Version 43.35 by Xiaoling on 2023/05/16 14:49

Hide last authors
Xiaoling 41.2 1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
Edwin Chen 2.1 3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
Edwin Chen 5.1 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
Edwin Chen 2.1 18
Xiaoling 43.2 19
Edwin Chen 4.1 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 21
Edwin Chen 4.1 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
Edwin Chen 2.1 23
Edwin Chen 4.1 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
Edwin Chen 2.1 25
Edwin Chen 4.1 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 27
Edwin Chen 4.1 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 29
Edwin Chen 4.1 30
Edwin Chen 2.1 31 == 1.2 ​Features ==
32
33 * LoRaWAN 1.0.3 Class A
34 * Ultra-low power consumption
Edwin Chen 5.1 35 * Open-Source hardware/software
Edwin Chen 2.1 36 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
37 * Support Bluetooth v5.1 and LoRaWAN remote configure
38 * Support wireless OTA update firmware
39 * Uplink on periodically
40 * Downlink to change configure
41 * 8500mAh Battery for long term use
42
43 == 1.3 Specification ==
44
Xiaoling 43.4 45
Edwin Chen 2.1 46 (% style="color:#037691" %)**Common DC Characteristics:**
47
48 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
49 * Operating Temperature: -40 ~~ 85°C
50
Edwin Chen 5.1 51 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 52
Edwin Chen 5.1 53 * Battery output (2.6v ~~ 3.6v depends on battery)
54 * +5v controllable output
55 * 3 x Interrupt or Digital IN/OUT pins
56 * 3 x one-wire interfaces
57 * 1 x UART Interface
58 * 1 x I2C Interface
Edwin Chen 2.1 59
60 (% style="color:#037691" %)**LoRa Spec:**
61
62 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
63 * Max +22 dBm constant RF output vs.
64 * RX sensitivity: down to -139 dBm.
65 * Excellent blocking immunity
66
67 (% style="color:#037691" %)**Battery:**
68
69 * Li/SOCI2 un-chargeable battery
70 * Capacity: 8500mAh
71 * Self-Discharge: <1% / Year @ 25°C
72 * Max continuously current: 130mA
73 * Max boost current: 2A, 1 second
74
75 (% style="color:#037691" %)**Power Consumption**
76
77 * Sleep Mode: 5uA @ 3.3v
78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79
80 == 1.4 Sleep mode and working mode ==
81
Xiaoling 43.4 82
Edwin Chen 2.1 83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84
85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
86
87
88 == 1.5 Button & LEDs ==
89
90
91 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
92
93
94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
96 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
97 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
98 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
99 )))
100 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
101 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
102 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
103 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
104 )))
105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106
107 == 1.6 BLE connection ==
108
109
Edwin Chen 5.1 110 SN50v3-LB supports BLE remote configure.
Edwin Chen 2.1 111
112
113 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
114
115 * Press button to send an uplink
116 * Press button to active device.
117 * Device Power on or reset.
118
119 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
120
121
Edwin Chen 6.1 122 == 1.7 Pin Definitions ==
Edwin Chen 2.1 123
124
Saxer Lin 36.1 125 [[image:image-20230513102034-2.png]]
Edwin Chen 2.1 126
127
128 == 1.8 Mechanical ==
129
130
131 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132
133 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134
135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136
137
Edwin Chen 5.1 138 == Hole Option ==
139
Xiaoling 43.4 140
Edwin Chen 5.1 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142
143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
144
145 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
146
147
Edwin Chen 10.1 148 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
Edwin Chen 2.1 149
150 == 2.1 How it works ==
151
152
Edwin Chen 11.2 153 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 154
155
156 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
157
158
159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160
161 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162
163
Edwin Chen 11.2 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
Edwin Chen 2.1 165
Edwin Chen 11.2 166 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 167
Edwin Chen 11.2 168 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 2.1 169
170
171 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
172
173
174 (% style="color:blue" %)**Register the device**
175
176 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
177
178
179 (% style="color:blue" %)**Add APP EUI and DEV EUI**
180
181 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
182
183
184 (% style="color:blue" %)**Add APP EUI in the application**
185
186
187 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
188
189
190 (% style="color:blue" %)**Add APP KEY**
191
192 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
193
194
Edwin Chen 11.2 195 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
Edwin Chen 2.1 196
197
Edwin Chen 11.2 198 Press the button for 5 seconds to activate the SN50v3-LB.
Edwin Chen 2.1 199
200 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
201
202 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
203
204
205 == 2.3 ​Uplink Payload ==
206
207 === 2.3.1 Device Status, FPORT~=5 ===
208
209
Edwin Chen 11.2 210 Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 211
212 The Payload format is as below.
213
214
215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219
220 Example parse in TTNv3
221
222
Edwin Chen 11.2 223 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
Edwin Chen 2.1 224
225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226
227 (% style="color:#037691" %)**Frequency Band**:
228
229 *0x01: EU868
230
231 *0x02: US915
232
233 *0x03: IN865
234
235 *0x04: AU915
236
237 *0x05: KZ865
238
239 *0x06: RU864
240
241 *0x07: AS923
242
243 *0x08: AS923-1
244
245 *0x09: AS923-2
246
247 *0x0a: AS923-3
248
249 *0x0b: CN470
250
251 *0x0c: EU433
252
253 *0x0d: KR920
254
255 *0x0e: MA869
256
257
258 (% style="color:#037691" %)**Sub-Band**:
259
260 AU915 and US915:value 0x00 ~~ 0x08
261
262 CN470: value 0x0B ~~ 0x0C
263
264 Other Bands: Always 0x00
265
266
267 (% style="color:#037691" %)**Battery Info**:
268
269 Check the battery voltage.
270
271 Ex1: 0x0B45 = 2885mV
272
273 Ex2: 0x0B49 = 2889mV
274
275
Edwin Chen 12.1 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 277
278
Edwin Chen 12.1 279 SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280
281 For example:
282
283 **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284
285
Edwin Chen 13.1 286 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 287
288 1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
Edwin Chen 13.1 289 1. All modes share the same Payload Explanation from HERE.
290 1. By default, the device will send an uplink message every 20 minutes.
Edwin Chen 12.1 291
Edwin Chen 13.1 292 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 293
Xiaoling 43.5 294
Edwin Chen 12.1 295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296
Xiaoling 43.5 297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.18 298 |(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
Saxer Lin 40.1 299 |**Value**|Bat|(% style="width:191px" %)(((
Xiaoling 43.12 300 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 301 )))|(% style="width:78px" %)(((
Xiaoling 43.12 302 ADC(PA4)
Saxer Lin 26.2 303 )))|(% style="width:216px" %)(((
Xiaoling 43.13 304 Digital in(PB15)&Digital Interrupt(PA8)
Saxer Lin 40.1 305 )))|(% style="width:308px" %)(((
Xiaoling 43.12 306 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 307 )))|(% style="width:154px" %)(((
Xiaoling 43.12 308 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 309 )))
310
Edwin Chen 12.1 311 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
312
313
Edwin Chen 13.1 314 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
315
Edwin Chen 12.1 316 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317
Xiaoling 43.14 318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.15 319 |(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
Saxer Lin 40.1 320 |**Value**|BAT|(% style="width:196px" %)(((
Xiaoling 43.16 321 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 322 )))|(% style="width:87px" %)(((
Xiaoling 43.16 323 ADC(PA4)
Saxer Lin 40.1 324 )))|(% style="width:189px" %)(((
Xiaoling 43.16 325 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 326 )))|(% style="width:208px" %)(((
Xiaoling 43.16 327 Distance measure by:1) LIDAR-Lite V3HP
328 Or 2) Ultrasonic Sensor
Saxer Lin 40.1 329 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 330
331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
332
Xiaoling 43.17 333 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
Edwin Chen 12.1 334
Saxer Lin 26.2 335 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 336
Xiaoling 43.17 337 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
Edwin Chen 12.1 338
Saxer Lin 36.1 339 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
340
Saxer Lin 26.2 341 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 342
343 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
344
Xiaoling 43.19 345 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.21 346 |(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**
Saxer Lin 40.1 347 |**Value**|BAT|(% style="width:183px" %)(((
Xiaoling 43.19 348 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 349 )))|(% style="width:173px" %)(((
Xiaoling 43.19 350 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 351 )))|(% style="width:84px" %)(((
Xiaoling 43.19 352 ADC(PA4)
Saxer Lin 40.1 353 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 354 Distance measure by:1)TF-Mini plus LiDAR
Xiaoling 43.22 355 Or 
356 2) TF-Luna LiDAR
Saxer Lin 40.1 357 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 358
359 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
360
361 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
362
Saxer Lin 36.1 363 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
Edwin Chen 12.1 364
Saxer Lin 26.2 365 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 366
367 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
368
Saxer Lin 36.1 369 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
Edwin Chen 12.1 370
Saxer Lin 36.1 371 [[image:image-20230513105207-4.png||height="469" width="802"]]
Edwin Chen 12.1 372
373
Edwin Chen 13.1 374 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
375
Edwin Chen 12.1 376 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
377
Xiaoling 43.21 378 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.25 379 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
380 **Size(bytes)**
Xiaoling 43.24 381 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
Saxer Lin 26.2 382 |**Value**|(% style="width:68px" %)(((
Xiaoling 43.23 383 ADC1(PA4)
Saxer Lin 26.2 384 )))|(% style="width:75px" %)(((
Xiaoling 43.23 385 ADC2(PA5)
Saxer Lin 36.1 386 )))|(((
Xiaoling 43.23 387 ADC3(PA8)
Saxer Lin 36.1 388 )))|(((
389 Digital Interrupt(PB15)
390 )))|(% style="width:304px" %)(((
Xiaoling 43.23 391 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 36.1 392 )))|(% style="width:163px" %)(((
Xiaoling 43.23 393 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 394 )))|(% style="width:53px" %)Bat
395
396 [[image:image-20230513110214-6.png]]
397
398
Edwin Chen 13.1 399 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
400
Edwin Chen 12.1 401
Saxer Lin 26.2 402 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 403
Xiaoling 43.26 404 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
405 |(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**
Saxer Lin 26.2 406 |**Value**|BAT|(% style="width:186px" %)(((
Xiaoling 43.27 407 Temperature1(DS18B20)(PC13)
Saxer Lin 26.2 408 )))|(% style="width:82px" %)(((
Xiaoling 43.27 409 ADC(PA4)
Saxer Lin 26.2 410 )))|(% style="width:210px" %)(((
Xiaoling 43.27 411 Digital in(PB15) & Digital Interrupt(PA8) 
Saxer Lin 26.2 412 )))|(% style="width:191px" %)Temperature2(DS18B20)
Xiaoling 43.27 413 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
Edwin Chen 12.1 414
415 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
416
Saxer Lin 39.2 417 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 418
Saxer Lin 39.1 419
Edwin Chen 13.1 420 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
421
Saxer Lin 26.2 422 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 423
424 Each HX711 need to be calibrated before used. User need to do below two steps:
425
426 1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
427 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
428 1. (((
Saxer Lin 26.2 429 Weight has 4 bytes, the unit is g.
Edwin Chen 12.1 430 )))
431
432 For example:
433
Saxer Lin 26.2 434 **AT+GETSENSORVALUE =0**
Edwin Chen 12.1 435
436 Response:  Weight is 401 g
437
438 Check the response of this command and adjust the value to match the real value for thing.
439
Xiaoling 43.29 440 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
441 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 442 **Size(bytes)**
Xiaoling 43.30 443 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
Saxer Lin 40.1 444 |**Value**|BAT|(% style="width:193px" %)(((
Saxer Lin 36.1 445 Temperature(DS18B20)
Saxer Lin 26.2 446 (PC13)
Saxer Lin 40.1 447 )))|(% style="width:85px" %)(((
Xiaoling 43.31 448 ADC(PA4)
Saxer Lin 40.1 449 )))|(% style="width:186px" %)(((
Saxer Lin 36.1 450 Digital in(PB15) &
451 Digital Interrupt(PA8)
Saxer Lin 40.1 452 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 453
Edwin Chen 12.1 454 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
455
456
Edwin Chen 13.1 457 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
458
Edwin Chen 12.1 459 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
460
461 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
462
Saxer Lin 26.2 463 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 464
Xiaoling 43.31 465 (% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
Edwin Chen 12.1 466
Xiaoling 43.31 467 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px %)
Xiaoling 43.32 468 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
Saxer Lin 36.1 469 |**Value**|BAT|(% style="width:256px" %)(((
Xiaoling 43.31 470 Temperature(DS18B20)(PC13)
Saxer Lin 36.1 471 )))|(% style="width:108px" %)(((
Xiaoling 43.31 472 ADC(PA4)
Saxer Lin 36.1 473 )))|(% style="width:126px" %)(((
Xiaoling 43.31 474 Digital in(PB15)
Saxer Lin 36.1 475 )))|(% style="width:145px" %)(((
Xiaoling 43.31 476 Count(PA8)
Saxer Lin 36.1 477 )))
478
Edwin Chen 12.1 479 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
480
481
Edwin Chen 13.1 482 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
483
Xiaoling 43.33 484 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px %)
485 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 486 **Size(bytes)**
Xiaoling 43.34 487 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
Saxer Lin 40.1 488 |**Value**|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 489 Temperature(DS18B20)
490 (PC13)
Saxer Lin 40.1 491 )))|(% style="width:83px" %)(((
Xiaoling 43.35 492 ADC(PA5)
Saxer Lin 40.1 493 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 494 Digital Interrupt1(PA8)
Saxer Lin 40.1 495 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 496
497 [[image:image-20230513111203-7.png||height="324" width="975"]]
498
Edwin Chen 13.1 499 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
500
Xiaoling 43.35 501 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px %)
502 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 503 **Size(bytes)**
Xiaoling 43.35 504 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)2
Saxer Lin 36.1 505 |**Value**|BAT|(% style="width:207px" %)(((
506 Temperature(DS18B20)
507 (PC13)
508 )))|(% style="width:94px" %)(((
509 ADC1
510 (PA4)
511 )))|(% style="width:198px" %)(((
512 Digital Interrupt(PB15)
513 )))|(% style="width:84px" %)(((
514 ADC2
515 (PA5)
Saxer Lin 40.1 516 )))|(% style="width:82px" %)(((
Saxer Lin 36.1 517 ADC3
518 (PA8)
Edwin Chen 12.1 519 )))
520
Saxer Lin 36.1 521 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 522
523
Edwin Chen 13.1 524 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
525
Saxer Lin 36.1 526 (% style="width:1010px" %)
Edwin Chen 12.1 527 |=(((
528 **Size(bytes)**
Saxer Lin 36.1 529 )))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
Edwin Chen 12.1 530 |**Value**|BAT|(((
Saxer Lin 36.1 531 Temperature1(DS18B20)
532 (PC13)
Edwin Chen 12.1 533 )))|(((
Saxer Lin 36.1 534 Temperature2(DS18B20)
535 (PB9)
Edwin Chen 12.1 536 )))|(((
Saxer Lin 36.1 537 Digital Interrupt
538 (PB15)
539 )))|(% style="width:193px" %)(((
540 Temperature3(DS18B20)
541 (PB8)
542 )))|(% style="width:78px" %)(((
543 Count1
544 (PA8)
545 )))|(% style="width:78px" %)(((
546 Count2
547 (PA4)
Edwin Chen 12.1 548 )))
549
Saxer Lin 36.1 550 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 551
552 **The newly added AT command is issued correspondingly:**
553
Saxer Lin 36.1 554 **~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
Edwin Chen 12.1 555
Saxer Lin 36.1 556 **~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
Edwin Chen 12.1 557
Saxer Lin 36.1 558 **~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
Edwin Chen 12.1 559
560 **AT+SETCNT=aa,bb** 
561
Saxer Lin 36.1 562 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 563
Saxer Lin 36.1 564 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 565
566
Edwin Chen 14.1 567
568 === 2.3.3  ​Decode payload ===
569
Edwin Chen 12.1 570 While using TTN V3 network, you can add the payload format to decode the payload.
571
572 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
573
574 The payload decoder function for TTN V3 are here:
575
Edwin Chen 14.1 576 SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 577
578
Edwin Chen 14.1 579 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 580
Edwin Chen 14.1 581 Check the battery voltage for SN50v3.
Edwin Chen 2.1 582
583 Ex1: 0x0B45 = 2885mV
584
585 Ex2: 0x0B49 = 2889mV
586
587
Edwin Chen 14.1 588 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 589
Saxer Lin 42.1 590 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 591
Edwin Chen 14.1 592 More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
593
594 **Connection:**
595
Saxer Lin 26.2 596 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 597
Edwin Chen 2.1 598 **Example**:
599
600 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
601
602 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
603
604 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
605
606
Edwin Chen 14.1 607 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 608
Saxer Lin 26.2 609 The digital input for pin PB15,
Edwin Chen 2.1 610
Saxer Lin 26.2 611 * When PB15 is high, the bit 1 of payload byte 6 is 1.
612 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 613
Saxer Lin 26.2 614 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
615 (((
Saxer Lin 36.1 616 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
617
Xiaoling 43.8 618 (% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
Saxer Lin 26.2 619 )))
620
Edwin Chen 14.1 621 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 622
Saxer Lin 36.1 623 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 624
Saxer Lin 36.1 625 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 626
Saxer Lin 26.2 627 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 628
Xiaoling 43.8 629 (% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
Edwin Chen 14.1 630
Saxer Lin 43.1 631
Edwin Chen 14.1 632 ==== 2.3.3.5 Digital Interrupt ====
633
Saxer Lin 36.1 634 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
Edwin Chen 14.1 635
Xiaoling 43.8 636 (% style="color:blue" %)**~ Interrupt connection method:**
Edwin Chen 14.1 637
Saxer Lin 36.1 638 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 639
Xiaoling 43.8 640 (% style="color:blue" %)**Example to use with door sensor :**
Edwin Chen 14.1 641
642 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
643
644 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
645
Saxer Lin 36.1 646 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 647
Xiaoling 43.8 648 (% style="color:blue" %)**~ Below is the installation example:**
Edwin Chen 14.1 649
Saxer Lin 36.1 650 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
Edwin Chen 14.1 651
652 * (((
Saxer Lin 36.1 653 One pin to SN50_v3's PA8 pin
Edwin Chen 14.1 654 )))
655 * (((
Saxer Lin 36.1 656 The other pin to SN50_v3's VDD pin
Edwin Chen 14.1 657 )))
658
Saxer Lin 36.1 659 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 660
661 Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
662
Saxer Lin 36.1 663 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 664
665 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
666
667 The above photos shows the two parts of the magnetic switch fitted to a door.
668
669 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
670
671 The command is:
672
Xiaoling 43.8 673 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 674
675 Below shows some screen captures in TTN V3:
676
677 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
678
679 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
680
681 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
682
683
Saxer Lin 26.2 684 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 685
Saxer Lin 26.2 686 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 687
Saxer Lin 40.1 688 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 689
Saxer Lin 40.1 690 Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
Edwin Chen 14.1 691
692 Below is the connection to SHT20/ SHT31. The connection is as below:
693
694
Saxer Lin 40.1 695 [[image:image-20230513103633-3.png||height="448" width="716"]]
Saxer Lin 36.1 696
Edwin Chen 14.1 697 The device will be able to get the I2C sensor data now and upload to IoT Server.
698
699 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
700
701 Convert the read byte to decimal and divide it by ten.
702
Edwin Chen 2.1 703 **Example:**
704
Edwin Chen 14.1 705 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 706
Edwin Chen 14.1 707 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 708
Edwin Chen 14.1 709 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 710
711
Edwin Chen 14.1 712 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 713
Edwin Chen 14.1 714 Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
715
716
717 ==== 2.3.3.8 Ultrasonic Sensor ====
718
Saxer Lin 26.2 719 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 720
Saxer Lin 36.1 721 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 722
Saxer Lin 36.1 723 The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
724
Edwin Chen 14.1 725 The picture below shows the connection:
726
Saxer Lin 36.1 727 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 728
Saxer Lin 36.1 729 Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 730
731 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
732
733 **Example:**
734
735 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
736
737
738
739 ==== 2.3.3.9  Battery Output - BAT pin ====
740
741 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
742
743
744 ==== 2.3.3.10  +5V Output ====
745
746 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
747
748 The 5V output time can be controlled by AT Command.
749
Xiaoling 43.9 750 (% style="color:blue" %)**AT+5VT=1000**
Edwin Chen 14.1 751
752 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
753
754 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
755
756
757
758 ==== 2.3.3.11  BH1750 Illumination Sensor ====
759
760 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
761
Saxer Lin 40.1 762 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 763
Saxer Lin 40.1 764 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 765
766
767 ==== 2.3.3.12  Working MOD ====
768
769 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
770
771 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
772
773 Case 7^^th^^ Byte >> 2 & 0x1f:
774
775 * 0: MOD1
776 * 1: MOD2
777 * 2: MOD3
778 * 3: MOD4
779 * 4: MOD5
780 * 5: MOD6
Saxer Lin 36.1 781 * 6: MOD7
782 * 7: MOD8
783 * 8: MOD9
Edwin Chen 14.1 784
Saxer Lin 43.1 785
Xiaoling 43.9 786
Edwin Chen 2.1 787 == 2.4 Payload Decoder file ==
788
789
790 In TTN, use can add a custom payload so it shows friendly reading
791
792 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
793
Saxer Lin 40.1 794 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 795
796
797
Edwin Chen 15.1 798 == 2.5 Frequency Plans ==
Edwin Chen 2.1 799
800
Edwin Chen 15.1 801 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 2.1 802
803 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
804
805
Edwin Chen 16.1 806 = 3. Configure SN50v3-LB =
Edwin Chen 2.1 807
808 == 3.1 Configure Methods ==
809
810
Edwin Chen 16.1 811 SN50v3-LB supports below configure method:
Edwin Chen 2.1 812
813 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
814 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
815 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
816
817 == 3.2 General Commands ==
818
819
820 These commands are to configure:
821
822 * General system settings like: uplink interval.
823 * LoRaWAN protocol & radio related command.
824
825 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
826
827 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
828
829
Edwin Chen 16.1 830 == 3.3 Commands special design for SN50v3-LB ==
Edwin Chen 2.1 831
832
833 These commands only valid for S31x-LB, as below:
834
835
836 === 3.3.1 Set Transmit Interval Time ===
837
838 Feature: Change LoRaWAN End Node Transmit Interval.
839
840 (% style="color:blue" %)**AT Command: AT+TDC**
841
842 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
843 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
844 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
845 30000
846 OK
847 the interval is 30000ms = 30s
848 )))
849 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
850 OK
851 Set transmit interval to 60000ms = 60 seconds
852 )))
853
854 (% style="color:blue" %)**Downlink Command: 0x01**
855
856 Format: Command Code (0x01) followed by 3 bytes time value.
857
858 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
859
860 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
861 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
862
Saxer Lin 40.1 863
Xiaoling 43.9 864
Edwin Chen 2.1 865 === 3.3.2 Get Device Status ===
866
Saxer Lin 40.1 867 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 868
869 (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
870
871 Sensor will upload Device Status via FPORT=5. See payload section for detail.
872
873
Saxer Lin 36.1 874 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 875
876 Feature, Set Interrupt mode for GPIO_EXIT.
877
Saxer Lin 36.1 878 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
Edwin Chen 2.1 879
880 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
881 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
Saxer Lin 36.1 882 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
Edwin Chen 2.1 883 0
884 OK
885 the mode is 0 =Disable Interrupt
886 )))
Saxer Lin 36.1 887 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
Edwin Chen 2.1 888 Set Transmit Interval
889 0. (Disable Interrupt),
890 ~1. (Trigger by rising and falling edge)
891 2. (Trigger by falling edge)
892 3. (Trigger by rising edge)
893 )))|(% style="width:157px" %)OK
Saxer Lin 36.1 894 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
895 Set Transmit Interval
Edwin Chen 2.1 896
Saxer Lin 36.1 897 trigger by rising edge.
898 )))|(% style="width:157px" %)OK
899 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
900
Edwin Chen 2.1 901 (% style="color:blue" %)**Downlink Command: 0x06**
902
903 Format: Command Code (0x06) followed by 3 bytes.
904
905 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
906
Saxer Lin 36.1 907 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
908 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
909 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
910 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
Edwin Chen 2.1 911
Saxer Lin 40.1 912
Xiaoling 43.9 913
Saxer Lin 36.1 914 === 3.3.4 Set Power Output Duration ===
915
916 Control the output duration 5V . Before each sampling, device will
917
918 ~1. first enable the power output to external sensor,
919
920 2. keep it on as per duration, read sensor value and construct uplink payload
921
922 3. final, close the power output.
923
924 (% style="color:blue" %)**AT Command: AT+5VT**
925
926 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
927 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
928 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
929 500(default)
930 OK
931 )))
932 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
933 Close after a delay of 1000 milliseconds.
934 )))|(% style="width:157px" %)OK
935
936 (% style="color:blue" %)**Downlink Command: 0x07**
937
938 Format: Command Code (0x07) followed by 2 bytes.
939
940 The first and second bytes are the time to turn on.
941
Saxer Lin 40.1 942 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
943 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 944
Saxer Lin 40.1 945
Xiaoling 43.9 946
Saxer Lin 36.1 947 === 3.3.5 Set Weighing parameters ===
948
Saxer Lin 37.1 949 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 950
951 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
952
953 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
954 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
Saxer Lin 37.1 955 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
956 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
957 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 958
959 (% style="color:blue" %)**Downlink Command: 0x08**
960
Saxer Lin 37.1 961 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 962
Saxer Lin 37.1 963 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 964
Saxer Lin 37.1 965 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 966
Saxer Lin 37.1 967 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
968 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
969 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
970
Saxer Lin 40.1 971
Xiaoling 43.9 972
Saxer Lin 36.1 973 === 3.3.6 Set Digital pulse count value ===
974
975 Feature: Set the pulse count value.
976
Saxer Lin 37.1 977 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
978
Saxer Lin 36.1 979 (% style="color:blue" %)**AT Command: AT+SETCNT**
980
981 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
982 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
983 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
984 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
985
986 (% style="color:blue" %)**Downlink Command: 0x09**
987
988 Format: Command Code (0x09) followed by 5 bytes.
989
990 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
991
992 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 993 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 994
Saxer Lin 40.1 995
Xiaoling 43.9 996
Saxer Lin 36.1 997 === 3.3.7 Set Workmode ===
998
Saxer Lin 37.1 999 Feature: Switch working mode.
Saxer Lin 36.1 1000
1001 (% style="color:blue" %)**AT Command: AT+MOD**
1002
1003 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1004 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1005 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1006 OK
1007 )))
1008 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1009 OK
1010 Attention:Take effect after ATZ
1011 )))
1012
1013 (% style="color:blue" %)**Downlink Command: 0x0A**
1014
1015 Format: Command Code (0x0A) followed by 1 bytes.
1016
1017 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1018 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1019
Saxer Lin 40.1 1020
Xiaoling 43.9 1021
Edwin Chen 2.1 1022 = 4. Battery & Power Consumption =
1023
1024
Edwin Chen 11.1 1025 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1026
1027 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1028
1029
1030 = 5. OTA Firmware update =
1031
1032
1033 (% class="wikigeneratedid" %)
Edwin Chen 11.1 1034 User can change firmware SN50v3-LB to:
Edwin Chen 2.1 1035
1036 * Change Frequency band/ region.
1037 * Update with new features.
1038 * Fix bugs.
1039
1040 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1041
1042
1043 Methods to Update Firmware:
1044
1045 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1046 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1047
1048 = 6. FAQ =
1049
Edwin Chen 17.1 1050 == 6.1 Where can i find source code of SN50v3-LB? ==
Edwin Chen 2.1 1051
Edwin Chen 17.1 1052 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1053 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
Edwin Chen 2.1 1054
1055 = 7. Order Info =
1056
1057
Edwin Chen 10.1 1058 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
Edwin Chen 2.1 1059
1060 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1061
Edwin Chen 2.1 1062 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1063 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1064 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1065 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1066 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1067 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1068 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1069 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1070
Edwin Chen 10.1 1071 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1072
Edwin Chen 10.1 1073 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1074 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1075 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1076 * (% style="color:red" %)**NH**(%%): No Hole
1077
Edwin Chen 2.1 1078 = 8. ​Packing Info =
1079
1080 (% style="color:#037691" %)**Package Includes**:
1081
Edwin Chen 10.1 1082 * SN50v3-LB LoRaWAN Generic Node
Edwin Chen 2.1 1083
1084 (% style="color:#037691" %)**Dimension and weight**:
1085
1086 * Device Size: cm
1087 * Device Weight: g
1088 * Package Size / pcs : cm
1089 * Weight / pcs : g
1090
1091 = 9. Support =
1092
1093
1094 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 43.10 1095
Xiaoling 41.4 1096 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]