB.
Edwin Chen 2.1 199
200 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
201
202 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
203
204
205 == 2.3 ​Uplink Payload ==
206
207 === 2.3.1 Device Status, FPORT~=5 ===
208
209
Edwin Chen 11.2 210 Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 211
212 The Payload format is as below.
213
214
215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219
220 Example parse in TTNv3
221
222
Edwin Chen 11.2 223 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
Edwin Chen 2.1 224
225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226
227 (% style="color:#037691" %)**Frequency Band**:
228
229 *0x01: EU868
230
231 *0x02: US915
232
233 *0x03: IN865
234
235 *0x04: AU915
236
237 *0x05: KZ865
238
239 *0x06: RU864
240
241 *0x07: AS923
242
243 *0x08: AS923-1
244
245 *0x09: AS923-2
246
247 *0x0a: AS923-3
248
249 *0x0b: CN470
250
251 *0x0c: EU433
252
253 *0x0d: KR920
254
255 *0x0e: MA869
256
257
258 (% style="color:#037691" %)**Sub-Band**:
259
260 AU915 and US915:value 0x00 ~~ 0x08
261
262 CN470: value 0x0B ~~ 0x0C
263
264 Other Bands: Always 0x00
265
266
267 (% style="color:#037691" %)**Battery Info**:
268
269 Check the battery voltage.
270
271 Ex1: 0x0B45 = 2885mV
272
273 Ex2: 0x0B49 = 2889mV
274
275
Edwin Chen 12.1 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 277
278
Edwin Chen 12.1 279 SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280
281 For example:
282
283 **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284
285
Edwin Chen 13.1 286 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 287
288 1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
Edwin Chen 13.1 289 1. All modes share the same Payload Explanation from HERE.
290 1. By default, the device will send an uplink message every 20 minutes.
Edwin Chen 12.1 291
Edwin Chen 13.1 292 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 293
Xiaoling 43.5 294
Edwin Chen 12.1 295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296
Xiaoling 43.5 297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.18 298 |(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
Saxer Lin 40.1 299 |**Value**|Bat|(% style="width:191px" %)(((
Xiaoling 43.12 300 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 301 )))|(% style="width:78px" %)(((
Xiaoling 43.12 302 ADC(PA4)
Saxer Lin 26.2 303 )))|(% style="width:216px" %)(((
Xiaoling 43.13 304 Digital in(PB15)&Digital Interrupt(PA8)
Saxer Lin 40.1 305 )))|(% style="width:308px" %)(((
Xiaoling 43.12 306 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 307 )))|(% style="width:154px" %)(((
Xiaoling 43.12 308 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 309 )))
310
Edwin Chen 12.1 311 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
312
313
Edwin Chen 13.1 314 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
315
Edwin Chen 12.1 316 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317
Xiaoling 43.14 318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.15 319 |(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
Saxer Lin 40.1 320 |**Value**|BAT|(% style="width:196px" %)(((
Xiaoling 43.16 321 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 322 )))|(% style="width:87px" %)(((
Xiaoling 43.16 323 ADC(PA4)
Saxer Lin 40.1 324 )))|(% style="width:189px" %)(((
Xiaoling 43.16 325 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 326 )))|(% style="width:208px" %)(((
Xiaoling 43.16 327 Distance measure by:1) LIDAR-Lite V3HP
328 Or 2) Ultrasonic Sensor
Saxer Lin 40.1 329 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 330
331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
332
Xiaoling 43.17 333 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
Edwin Chen 12.1 334
Saxer Lin 26.2 335 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 336
Xiaoling 43.17 337 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
Edwin Chen 12.1 338
Saxer Lin 36.1 339 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
340
Saxer Lin 26.2 341 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 342
343 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
344
Xiaoling 43.19 345 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.21 346 |(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**
Saxer Lin 40.1 347 |**Value**|BAT|(% style="width:183px" %)(((
Xiaoling 43.19 348 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 349 )))|(% style="width:173px" %)(((
Xiaoling 43.19 350 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 351 )))|(% style="width:84px" %)(((
Xiaoling 43.19 352 ADC(PA4)
Saxer Lin 40.1 353 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 354 Distance measure by:1)TF-Mini plus LiDAR
Xiaoling 43.22 355 Or 
356 2) TF-Luna LiDAR
Saxer Lin 40.1 357 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 358
359 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
360
361 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
362
Saxer Lin 36.1 363 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
Edwin Chen 12.1 364
Saxer Lin 26.2 365 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 366
367 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
368
Saxer Lin 36.1 369 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
Edwin Chen 12.1 370
Saxer Lin 36.1 371 [[image:image-20230513105207-4.png||height="469" width="802"]]
Edwin Chen 12.1 372
373
Edwin Chen 13.1 374 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
375
Edwin Chen 12.1 376 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
377
Xiaoling 43.21 378 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.25 379 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
380 **Size(bytes)**
Xiaoling 43.24 381 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
Saxer Lin 26.2 382 |**Value**|(% style="width:68px" %)(((
Xiaoling 43.23 383 ADC1(PA4)
Saxer Lin 26.2 384 )))|(% style="width:75px" %)(((
Xiaoling 43.23 385 ADC2(PA5)
Saxer Lin 36.1 386 )))|(((
Xiaoling 43.23 387 ADC3(PA8)
Saxer Lin 36.1 388 )))|(((
389 Digital Interrupt(PB15)
390 )))|(% style="width:304px" %)(((
Xiaoling 43.23 391 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 36.1 392 )))|(% style="width:163px" %)(((
Xiaoling 43.23 393 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 394 )))|(% style="width:53px" %)Bat
395
396 [[image:image-20230513110214-6.png]]
397
398
Edwin Chen 13.1 399 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
400
Edwin Chen 12.1 401
Saxer Lin 26.2 402 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 403
Xiaoling 43.26 404 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
405 |(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**
Saxer Lin 26.2 406 |**Value**|BAT|(% style="width:186px" %)(((
Xiaoling 43.27 407 Temperature1(DS18B20)(PC13)
Saxer Lin 26.2 408 )))|(% style="width:82px" %)(((
Xiaoling 43.27 409 ADC(PA4)
Saxer Lin 26.2 410 )))|(% style="width:210px" %)(((
Xiaoling 43.27 411 Digital in(PB15) & Digital Interrupt(PA8) 
Saxer Lin 26.2 412 )))|(% style="width:191px" %)Temperature2(DS18B20)
Xiaoling 43.27 413 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
Edwin Chen 12.1 414
415 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
416
Saxer Lin 39.2 417 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 418
Saxer Lin 39.1 419
Edwin Chen 13.1 420 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
421
Saxer Lin 26.2 422 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 423
424 Each HX711 need to be calibrated before used. User need to do below two steps:
425
426 1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
427 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
428 1. (((
Saxer Lin 26.2 429 Weight has 4 bytes, the unit is g.
Edwin Chen 12.1 430 )))
431
432 For example:
433
Saxer Lin 26.2 434 **AT+GETSENSORVALUE =0**
Edwin Chen 12.1 435
436 Response:  Weight is 401 g
437
438 Check the response of this command and adjust the value to match the real value for thing.
439
Xiaoling 43.29 440 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
441 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 442 **Size(bytes)**
Xiaoling 43.30 443 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
Saxer Lin 40.1 444 |**Value**|BAT|(% style="width:193px" %)(((
Saxer Lin 36.1 445 Temperature(DS18B20)
Saxer Lin 26.2 446 (PC13)
Saxer Lin 40.1 447 )))|(% style="width:85px" %)(((
Xiaoling 43.31 448 ADC(PA4)
Saxer Lin 40.1 449 )))|(% style="width:186px" %)(((
Saxer Lin 36.1 450 Digital in(PB15) &
451 Digital Interrupt(PA8)
Saxer Lin 40.1 452 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 453
Edwin Chen 12.1 454 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
455
456
Edwin Chen 13.1 457 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
458
Edwin Chen 12.1 459 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
460
461 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
462
Saxer Lin 26.2 463 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 464
Xiaoling 43.31 465 (% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
Edwin Chen 12.1 466
Xiaoling 43.31 467 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px %)
Xiaoling 43.32 468 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
Saxer Lin 36.1 469 |**Value**|BAT|(% style="width:256px" %)(((
Xiaoling 43.31 470 Temperature(DS18B20)(PC13)
Saxer Lin 36.1 471 )))|(% style="width:108px" %)(((
Xiaoling 43.31 472 ADC(PA4)
Saxer Lin 36.1 473 )))|(% style="width:126px" %)(((
Xiaoling 43.31 474 Digital in(PB15)
Saxer Lin 36.1 475 )))|(% style="width:145px" %)(((
Xiaoling 43.31 476 Count(PA8)
Saxer Lin 36.1 477 )))
478
Edwin Chen 12.1 479 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
480
481
Edwin Chen 13.1 482 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
483
Xiaoling 43.33 484 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px %)
485 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 486 **Size(bytes)**
Xiaoling 43.34 487 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
Saxer Lin 40.1 488 |**Value**|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 489 Temperature(DS18B20)
490 (PC13)
Saxer Lin 40.1 491 )))|(% style="width:83px" %)(((
Xiaoling 43.35 492 ADC(PA5)
Saxer Lin 40.1 493 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 494 Digital Interrupt1(PA8)
Saxer Lin 40.1 495 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 496
497 [[image:image-20230513111203-7.png||height="324" width="975"]]
498
Edwin Chen 13.1 499 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
500
Xiaoling 43.35 501 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px %)
502 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 503 **Size(bytes)**
Xiaoling 43.35 504 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)2
Saxer Lin 36.1 505 |**Value**|BAT|(% style="width:207px" %)(((
506 Temperature(DS18B20)
507 (PC13)
508 )))|(% style="width:94px" %)(((
Xiaoling 43.36 509 ADC1(PA4)
Saxer Lin 36.1 510 )))|(% style="width:198px" %)(((
511 Digital Interrupt(PB15)
512 )))|(% style="width:84px" %)(((
Xiaoling 43.36 513 ADC2(PA5)
Saxer Lin 40.1 514 )))|(% style="width:82px" %)(((
Xiaoling 43.36 515 ADC3(PA8)
Edwin Chen 12.1 516 )))
517
Saxer Lin 36.1 518 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 519
520
Edwin Chen 13.1 521 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
522
Saxer Lin 36.1 523 (% style="width:1010px" %)
Edwin Chen 12.1 524 |=(((
525 **Size(bytes)**
Saxer Lin 36.1 526 )))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
Edwin Chen 12.1 527 |**Value**|BAT|(((
Saxer Lin 36.1 528 Temperature1(DS18B20)
529 (PC13)
Edwin Chen 12.1 530 )))|(((
Saxer Lin 36.1 531 Temperature2(DS18B20)
532 (PB9)
Edwin Chen 12.1 533 )))|(((
Saxer Lin 36.1 534 Digital Interrupt
535 (PB15)
536 )))|(% style="width:193px" %)(((
537 Temperature3(DS18B20)
538 (PB8)
539 )))|(% style="width:78px" %)(((
540 Count1
541 (PA8)
542 )))|(% style="width:78px" %)(((
543 Count2
544 (PA4)
Edwin Chen 12.1 545 )))
546
Saxer Lin 36.1 547 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 548
549 **The newly added AT command is issued correspondingly:**
550
Saxer Lin 36.1 551 **~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
Edwin Chen 12.1 552
Saxer Lin 36.1 553 **~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
Edwin Chen 12.1 554
Saxer Lin 36.1 555 **~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
Edwin Chen 12.1 556
557 **AT+SETCNT=aa,bb** 
558
Saxer Lin 36.1 559 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 560
Saxer Lin 36.1 561 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 562
563
Edwin Chen 14.1 564
565 === 2.3.3  ​Decode payload ===
566
Edwin Chen 12.1 567 While using TTN V3 network, you can add the payload format to decode the payload.
568
569 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
570
571 The payload decoder function for TTN V3 are here:
572
Edwin Chen 14.1 573 SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 574
575
Edwin Chen 14.1 576 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 577
Edwin Chen 14.1 578 Check the battery voltage for SN50v3.
Edwin Chen 2.1 579
580 Ex1: 0x0B45 = 2885mV
581
582 Ex2: 0x0B49 = 2889mV
583
584
Edwin Chen 14.1 585 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 586
Saxer Lin 42.1 587 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 588
Edwin Chen 14.1 589 More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
590
591 **Connection:**
592
Saxer Lin 26.2 593 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 594
Edwin Chen 2.1 595 **Example**:
596
597 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
598
599 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
600
601 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
602
603
Edwin Chen 14.1 604 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 605
Saxer Lin 26.2 606 The digital input for pin PB15,
Edwin Chen 2.1 607
Saxer Lin 26.2 608 * When PB15 is high, the bit 1 of payload byte 6 is 1.
609 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 610
Saxer Lin 26.2 611 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
612 (((
Saxer Lin 36.1 613 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
614
Xiaoling 43.8 615 (% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
Saxer Lin 26.2 616 )))
617
Edwin Chen 14.1 618 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 619
Saxer Lin 36.1 620 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 621
Saxer Lin 36.1 622 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 623
Saxer Lin 26.2 624 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 625
Xiaoling 43.8 626 (% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
Edwin Chen 14.1 627
Saxer Lin 43.1 628
Edwin Chen 14.1 629 ==== 2.3.3.5 Digital Interrupt ====
630
Saxer Lin 36.1 631 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
Edwin Chen 14.1 632
Xiaoling 43.8 633 (% style="color:blue" %)**~ Interrupt connection method:**
Edwin Chen 14.1 634
Saxer Lin 36.1 635 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 636
Xiaoling 43.8 637 (% style="color:blue" %)**Example to use with door sensor :**
Edwin Chen 14.1 638
639 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
640
641 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
642
Saxer Lin 36.1 643 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 644
Xiaoling 43.8 645 (% style="color:blue" %)**~ Below is the installation example:**
Edwin Chen 14.1 646
Saxer Lin 36.1 647 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
Edwin Chen 14.1 648
649 * (((
Saxer Lin 36.1 650 One pin to SN50_v3's PA8 pin
Edwin Chen 14.1 651 )))
652 * (((
Saxer Lin 36.1 653 The other pin to SN50_v3's VDD pin
Edwin Chen 14.1 654 )))
655
Saxer Lin 36.1 656 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 657
658 Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
659
Saxer Lin 36.1 660 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 661
662 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
663
664 The above photos shows the two parts of the magnetic switch fitted to a door.
665
666 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
667
668 The command is:
669
Xiaoling 43.8 670 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 671
672 Below shows some screen captures in TTN V3:
673
674 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
675
676 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
677
678 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
679
680
Saxer Lin 26.2 681 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 682
Saxer Lin 26.2 683 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 684
Saxer Lin 40.1 685 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 686
Saxer Lin 40.1 687 Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
Edwin Chen 14.1 688
689 Below is the connection to SHT20/ SHT31. The connection is as below:
690
691
Saxer Lin 40.1 692 [[image:image-20230513103633-3.png||height="448" width="716"]]
Saxer Lin 36.1 693
Edwin Chen 14.1 694 The device will be able to get the I2C sensor data now and upload to IoT Server.
695
696 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
697
698 Convert the read byte to decimal and divide it by ten.
699
Edwin Chen 2.1 700 **Example:**
701
Edwin Chen 14.1 702 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 703
Edwin Chen 14.1 704 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 705
Edwin Chen 14.1 706 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 707
708
Edwin Chen 14.1 709 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 710
Edwin Chen 14.1 711 Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
712
713
714 ==== 2.3.3.8 Ultrasonic Sensor ====
715
Saxer Lin 26.2 716 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 717
Saxer Lin 36.1 718 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 719
Saxer Lin 36.1 720 The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
721
Edwin Chen 14.1 722 The picture below shows the connection:
723
Saxer Lin 36.1 724 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 725
Saxer Lin 36.1 726 Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 727
728 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
729
730 **Example:**
731
732 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
733
734
735
736 ==== 2.3.3.9  Battery Output - BAT pin ====
737
738 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
739
740
741 ==== 2.3.3.10  +5V Output ====
742
743 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
744
745 The 5V output time can be controlled by AT Command.
746
Xiaoling 43.9 747 (% style="color:blue" %)**AT+5VT=1000**
Edwin Chen 14.1 748
749 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
750
751 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
752
753
754
755 ==== 2.3.3.11  BH1750 Illumination Sensor ====
756
757 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
758
Saxer Lin 40.1 759 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 760
Saxer Lin 40.1 761 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 762
763
764 ==== 2.3.3.12  Working MOD ====
765
766 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
767
768 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
769
770 Case 7^^th^^ Byte >> 2 & 0x1f:
771
772 * 0: MOD1
773 * 1: MOD2
774 * 2: MOD3
775 * 3: MOD4
776 * 4: MOD5
777 * 5: MOD6
Saxer Lin 36.1 778 * 6: MOD7
779 * 7: MOD8
780 * 8: MOD9
Edwin Chen 14.1 781
Saxer Lin 43.1 782
Xiaoling 43.9 783
Edwin Chen 2.1 784 == 2.4 Payload Decoder file ==
785
786
787 In TTN, use can add a custom payload so it shows friendly reading
788
789 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
790
Saxer Lin 40.1 791 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 792
793
794
Edwin Chen 15.1 795 == 2.5 Frequency Plans ==
Edwin Chen 2.1 796
797
Edwin Chen 15.1 798 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 2.1 799
800 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
801
802
Edwin Chen 16.1 803 = 3. Configure SN50v3-LB =
Edwin Chen 2.1 804
805 == 3.1 Configure Methods ==
806
807
Edwin Chen 16.1 808 SN50v3-LB supports below configure method:
Edwin Chen 2.1 809
810 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
811 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
812 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
813
814 == 3.2 General Commands ==
815
816
817 These commands are to configure:
818
819 * General system settings like: uplink interval.
820 * LoRaWAN protocol & radio related command.
821
822 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
823
824 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
825
826
Edwin Chen 16.1 827 == 3.3 Commands special design for SN50v3-LB ==
Edwin Chen 2.1 828
829
830 These commands only valid for S31x-LB, as below:
831
832
833 === 3.3.1 Set Transmit Interval Time ===
834
835 Feature: Change LoRaWAN End Node Transmit Interval.
836
837 (% style="color:blue" %)**AT Command: AT+TDC**
838
839 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
840 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
841 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
842 30000
843 OK
844 the interval is 30000ms = 30s
845 )))
846 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
847 OK
848 Set transmit interval to 60000ms = 60 seconds
849 )))
850
851 (% style="color:blue" %)**Downlink Command: 0x01**
852
853 Format: Command Code (0x01) followed by 3 bytes time value.
854
855 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
856
857 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
858 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
859
Saxer Lin 40.1 860
Xiaoling 43.9 861
Edwin Chen 2.1 862 === 3.3.2 Get Device Status ===
863
Saxer Lin 40.1 864 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 865
866 (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
867
868 Sensor will upload Device Status via FPORT=5. See payload section for detail.
869
870
Saxer Lin 36.1 871 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 872
873 Feature, Set Interrupt mode for GPIO_EXIT.
874
Saxer Lin 36.1 875 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
Edwin Chen 2.1 876
877 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
878 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
Saxer Lin 36.1 879 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
Edwin Chen 2.1 880 0
881 OK
882 the mode is 0 =Disable Interrupt
883 )))
Saxer Lin 36.1 884 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
Edwin Chen 2.1 885 Set Transmit Interval
886 0. (Disable Interrupt),
887 ~1. (Trigger by rising and falling edge)
888 2. (Trigger by falling edge)
889 3. (Trigger by rising edge)
890 )))|(% style="width:157px" %)OK
Saxer Lin 36.1 891 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
892 Set Transmit Interval
Edwin Chen 2.1 893
Saxer Lin 36.1 894 trigger by rising edge.
895 )))|(% style="width:157px" %)OK
896 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
897
Edwin Chen 2.1 898 (% style="color:blue" %)**Downlink Command: 0x06**
899
900 Format: Command Code (0x06) followed by 3 bytes.
901
902 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
903
Saxer Lin 36.1 904 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
905 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
906 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
907 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
Edwin Chen 2.1 908
Saxer Lin 40.1 909
Xiaoling 43.9 910
Saxer Lin 36.1 911 === 3.3.4 Set Power Output Duration ===
912
913 Control the output duration 5V . Before each sampling, device will
914
915 ~1. first enable the power output to external sensor,
916
917 2. keep it on as per duration, read sensor value and construct uplink payload
918
919 3. final, close the power output.
920
921 (% style="color:blue" %)**AT Command: AT+5VT**
922
923 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
924 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
925 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
926 500(default)
927 OK
928 )))
929 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
930 Close after a delay of 1000 milliseconds.
931 )))|(% style="width:157px" %)OK
932
933 (% style="color:blue" %)**Downlink Command: 0x07**
934
935 Format: Command Code (0x07) followed by 2 bytes.
936
937 The first and second bytes are the time to turn on.
938
Saxer Lin 40.1 939 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
940 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 941
Saxer Lin 40.1 942
Xiaoling 43.9 943
Saxer Lin 36.1 944 === 3.3.5 Set Weighing parameters ===
945
Saxer Lin 37.1 946 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 947
948 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
949
950 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
951 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
Saxer Lin 37.1 952 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
953 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
954 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 955
956 (% style="color:blue" %)**Downlink Command: 0x08**
957
Saxer Lin 37.1 958 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 959
Saxer Lin 37.1 960 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 961
Saxer Lin 37.1 962 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 963
Saxer Lin 37.1 964 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
965 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
966 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
967
Saxer Lin 40.1 968
Xiaoling 43.9 969
Saxer Lin 36.1 970 === 3.3.6 Set Digital pulse count value ===
971
972 Feature: Set the pulse count value.
973
Saxer Lin 37.1 974 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
975
Saxer Lin 36.1 976 (% style="color:blue" %)**AT Command: AT+SETCNT**
977
978 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
979 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
980 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
981 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
982
983 (% style="color:blue" %)**Downlink Command: 0x09**
984
985 Format: Command Code (0x09) followed by 5 bytes.
986
987 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
988
989 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 990 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 991
Saxer Lin 40.1 992
Xiaoling 43.9 993
Saxer Lin 36.1 994 === 3.3.7 Set Workmode ===
995
Saxer Lin 37.1 996 Feature: Switch working mode.
Saxer Lin 36.1 997
998 (% style="color:blue" %)**AT Command: AT+MOD**
999
1000 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1001 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1002 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1003 OK
1004 )))
1005 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1006 OK
1007 Attention:Take effect after ATZ
1008 )))
1009
1010 (% style="color:blue" %)**Downlink Command: 0x0A**
1011
1012 Format: Command Code (0x0A) followed by 1 bytes.
1013
1014 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1015 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1016
Saxer Lin 40.1 1017
Xiaoling 43.9 1018
Edwin Chen 2.1 1019 = 4. Battery & Power Consumption =
1020
1021
Edwin Chen 11.1 1022 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1023
1024 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1025
1026
1027 = 5. OTA Firmware update =
1028
1029
1030 (% class="wikigeneratedid" %)
Edwin Chen 11.1 1031 User can change firmware SN50v3-LB to:
Edwin Chen 2.1 1032
1033 * Change Frequency band/ region.
1034 * Update with new features.
1035 * Fix bugs.
1036
1037 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1038
1039
1040 Methods to Update Firmware:
1041
1042 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1043 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1044
1045 = 6. FAQ =
1046
Edwin Chen 17.1 1047 == 6.1 Where can i find source code of SN50v3-LB? ==
Edwin Chen 2.1 1048
Edwin Chen 17.1 1049 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1050 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
Edwin Chen 2.1 1051
1052 = 7. Order Info =
1053
1054
Edwin Chen 10.1 1055 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
Edwin Chen 2.1 1056
1057 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1058
Edwin Chen 2.1 1059 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1060 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1061 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1062 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1063 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1064 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1065 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1066 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1067
Edwin Chen 10.1 1068 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1069
Edwin Chen 10.1 1070 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1071 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1072 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1073 * (% style="color:red" %)**NH**(%%): No Hole
1074
Edwin Chen 2.1 1075 = 8. ​Packing Info =
1076
1077 (% style="color:#037691" %)**Package Includes**:
1078
Edwin Chen 10.1 1079 * SN50v3-LB LoRaWAN Generic Node
Edwin Chen 2.1 1080
1081 (% style="color:#037691" %)**Dimension and weight**:
1082
1083 * Device Size: cm
1084 * Device Weight: g
1085 * Package Size / pcs : cm
1086 * Weight / pcs : g
1087
1088 = 9. Support =
1089
1090
1091 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 43.10 1092
Xiaoling 41.4 1093 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]