Version 43.34 by Xiaoling on 2023/05/16 14:46

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18
19
20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21
22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23
24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25
26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27
28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29
30
31 == 1.2 ​Features ==
32
33 * LoRaWAN 1.0.3 Class A
34 * Ultra-low power consumption
35 * Open-Source hardware/software
36 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
37 * Support Bluetooth v5.1 and LoRaWAN remote configure
38 * Support wireless OTA update firmware
39 * Uplink on periodically
40 * Downlink to change configure
41 * 8500mAh Battery for long term use
42
43 == 1.3 Specification ==
44
45
46 (% style="color:#037691" %)**Common DC Characteristics:**
47
48 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
49 * Operating Temperature: -40 ~~ 85°C
50
51 (% style="color:#037691" %)**I/O Interface:**
52
53 * Battery output (2.6v ~~ 3.6v depends on battery)
54 * +5v controllable output
55 * 3 x Interrupt or Digital IN/OUT pins
56 * 3 x one-wire interfaces
57 * 1 x UART Interface
58 * 1 x I2C Interface
59
60 (% style="color:#037691" %)**LoRa Spec:**
61
62 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
63 * Max +22 dBm constant RF output vs.
64 * RX sensitivity: down to -139 dBm.
65 * Excellent blocking immunity
66
67 (% style="color:#037691" %)**Battery:**
68
69 * Li/SOCI2 un-chargeable battery
70 * Capacity: 8500mAh
71 * Self-Discharge: <1% / Year @ 25°C
72 * Max continuously current: 130mA
73 * Max boost current: 2A, 1 second
74
75 (% style="color:#037691" %)**Power Consumption**
76
77 * Sleep Mode: 5uA @ 3.3v
78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79
80 == 1.4 Sleep mode and working mode ==
81
82
83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84
85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
86
87
88 == 1.5 Button & LEDs ==
89
90
91 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
92
93
94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
96 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
97 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
98 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
99 )))
100 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
101 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
102 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
103 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
104 )))
105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106
107 == 1.6 BLE connection ==
108
109
110 SN50v3-LB supports BLE remote configure.
111
112
113 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
114
115 * Press button to send an uplink
116 * Press button to active device.
117 * Device Power on or reset.
118
119 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
120
121
122 == 1.7 Pin Definitions ==
123
124
125 [[image:image-20230513102034-2.png]]
126
127
128 == 1.8 Mechanical ==
129
130
131 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132
133 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134
135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136
137
138 == Hole Option ==
139
140
141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142
143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
144
145 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
146
147
148 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
149
150 == 2.1 How it works ==
151
152
153 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154
155
156 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
157
158
159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160
161 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162
163
164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
165
166 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
167
168 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
169
170
171 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
172
173
174 (% style="color:blue" %)**Register the device**
175
176 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
177
178
179 (% style="color:blue" %)**Add APP EUI and DEV EUI**
180
181 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
182
183
184 (% style="color:blue" %)**Add APP EUI in the application**
185
186
187 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
188
189
190 (% style="color:blue" %)**Add APP KEY**
191
192 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
193
194
195 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
196
197
198 Press the button for 5 seconds to activate the SN50v3-LB.
199
200 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
201
202 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
203
204
205 == 2.3 ​Uplink Payload ==
206
207 === 2.3.1 Device Status, FPORT~=5 ===
208
209
210 Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
211
212 The Payload format is as below.
213
214
215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219
220 Example parse in TTNv3
221
222
223 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
224
225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226
227 (% style="color:#037691" %)**Frequency Band**:
228
229 *0x01: EU868
230
231 *0x02: US915
232
233 *0x03: IN865
234
235 *0x04: AU915
236
237 *0x05: KZ865
238
239 *0x06: RU864
240
241 *0x07: AS923
242
243 *0x08: AS923-1
244
245 *0x09: AS923-2
246
247 *0x0a: AS923-3
248
249 *0x0b: CN470
250
251 *0x0c: EU433
252
253 *0x0d: KR920
254
255 *0x0e: MA869
256
257
258 (% style="color:#037691" %)**Sub-Band**:
259
260 AU915 and US915:value 0x00 ~~ 0x08
261
262 CN470: value 0x0B ~~ 0x0C
263
264 Other Bands: Always 0x00
265
266
267 (% style="color:#037691" %)**Battery Info**:
268
269 Check the battery voltage.
270
271 Ex1: 0x0B45 = 2885mV
272
273 Ex2: 0x0B49 = 2889mV
274
275
276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277
278
279 SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280
281 For example:
282
283 **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284
285
286 (% style="color:red" %) **Important Notice:**
287
288 1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 1. All modes share the same Payload Explanation from HERE.
290 1. By default, the device will send an uplink message every 20 minutes.
291
292 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293
294
295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296
297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 |(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 |**Value**|Bat|(% style="width:191px" %)(((
300 Temperature(DS18B20)(PC13)
301 )))|(% style="width:78px" %)(((
302 ADC(PA4)
303 )))|(% style="width:216px" %)(((
304 Digital in(PB15)&Digital Interrupt(PA8)
305 )))|(% style="width:308px" %)(((
306 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
307 )))|(% style="width:154px" %)(((
308 Humidity(SHT20 or SHT31)
309 )))
310
311 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
312
313
314 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
315
316 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317
318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
319 |(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
320 |**Value**|BAT|(% style="width:196px" %)(((
321 Temperature(DS18B20)(PC13)
322 )))|(% style="width:87px" %)(((
323 ADC(PA4)
324 )))|(% style="width:189px" %)(((
325 Digital in(PB15) & Digital Interrupt(PA8)
326 )))|(% style="width:208px" %)(((
327 Distance measure by:1) LIDAR-Lite V3HP
328 Or 2) Ultrasonic Sensor
329 )))|(% style="width:117px" %)Reserved
330
331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
332
333 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
334
335 [[image:image-20230512173758-5.png||height="563" width="712"]]
336
337 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
338
339 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
340
341 [[image:image-20230512173903-6.png||height="596" width="715"]]
342
343 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
344
345 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
346 |(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**
347 |**Value**|BAT|(% style="width:183px" %)(((
348 Temperature(DS18B20)(PC13)
349 )))|(% style="width:173px" %)(((
350 Digital in(PB15) & Digital Interrupt(PA8)
351 )))|(% style="width:84px" %)(((
352 ADC(PA4)
353 )))|(% style="width:323px" %)(((
354 Distance measure by:1)TF-Mini plus LiDAR
355 Or 
356 2) TF-Luna LiDAR
357 )))|(% style="width:188px" %)Distance signal  strength
358
359 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
360
361 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
362
363 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
364
365 [[image:image-20230512180609-7.png||height="555" width="802"]]
366
367 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
368
369 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
370
371 [[image:image-20230513105207-4.png||height="469" width="802"]]
372
373
374 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
375
376 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
377
378 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
379 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
380 **Size(bytes)**
381 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
382 |**Value**|(% style="width:68px" %)(((
383 ADC1(PA4)
384 )))|(% style="width:75px" %)(((
385 ADC2(PA5)
386 )))|(((
387 ADC3(PA8)
388 )))|(((
389 Digital Interrupt(PB15)
390 )))|(% style="width:304px" %)(((
391 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
392 )))|(% style="width:163px" %)(((
393 Humidity(SHT20 or SHT31)
394 )))|(% style="width:53px" %)Bat
395
396 [[image:image-20230513110214-6.png]]
397
398
399 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
400
401
402 This mode has total 11 bytes. As shown below:
403
404 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
405 |(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**
406 |**Value**|BAT|(% style="width:186px" %)(((
407 Temperature1(DS18B20)(PC13)
408 )))|(% style="width:82px" %)(((
409 ADC(PA4)
410 )))|(% style="width:210px" %)(((
411 Digital in(PB15) & Digital Interrupt(PA8) 
412 )))|(% style="width:191px" %)Temperature2(DS18B20)
413 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
414
415 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
416
417 [[image:image-20230513134006-1.png||height="559" width="736"]]
418
419
420 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
421
422 [[image:image-20230512164658-2.png||height="532" width="729"]]
423
424 Each HX711 need to be calibrated before used. User need to do below two steps:
425
426 1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
427 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
428 1. (((
429 Weight has 4 bytes, the unit is g.
430 )))
431
432 For example:
433
434 **AT+GETSENSORVALUE =0**
435
436 Response:  Weight is 401 g
437
438 Check the response of this command and adjust the value to match the real value for thing.
439
440 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
441 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
442 **Size(bytes)**
443 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
444 |**Value**|BAT|(% style="width:193px" %)(((
445 Temperature(DS18B20)
446 (PC13)
447 )))|(% style="width:85px" %)(((
448 ADC(PA4)
449 )))|(% style="width:186px" %)(((
450 Digital in(PB15) &
451 Digital Interrupt(PA8)
452 )))|(% style="width:100px" %)Weight
453
454 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
455
456
457 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
458
459 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
460
461 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
462
463 [[image:image-20230512181814-9.png||height="543" width="697"]]
464
465 (% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
466
467 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px %)
468 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
469 |**Value**|BAT|(% style="width:256px" %)(((
470 Temperature(DS18B20)(PC13)
471 )))|(% style="width:108px" %)(((
472 ADC(PA4)
473 )))|(% style="width:126px" %)(((
474 Digital in(PB15)
475 )))|(% style="width:145px" %)(((
476 Count(PA8)
477 )))
478
479 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
480
481
482 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
483
484 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px %)
485 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
486 **Size(bytes)**
487 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
488 |**Value**|BAT|(% style="width:188px" %)(((
489 Temperature(DS18B20)
490 (PC13)
491 )))|(% style="width:83px" %)(((
492 ADC
493 (PA5)
494 )))|(% style="width:184px" %)(((
495 Digital Interrupt1(PA8)
496 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
497
498 [[image:image-20230513111203-7.png||height="324" width="975"]]
499
500 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
501
502 (% style="width:922px" %)
503 |=(((
504 **Size(bytes)**
505 )))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
506 |**Value**|BAT|(% style="width:207px" %)(((
507 Temperature(DS18B20)
508 (PC13)
509 )))|(% style="width:94px" %)(((
510 ADC1
511 (PA4)
512 )))|(% style="width:198px" %)(((
513 Digital Interrupt(PB15)
514 )))|(% style="width:84px" %)(((
515 ADC2
516 (PA5)
517 )))|(% style="width:82px" %)(((
518 ADC3
519 (PA8)
520 )))
521
522 [[image:image-20230513111231-8.png||height="335" width="900"]]
523
524
525 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
526
527 (% style="width:1010px" %)
528 |=(((
529 **Size(bytes)**
530 )))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
531 |**Value**|BAT|(((
532 Temperature1(DS18B20)
533 (PC13)
534 )))|(((
535 Temperature2(DS18B20)
536 (PB9)
537 )))|(((
538 Digital Interrupt
539 (PB15)
540 )))|(% style="width:193px" %)(((
541 Temperature3(DS18B20)
542 (PB8)
543 )))|(% style="width:78px" %)(((
544 Count1
545 (PA8)
546 )))|(% style="width:78px" %)(((
547 Count2
548 (PA4)
549 )))
550
551 [[image:image-20230513111255-9.png||height="341" width="899"]]
552
553 **The newly added AT command is issued correspondingly:**
554
555 **~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
556
557 **~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
558
559 **~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
560
561 **AT+SETCNT=aa,bb** 
562
563 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
564
565 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
566
567
568
569 === 2.3.3  ​Decode payload ===
570
571 While using TTN V3 network, you can add the payload format to decode the payload.
572
573 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
574
575 The payload decoder function for TTN V3 are here:
576
577 SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
578
579
580 ==== 2.3.3.1 Battery Info ====
581
582 Check the battery voltage for SN50v3.
583
584 Ex1: 0x0B45 = 2885mV
585
586 Ex2: 0x0B49 = 2889mV
587
588
589 ==== 2.3.3.2  Temperature (DS18B20) ====
590
591 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
592
593 More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
594
595 **Connection:**
596
597 [[image:image-20230512180718-8.png||height="538" width="647"]]
598
599 **Example**:
600
601 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
602
603 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
604
605 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
606
607
608 ==== 2.3.3.3 Digital Input ====
609
610 The digital input for pin PB15,
611
612 * When PB15 is high, the bit 1 of payload byte 6 is 1.
613 * When PB15 is low, the bit 1 of payload byte 6 is 0.
614
615 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
616 (((
617 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
618
619 (% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
620 )))
621
622 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
623
624 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
625
626 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
627
628 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
629
630 (% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
631
632
633 ==== 2.3.3.5 Digital Interrupt ====
634
635 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
636
637 (% style="color:blue" %)**~ Interrupt connection method:**
638
639 [[image:image-20230513105351-5.png||height="147" width="485"]]
640
641 (% style="color:blue" %)**Example to use with door sensor :**
642
643 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
644
645 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
646
647 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
648
649 (% style="color:blue" %)**~ Below is the installation example:**
650
651 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
652
653 * (((
654 One pin to SN50_v3's PA8 pin
655 )))
656 * (((
657 The other pin to SN50_v3's VDD pin
658 )))
659
660 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
661
662 Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
663
664 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
665
666 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
667
668 The above photos shows the two parts of the magnetic switch fitted to a door.
669
670 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
671
672 The command is:
673
674 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
675
676 Below shows some screen captures in TTN V3:
677
678 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
679
680 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
681
682 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
683
684
685 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
686
687 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
688
689 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
690
691 Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
692
693 Below is the connection to SHT20/ SHT31. The connection is as below:
694
695
696 [[image:image-20230513103633-3.png||height="448" width="716"]]
697
698 The device will be able to get the I2C sensor data now and upload to IoT Server.
699
700 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
701
702 Convert the read byte to decimal and divide it by ten.
703
704 **Example:**
705
706 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
707
708 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
709
710 If you want to use other I2C device, please refer the SHT20 part source code as reference.
711
712
713 ==== 2.3.3.7  ​Distance Reading ====
714
715 Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
716
717
718 ==== 2.3.3.8 Ultrasonic Sensor ====
719
720 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
721
722 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
723
724 The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
725
726 The picture below shows the connection:
727
728 [[image:image-20230512173903-6.png||height="596" width="715"]]
729
730 Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
731
732 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
733
734 **Example:**
735
736 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
737
738
739
740 ==== 2.3.3.9  Battery Output - BAT pin ====
741
742 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
743
744
745 ==== 2.3.3.10  +5V Output ====
746
747 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
748
749 The 5V output time can be controlled by AT Command.
750
751 (% style="color:blue" %)**AT+5VT=1000**
752
753 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
754
755 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
756
757
758
759 ==== 2.3.3.11  BH1750 Illumination Sensor ====
760
761 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
762
763 [[image:image-20230512172447-4.png||height="416" width="712"]]
764
765 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
766
767
768 ==== 2.3.3.12  Working MOD ====
769
770 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
771
772 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
773
774 Case 7^^th^^ Byte >> 2 & 0x1f:
775
776 * 0: MOD1
777 * 1: MOD2
778 * 2: MOD3
779 * 3: MOD4
780 * 4: MOD5
781 * 5: MOD6
782 * 6: MOD7
783 * 7: MOD8
784 * 8: MOD9
785
786
787
788 == 2.4 Payload Decoder file ==
789
790
791 In TTN, use can add a custom payload so it shows friendly reading
792
793 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
794
795 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
796
797
798
799 == 2.5 Frequency Plans ==
800
801
802 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
803
804 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
805
806
807 = 3. Configure SN50v3-LB =
808
809 == 3.1 Configure Methods ==
810
811
812 SN50v3-LB supports below configure method:
813
814 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
815 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
816 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
817
818 == 3.2 General Commands ==
819
820
821 These commands are to configure:
822
823 * General system settings like: uplink interval.
824 * LoRaWAN protocol & radio related command.
825
826 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
827
828 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
829
830
831 == 3.3 Commands special design for SN50v3-LB ==
832
833
834 These commands only valid for S31x-LB, as below:
835
836
837 === 3.3.1 Set Transmit Interval Time ===
838
839 Feature: Change LoRaWAN End Node Transmit Interval.
840
841 (% style="color:blue" %)**AT Command: AT+TDC**
842
843 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
844 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
845 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
846 30000
847 OK
848 the interval is 30000ms = 30s
849 )))
850 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
851 OK
852 Set transmit interval to 60000ms = 60 seconds
853 )))
854
855 (% style="color:blue" %)**Downlink Command: 0x01**
856
857 Format: Command Code (0x01) followed by 3 bytes time value.
858
859 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
860
861 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
862 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
863
864
865
866 === 3.3.2 Get Device Status ===
867
868 Send a LoRaWAN downlink to ask the device to send its status.
869
870 (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
871
872 Sensor will upload Device Status via FPORT=5. See payload section for detail.
873
874
875 === 3.3.3 Set Interrupt Mode ===
876
877 Feature, Set Interrupt mode for GPIO_EXIT.
878
879 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
880
881 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
882 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
883 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
884 0
885 OK
886 the mode is 0 =Disable Interrupt
887 )))
888 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
889 Set Transmit Interval
890 0. (Disable Interrupt),
891 ~1. (Trigger by rising and falling edge)
892 2. (Trigger by falling edge)
893 3. (Trigger by rising edge)
894 )))|(% style="width:157px" %)OK
895 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
896 Set Transmit Interval
897
898 trigger by rising edge.
899 )))|(% style="width:157px" %)OK
900 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
901
902 (% style="color:blue" %)**Downlink Command: 0x06**
903
904 Format: Command Code (0x06) followed by 3 bytes.
905
906 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
907
908 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
909 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
910 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
911 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
912
913
914
915 === 3.3.4 Set Power Output Duration ===
916
917 Control the output duration 5V . Before each sampling, device will
918
919 ~1. first enable the power output to external sensor,
920
921 2. keep it on as per duration, read sensor value and construct uplink payload
922
923 3. final, close the power output.
924
925 (% style="color:blue" %)**AT Command: AT+5VT**
926
927 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
928 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
929 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
930 500(default)
931 OK
932 )))
933 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
934 Close after a delay of 1000 milliseconds.
935 )))|(% style="width:157px" %)OK
936
937 (% style="color:blue" %)**Downlink Command: 0x07**
938
939 Format: Command Code (0x07) followed by 2 bytes.
940
941 The first and second bytes are the time to turn on.
942
943 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
944 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
945
946
947
948 === 3.3.5 Set Weighing parameters ===
949
950 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
951
952 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
953
954 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
955 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
956 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
957 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
958 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
959
960 (% style="color:blue" %)**Downlink Command: 0x08**
961
962 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
963
964 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
965
966 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
967
968 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
969 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
970 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
971
972
973
974 === 3.3.6 Set Digital pulse count value ===
975
976 Feature: Set the pulse count value.
977
978 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
979
980 (% style="color:blue" %)**AT Command: AT+SETCNT**
981
982 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
983 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
984 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
985 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
986
987 (% style="color:blue" %)**Downlink Command: 0x09**
988
989 Format: Command Code (0x09) followed by 5 bytes.
990
991 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
992
993 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
994 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
995
996
997
998 === 3.3.7 Set Workmode ===
999
1000 Feature: Switch working mode.
1001
1002 (% style="color:blue" %)**AT Command: AT+MOD**
1003
1004 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1005 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1006 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1007 OK
1008 )))
1009 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1010 OK
1011 Attention:Take effect after ATZ
1012 )))
1013
1014 (% style="color:blue" %)**Downlink Command: 0x0A**
1015
1016 Format: Command Code (0x0A) followed by 1 bytes.
1017
1018 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1019 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1020
1021
1022
1023 = 4. Battery & Power Consumption =
1024
1025
1026 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1027
1028 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1029
1030
1031 = 5. OTA Firmware update =
1032
1033
1034 (% class="wikigeneratedid" %)
1035 User can change firmware SN50v3-LB to:
1036
1037 * Change Frequency band/ region.
1038 * Update with new features.
1039 * Fix bugs.
1040
1041 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1042
1043
1044 Methods to Update Firmware:
1045
1046 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1047 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1048
1049 = 6. FAQ =
1050
1051 == 6.1 Where can i find source code of SN50v3-LB? ==
1052
1053 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1054 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1055
1056 = 7. Order Info =
1057
1058
1059 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1060
1061 (% style="color:red" %)**XX**(%%): The default frequency band
1062
1063 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1064 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1065 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1066 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1067 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1068 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1069 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1070 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1071
1072 (% style="color:red" %)**YY: ** (%%)Hole Option
1073
1074 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1075 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1076 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1077 * (% style="color:red" %)**NH**(%%): No Hole
1078
1079 = 8. ​Packing Info =
1080
1081 (% style="color:#037691" %)**Package Includes**:
1082
1083 * SN50v3-LB LoRaWAN Generic Node
1084
1085 (% style="color:#037691" %)**Dimension and weight**:
1086
1087 * Device Size: cm
1088 * Device Weight: g
1089 * Package Size / pcs : cm
1090 * Weight / pcs : g
1091
1092 = 9. Support =
1093
1094
1095 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1096
1097 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]