Version 43.3 by Xiaoling on 2023/05/16 13:40

Hide last authors
Xiaoling 41.2 1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
Edwin Chen 2.1 3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
Edwin Chen 5.1 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
Edwin Chen 2.1 18
Xiaoling 43.2 19
Edwin Chen 4.1 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 21
Edwin Chen 4.1 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
Edwin Chen 2.1 23
Edwin Chen 4.1 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
Edwin Chen 2.1 25
Edwin Chen 4.1 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 27
Edwin Chen 4.1 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 29
Edwin Chen 4.1 30
Edwin Chen 2.1 31 == 1.2 ​Features ==
32
33 * LoRaWAN 1.0.3 Class A
34 * Ultra-low power consumption
Edwin Chen 5.1 35 * Open-Source hardware/software
Edwin Chen 2.1 36 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
37 * Support Bluetooth v5.1 and LoRaWAN remote configure
38 * Support wireless OTA update firmware
39 * Uplink on periodically
40 * Downlink to change configure
41 * 8500mAh Battery for long term use
42
43 == 1.3 Specification ==
44
45 (% style="color:#037691" %)**Common DC Characteristics:**
46
47 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
48 * Operating Temperature: -40 ~~ 85°C
49
Edwin Chen 5.1 50 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 51
Edwin Chen 5.1 52 * Battery output (2.6v ~~ 3.6v depends on battery)
53 * +5v controllable output
54 * 3 x Interrupt or Digital IN/OUT pins
55 * 3 x one-wire interfaces
56 * 1 x UART Interface
57 * 1 x I2C Interface
Edwin Chen 2.1 58
59 (% style="color:#037691" %)**LoRa Spec:**
60
61 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
62 * Max +22 dBm constant RF output vs.
63 * RX sensitivity: down to -139 dBm.
64 * Excellent blocking immunity
65
66 (% style="color:#037691" %)**Battery:**
67
68 * Li/SOCI2 un-chargeable battery
69 * Capacity: 8500mAh
70 * Self-Discharge: <1% / Year @ 25°C
71 * Max continuously current: 130mA
72 * Max boost current: 2A, 1 second
73
74 (% style="color:#037691" %)**Power Consumption**
75
76 * Sleep Mode: 5uA @ 3.3v
77 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
78
79 == 1.4 Sleep mode and working mode ==
80
81 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
82
83 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
84
85
86 == 1.5 Button & LEDs ==
87
88
89 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
90
91
92 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
93 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
94 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
95 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
96 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
97 )))
98 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
99 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
100 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
101 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
102 )))
103 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
104
105 == 1.6 BLE connection ==
106
107
Edwin Chen 5.1 108 SN50v3-LB supports BLE remote configure.
Edwin Chen 2.1 109
110
111 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
112
113 * Press button to send an uplink
114 * Press button to active device.
115 * Device Power on or reset.
116
117 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
118
119
Edwin Chen 6.1 120 == 1.7 Pin Definitions ==
Edwin Chen 2.1 121
122
Saxer Lin 36.1 123 [[image:image-20230513102034-2.png]]
Edwin Chen 2.1 124
125
126 == 1.8 Mechanical ==
127
128
129 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
130
131 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
132
133 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
134
135
Edwin Chen 5.1 136 == Hole Option ==
137
138 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
139
140 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
141
142 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
143
144
Edwin Chen 10.1 145 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
Edwin Chen 2.1 146
147 == 2.1 How it works ==
148
149
Edwin Chen 11.2 150 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 151
152
153 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
154
155
156 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
157
158 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
159
160
Edwin Chen 11.2 161 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
Edwin Chen 2.1 162
Edwin Chen 11.2 163 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 164
Edwin Chen 11.2 165 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 2.1 166
167
168 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
169
170
171 (% style="color:blue" %)**Register the device**
172
173 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
174
175
176 (% style="color:blue" %)**Add APP EUI and DEV EUI**
177
178 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
179
180
181 (% style="color:blue" %)**Add APP EUI in the application**
182
183
184 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
185
186
187 (% style="color:blue" %)**Add APP KEY**
188
189 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
190
191
Edwin Chen 11.2 192 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
Edwin Chen 2.1 193
194
Edwin Chen 11.2 195 Press the button for 5 seconds to activate the SN50v3-LB.
Edwin Chen 2.1 196
197 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
198
199 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
200
201
202 == 2.3 ​Uplink Payload ==
203
204 === 2.3.1 Device Status, FPORT~=5 ===
205
206
Edwin Chen 11.2 207 Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 208
209 The Payload format is as below.
210
211
212 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
213 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
214 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
215 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
216
217 Example parse in TTNv3
218
219
Edwin Chen 11.2 220 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
Edwin Chen 2.1 221
222 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
223
224 (% style="color:#037691" %)**Frequency Band**:
225
226 *0x01: EU868
227
228 *0x02: US915
229
230 *0x03: IN865
231
232 *0x04: AU915
233
234 *0x05: KZ865
235
236 *0x06: RU864
237
238 *0x07: AS923
239
240 *0x08: AS923-1
241
242 *0x09: AS923-2
243
244 *0x0a: AS923-3
245
246 *0x0b: CN470
247
248 *0x0c: EU433
249
250 *0x0d: KR920
251
252 *0x0e: MA869
253
254
255 (% style="color:#037691" %)**Sub-Band**:
256
257 AU915 and US915:value 0x00 ~~ 0x08
258
259 CN470: value 0x0B ~~ 0x0C
260
261 Other Bands: Always 0x00
262
263
264 (% style="color:#037691" %)**Battery Info**:
265
266 Check the battery voltage.
267
268 Ex1: 0x0B45 = 2885mV
269
270 Ex2: 0x0B49 = 2889mV
271
272
Edwin Chen 12.1 273 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 274
275
Edwin Chen 12.1 276 SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
277
278 For example:
279
280 **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
281
282
Edwin Chen 13.1 283 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 284
285 1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
Edwin Chen 13.1 286 1. All modes share the same Payload Explanation from HERE.
287 1. By default, the device will send an uplink message every 20 minutes.
Edwin Chen 12.1 288
Edwin Chen 13.1 289 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 290
291 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
292
Saxer Lin 40.1 293 (% style="width:1110px" %)
294 |**Size(bytes)**|**2**|(% style="width:191px" %)**2**|(% style="width:78px" %)**2**|(% style="width:216px" %)**1**|(% style="width:308px" %)**2**|(% style="width:154px" %)**2**
295 |**Value**|Bat|(% style="width:191px" %)(((
Saxer Lin 26.2 296 Temperature(DS18B20)
Edwin Chen 12.1 297
Saxer Lin 26.2 298 (PC13)
Saxer Lin 40.1 299 )))|(% style="width:78px" %)(((
Saxer Lin 26.2 300 ADC
301
302 (PA4)
303 )))|(% style="width:216px" %)(((
Saxer Lin 36.1 304 Digital in(PB15) &
Saxer Lin 26.2 305
Saxer Lin 36.1 306 Digital Interrupt(PA8)
307
Saxer Lin 26.2 308
Saxer Lin 40.1 309 )))|(% style="width:308px" %)(((
Saxer Lin 36.1 310 Temperature
Saxer Lin 26.2 311
Saxer Lin 36.1 312 (SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 313 )))|(% style="width:154px" %)(((
Saxer Lin 36.1 314 Humidity
315
316 (SHT20 or SHT31)
317 )))
318
Edwin Chen 12.1 319 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
320
321
Edwin Chen 13.1 322 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
323
Edwin Chen 12.1 324 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
325
Saxer Lin 40.1 326 (% style="width:1011px" %)
327 |**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**
328 |**Value**|BAT|(% style="width:196px" %)(((
Edwin Chen 12.1 329 Temperature(DS18B20)
Saxer Lin 36.1 330
331 (PC13)
Saxer Lin 40.1 332 )))|(% style="width:87px" %)(((
Saxer Lin 36.1 333 ADC
334
335 (PA4)
Saxer Lin 40.1 336 )))|(% style="width:189px" %)(((
Saxer Lin 36.1 337 Digital in(PB15) &
338
339 Digital Interrupt(PA8)
Saxer Lin 40.1 340 )))|(% style="width:208px" %)(((
Edwin Chen 12.1 341 Distance measure by:
342 1) LIDAR-Lite V3HP
343 Or
344 2) Ultrasonic Sensor
Saxer Lin 40.1 345 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 346
347 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
348
349 **Connection of LIDAR-Lite V3HP:**
350
Saxer Lin 26.2 351 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 352
353 **Connection to Ultrasonic Sensor:**
354
Saxer Lin 36.1 355 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
356
Saxer Lin 26.2 357 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 358
359 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
360
Saxer Lin 40.1 361 (% style="width:1113px" %)
362 |**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
363 |**Value**|BAT|(% style="width:183px" %)(((
Edwin Chen 12.1 364 Temperature(DS18B20)
Saxer Lin 36.1 365
366 (PC13)
Saxer Lin 40.1 367 )))|(% style="width:173px" %)(((
Saxer Lin 36.1 368 Digital in(PB15) &
369
370 Digital Interrupt(PA8)
Saxer Lin 40.1 371 )))|(% style="width:84px" %)(((
Saxer Lin 36.1 372 ADC
373
374 (PA4)
Saxer Lin 40.1 375 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 376 Distance measure by:1)TF-Mini plus LiDAR
377 Or 
378 2) TF-Luna LiDAR
Saxer Lin 40.1 379 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 380
381 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
382
383 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
384
Saxer Lin 36.1 385 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
Edwin Chen 12.1 386
Saxer Lin 26.2 387 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 388
389 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
390
Saxer Lin 36.1 391 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
Edwin Chen 12.1 392
Saxer Lin 36.1 393 [[image:image-20230513105207-4.png||height="469" width="802"]]
Edwin Chen 12.1 394
395
Edwin Chen 13.1 396 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
397
Edwin Chen 12.1 398 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
399
Saxer Lin 36.1 400 (% style="width:1031px" %)
Edwin Chen 12.1 401 |=(((
402 **Size(bytes)**
Saxer Lin 36.1 403 )))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
Saxer Lin 26.2 404 |**Value**|(% style="width:68px" %)(((
Saxer Lin 36.1 405 ADC1
Saxer Lin 26.2 406
Saxer Lin 36.1 407 (PA4)
Saxer Lin 26.2 408 )))|(% style="width:75px" %)(((
409 ADC2
410
Saxer Lin 36.1 411 (PA5)
412 )))|(((
413 ADC3
Edwin Chen 12.1 414
Saxer Lin 36.1 415 (PA8)
416 )))|(((
417 Digital Interrupt(PB15)
418 )))|(% style="width:304px" %)(((
419 Temperature
Edwin Chen 12.1 420
Saxer Lin 36.1 421 (SHT20 or SHT31 or BH1750 Illumination Sensor)
422 )))|(% style="width:163px" %)(((
423 Humidity
Edwin Chen 12.1 424
Saxer Lin 36.1 425 (SHT20 or SHT31)
426 )))|(% style="width:53px" %)Bat
427
428 [[image:image-20230513110214-6.png]]
429
430
Edwin Chen 13.1 431 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
432
Edwin Chen 12.1 433
Saxer Lin 26.2 434 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 435
Saxer Lin 26.2 436 (% style="width:1017px" %)
437 |**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
438 |**Value**|BAT|(% style="width:186px" %)(((
439 Temperature1(DS18B20)
440 (PC13)
441 )))|(% style="width:82px" %)(((
442 ADC
Edwin Chen 12.1 443
Saxer Lin 26.2 444 (PA4)
445 )))|(% style="width:210px" %)(((
Saxer Lin 36.1 446 Digital in(PB15) &
Edwin Chen 12.1 447
Saxer Lin 36.1 448 Digital Interrupt(PA8) 
Saxer Lin 26.2 449 )))|(% style="width:191px" %)Temperature2(DS18B20)
450 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)
451 (PB8)
Edwin Chen 12.1 452
453 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
454
Saxer Lin 39.2 455 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 456
Saxer Lin 39.1 457
Edwin Chen 13.1 458 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
459
Saxer Lin 26.2 460 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 461
462 Each HX711 need to be calibrated before used. User need to do below two steps:
463
464 1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
465 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
466 1. (((
Saxer Lin 26.2 467 Weight has 4 bytes, the unit is g.
Edwin Chen 12.1 468 )))
469
470 For example:
471
Saxer Lin 26.2 472 **AT+GETSENSORVALUE =0**
Edwin Chen 12.1 473
474 Response:  Weight is 401 g
475
476 Check the response of this command and adjust the value to match the real value for thing.
477
Saxer Lin 40.1 478 (% style="width:767px" %)
Edwin Chen 12.1 479 |=(((
480 **Size(bytes)**
Saxer Lin 40.1 481 )))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
482 |**Value**|BAT|(% style="width:193px" %)(((
Saxer Lin 36.1 483 Temperature(DS18B20)
Edwin Chen 12.1 484
Saxer Lin 26.2 485 (PC13)
486
487
Saxer Lin 40.1 488 )))|(% style="width:85px" %)(((
Saxer Lin 36.1 489 ADC
Saxer Lin 26.2 490
491 (PA4)
Saxer Lin 40.1 492 )))|(% style="width:186px" %)(((
Saxer Lin 36.1 493 Digital in(PB15) &
Saxer Lin 26.2 494
Saxer Lin 36.1 495 Digital Interrupt(PA8)
Saxer Lin 40.1 496 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 497
Edwin Chen 12.1 498 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
499
500
Edwin Chen 13.1 501 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
502
Edwin Chen 12.1 503 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
504
505 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
506
Saxer Lin 26.2 507 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 508
Saxer Lin 36.1 509 **Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
Edwin Chen 12.1 510
Saxer Lin 36.1 511 (% style="width:961px" %)
512 |=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
513 |**Value**|BAT|(% style="width:256px" %)(((
514 Temperature(DS18B20)
Edwin Chen 12.1 515
Saxer Lin 36.1 516 (PC13)
517 )))|(% style="width:108px" %)(((
518 ADC
519
520 (PA4)
521 )))|(% style="width:126px" %)(((
522 Digital in
523
524 (PB15)
525 )))|(% style="width:145px" %)(((
526 Count
527
528 (PA8)
529 )))
530
Edwin Chen 12.1 531 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
532
533
Edwin Chen 13.1 534 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
535
Saxer Lin 40.1 536 (% style="width:1108px" %)
Edwin Chen 12.1 537 |=(((
538 **Size(bytes)**
Saxer Lin 40.1 539 )))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
540 |**Value**|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 541 Temperature(DS18B20)
Edwin Chen 12.1 542
Saxer Lin 36.1 543 (PC13)
Saxer Lin 40.1 544 )))|(% style="width:83px" %)(((
Saxer Lin 36.1 545 ADC
546
547 (PA5)
Saxer Lin 40.1 548 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 549 Digital Interrupt1(PA8)
Saxer Lin 40.1 550 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 551
552 [[image:image-20230513111203-7.png||height="324" width="975"]]
553
Edwin Chen 13.1 554 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
555
Saxer Lin 40.1 556 (% style="width:922px" %)
Edwin Chen 12.1 557 |=(((
558 **Size(bytes)**
Saxer Lin 40.1 559 )))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
Saxer Lin 36.1 560 |**Value**|BAT|(% style="width:207px" %)(((
561 Temperature(DS18B20)
562
563 (PC13)
564 )))|(% style="width:94px" %)(((
565 ADC1
566
567 (PA4)
568 )))|(% style="width:198px" %)(((
569 Digital Interrupt(PB15)
570 )))|(% style="width:84px" %)(((
571 ADC2
572
573 (PA5)
Saxer Lin 40.1 574 )))|(% style="width:82px" %)(((
Saxer Lin 36.1 575 ADC3
576
577 (PA8)
Edwin Chen 12.1 578 )))
579
Saxer Lin 36.1 580 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 581
582
Edwin Chen 13.1 583 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
584
Saxer Lin 36.1 585 (% style="width:1010px" %)
Edwin Chen 12.1 586 |=(((
587 **Size(bytes)**
Saxer Lin 36.1 588 )))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
Edwin Chen 12.1 589 |**Value**|BAT|(((
Saxer Lin 36.1 590 Temperature1(DS18B20)
591
592 (PC13)
Edwin Chen 12.1 593 )))|(((
Saxer Lin 36.1 594 Temperature2(DS18B20)
595
596 (PB9)
Edwin Chen 12.1 597 )))|(((
Saxer Lin 36.1 598 Digital Interrupt
599
600 (PB15)
601 )))|(% style="width:193px" %)(((
602 Temperature3(DS18B20)
603
604 (PB8)
605 )))|(% style="width:78px" %)(((
606 Count1
607
608 (PA8)
609 )))|(% style="width:78px" %)(((
610 Count2
611
612 (PA4)
Edwin Chen 12.1 613 )))
614
Saxer Lin 36.1 615 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 616
617 **The newly added AT command is issued correspondingly:**
618
Saxer Lin 36.1 619 **~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
Edwin Chen 12.1 620
Saxer Lin 36.1 621 **~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
Edwin Chen 12.1 622
Saxer Lin 36.1 623 **~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
Edwin Chen 12.1 624
625 **AT+SETCNT=aa,bb** 
626
Saxer Lin 36.1 627 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 628
Saxer Lin 36.1 629 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 630
631
Edwin Chen 14.1 632
633 === 2.3.3  ​Decode payload ===
634
Edwin Chen 12.1 635 While using TTN V3 network, you can add the payload format to decode the payload.
636
637 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
638
639 The payload decoder function for TTN V3 are here:
640
Edwin Chen 14.1 641 SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 642
643
Edwin Chen 14.1 644 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 645
Edwin Chen 14.1 646 Check the battery voltage for SN50v3.
Edwin Chen 2.1 647
648 Ex1: 0x0B45 = 2885mV
649
650 Ex2: 0x0B49 = 2889mV
651
652
Edwin Chen 14.1 653 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 654
Saxer Lin 42.1 655 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 656
Edwin Chen 14.1 657 More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
658
659 **Connection:**
660
Saxer Lin 26.2 661 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 662
Edwin Chen 2.1 663 **Example**:
664
665 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
666
667 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
668
669 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
670
671
Edwin Chen 14.1 672 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 673
Saxer Lin 26.2 674 The digital input for pin PB15,
Edwin Chen 2.1 675
Saxer Lin 26.2 676 * When PB15 is high, the bit 1 of payload byte 6 is 1.
677 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 678
Saxer Lin 26.2 679 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
680 (((
Saxer Lin 36.1 681 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
682
683 **Note:**The maximum voltage input supports 3.6V.
Saxer Lin 43.1 684
685
Saxer Lin 26.2 686 )))
687
Edwin Chen 14.1 688 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 689
Saxer Lin 36.1 690 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 691
Saxer Lin 36.1 692 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 693
Saxer Lin 26.2 694 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 695
Saxer Lin 36.1 696 **Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
Edwin Chen 14.1 697
Saxer Lin 43.1 698
Edwin Chen 14.1 699 ==== 2.3.3.5 Digital Interrupt ====
700
Saxer Lin 36.1 701 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
Edwin Chen 14.1 702
703 **~ Interrupt connection method:**
704
Saxer Lin 36.1 705 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 706
707 **Example to use with door sensor :**
708
709 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
710
711 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
712
Saxer Lin 36.1 713 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 714
715 **~ Below is the installation example:**
716
Saxer Lin 36.1 717 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
Edwin Chen 14.1 718
719 * (((
Saxer Lin 36.1 720 One pin to SN50_v3's PA8 pin
Edwin Chen 14.1 721 )))
722 * (((
Saxer Lin 36.1 723 The other pin to SN50_v3's VDD pin
Edwin Chen 14.1 724 )))
725
Saxer Lin 36.1 726 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 727
728 Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
729
Saxer Lin 36.1 730 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 731
732 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
733
734 The above photos shows the two parts of the magnetic switch fitted to a door.
735
736 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
737
738 The command is:
739
Saxer Lin 36.1 740 **AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 741
742 Below shows some screen captures in TTN V3:
743
744 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
745
746 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
747
748 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
749
750
Saxer Lin 26.2 751 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 752
Saxer Lin 26.2 753 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 754
Saxer Lin 40.1 755 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 756
Saxer Lin 40.1 757 Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
Edwin Chen 14.1 758
759 Below is the connection to SHT20/ SHT31. The connection is as below:
760
761
Saxer Lin 40.1 762 [[image:image-20230513103633-3.png||height="448" width="716"]]
Saxer Lin 36.1 763
Edwin Chen 14.1 764 The device will be able to get the I2C sensor data now and upload to IoT Server.
765
766 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
767
768 Convert the read byte to decimal and divide it by ten.
769
Edwin Chen 2.1 770 **Example:**
771
Edwin Chen 14.1 772 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 773
Edwin Chen 14.1 774 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 775
Edwin Chen 14.1 776 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 777
778
Edwin Chen 14.1 779 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 780
Edwin Chen 14.1 781 Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
782
783
784 ==== 2.3.3.8 Ultrasonic Sensor ====
785
Saxer Lin 26.2 786 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 787
Saxer Lin 36.1 788 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 789
Saxer Lin 36.1 790 The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
791
Edwin Chen 14.1 792 The picture below shows the connection:
793
Saxer Lin 36.1 794 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 795
Saxer Lin 36.1 796 Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 797
798 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
799
800 **Example:**
801
802 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
803
804
805
806 ==== 2.3.3.9  Battery Output - BAT pin ====
807
808 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
809
810
811 ==== 2.3.3.10  +5V Output ====
812
813 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
814
815 The 5V output time can be controlled by AT Command.
816
817 **AT+5VT=1000**
818
819 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
820
821 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
822
823
824
825 ==== 2.3.3.11  BH1750 Illumination Sensor ====
826
827 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
828
Saxer Lin 40.1 829 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 830
Saxer Lin 40.1 831 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 832
833
834 ==== 2.3.3.12  Working MOD ====
835
836 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
837
838 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
839
840 Case 7^^th^^ Byte >> 2 & 0x1f:
841
842 * 0: MOD1
843 * 1: MOD2
844 * 2: MOD3
845 * 3: MOD4
846 * 4: MOD5
847 * 5: MOD6
Saxer Lin 36.1 848 * 6: MOD7
849 * 7: MOD8
850 * 8: MOD9
Edwin Chen 14.1 851
Saxer Lin 43.1 852 == ==
853
Edwin Chen 2.1 854 == 2.4 Payload Decoder file ==
855
856
857 In TTN, use can add a custom payload so it shows friendly reading
858
859 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
860
Saxer Lin 40.1 861 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 862
863
864
Edwin Chen 15.1 865 == 2.5 Frequency Plans ==
Edwin Chen 2.1 866
867
Edwin Chen 15.1 868 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 2.1 869
870 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
871
872
Edwin Chen 16.1 873 = 3. Configure SN50v3-LB =
Edwin Chen 2.1 874
875 == 3.1 Configure Methods ==
876
877
Edwin Chen 16.1 878 SN50v3-LB supports below configure method:
Edwin Chen 2.1 879
880 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
881 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
882 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
883
884 == 3.2 General Commands ==
885
886
887 These commands are to configure:
888
889 * General system settings like: uplink interval.
890 * LoRaWAN protocol & radio related command.
891
892 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
893
894 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
895
896
Edwin Chen 16.1 897 == 3.3 Commands special design for SN50v3-LB ==
Edwin Chen 2.1 898
899
900 These commands only valid for S31x-LB, as below:
901
902
903 === 3.3.1 Set Transmit Interval Time ===
904
905 Feature: Change LoRaWAN End Node Transmit Interval.
906
907 (% style="color:blue" %)**AT Command: AT+TDC**
908
909 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
910 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
911 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
912 30000
913 OK
914 the interval is 30000ms = 30s
915 )))
916 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
917 OK
918 Set transmit interval to 60000ms = 60 seconds
919 )))
920
921 (% style="color:blue" %)**Downlink Command: 0x01**
922
923 Format: Command Code (0x01) followed by 3 bytes time value.
924
925 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
926
927 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
928 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
929
Saxer Lin 43.1 930 === ===
Saxer Lin 40.1 931
Edwin Chen 2.1 932 === 3.3.2 Get Device Status ===
933
Saxer Lin 40.1 934 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 935
936 (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
937
938 Sensor will upload Device Status via FPORT=5. See payload section for detail.
939
940
Saxer Lin 36.1 941 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 942
943 Feature, Set Interrupt mode for GPIO_EXIT.
944
Saxer Lin 36.1 945 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
Edwin Chen 2.1 946
947 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
948 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
Saxer Lin 36.1 949 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
Edwin Chen 2.1 950 0
951 OK
952 the mode is 0 =Disable Interrupt
953 )))
Saxer Lin 36.1 954 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
Edwin Chen 2.1 955 Set Transmit Interval
956 0. (Disable Interrupt),
957 ~1. (Trigger by rising and falling edge)
958 2. (Trigger by falling edge)
959 3. (Trigger by rising edge)
960 )))|(% style="width:157px" %)OK
Saxer Lin 36.1 961 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
962 Set Transmit Interval
Edwin Chen 2.1 963
Saxer Lin 36.1 964 trigger by rising edge.
965 )))|(% style="width:157px" %)OK
966 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
967
Edwin Chen 2.1 968 (% style="color:blue" %)**Downlink Command: 0x06**
969
970 Format: Command Code (0x06) followed by 3 bytes.
971
972 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
973
Saxer Lin 36.1 974 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
975 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
976 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
977 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
Edwin Chen 2.1 978
Saxer Lin 43.1 979 === ===
Saxer Lin 40.1 980
Saxer Lin 36.1 981 === 3.3.4 Set Power Output Duration ===
982
983 Control the output duration 5V . Before each sampling, device will
984
985 ~1. first enable the power output to external sensor,
986
987 2. keep it on as per duration, read sensor value and construct uplink payload
988
989 3. final, close the power output.
990
991 (% style="color:blue" %)**AT Command: AT+5VT**
992
993 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
994 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
995 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
996 500(default)
997
998 OK
999 )))
1000 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1001 Close after a delay of 1000 milliseconds.
1002 )))|(% style="width:157px" %)OK
1003
1004 (% style="color:blue" %)**Downlink Command: 0x07**
1005
1006 Format: Command Code (0x07) followed by 2 bytes.
1007
1008 The first and second bytes are the time to turn on.
1009
Saxer Lin 40.1 1010 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1011 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 1012
Saxer Lin 43.1 1013 === ===
Saxer Lin 40.1 1014
Saxer Lin 36.1 1015 === 3.3.5 Set Weighing parameters ===
1016
Saxer Lin 37.1 1017 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 1018
1019 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1020
1021 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1022 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
Saxer Lin 37.1 1023 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1024 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1025 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 1026
1027 (% style="color:blue" %)**Downlink Command: 0x08**
1028
Saxer Lin 37.1 1029 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 1030
Saxer Lin 37.1 1031 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 1032
Saxer Lin 37.1 1033 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 1034
Saxer Lin 37.1 1035 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1036 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1037 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1038
Saxer Lin 43.1 1039 === ===
Saxer Lin 40.1 1040
Saxer Lin 36.1 1041 === 3.3.6 Set Digital pulse count value ===
1042
1043 Feature: Set the pulse count value.
1044
Saxer Lin 37.1 1045 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1046
Saxer Lin 36.1 1047 (% style="color:blue" %)**AT Command: AT+SETCNT**
1048
1049 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1050 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1051 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1052 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1053
1054 (% style="color:blue" %)**Downlink Command: 0x09**
1055
1056 Format: Command Code (0x09) followed by 5 bytes.
1057
1058 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1059
1060 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 1061 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 1062
Saxer Lin 43.1 1063 === ===
Saxer Lin 40.1 1064
Saxer Lin 36.1 1065 === 3.3.7 Set Workmode ===
1066
Saxer Lin 37.1 1067 Feature: Switch working mode.
Saxer Lin 36.1 1068
1069 (% style="color:blue" %)**AT Command: AT+MOD**
1070
1071 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1072 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1073 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1074 OK
1075 )))
1076 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1077 OK
1078
1079 Attention:Take effect after ATZ
1080 )))
1081
1082 (% style="color:blue" %)**Downlink Command: 0x0A**
1083
1084 Format: Command Code (0x0A) followed by 1 bytes.
1085
1086 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1087 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1088
Saxer Lin 43.1 1089 = =
Saxer Lin 40.1 1090
Edwin Chen 2.1 1091 = 4. Battery & Power Consumption =
1092
1093
Edwin Chen 11.1 1094 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1095
1096 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1097
1098
1099 = 5. OTA Firmware update =
1100
1101
1102 (% class="wikigeneratedid" %)
Edwin Chen 11.1 1103 User can change firmware SN50v3-LB to:
Edwin Chen 2.1 1104
1105 * Change Frequency band/ region.
1106 * Update with new features.
1107 * Fix bugs.
1108
1109 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1110
1111
1112 Methods to Update Firmware:
1113
1114 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1115 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1116
1117 = 6. FAQ =
1118
Edwin Chen 17.1 1119 == 6.1 Where can i find source code of SN50v3-LB? ==
Edwin Chen 2.1 1120
Edwin Chen 17.1 1121 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1122 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
Edwin Chen 2.1 1123
1124 = 7. Order Info =
1125
1126
Edwin Chen 10.1 1127 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
Edwin Chen 2.1 1128
1129 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1130
Edwin Chen 2.1 1131 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1132 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1133 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1134 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1135 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1136 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1137 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1138 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1139
Edwin Chen 10.1 1140 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1141
Edwin Chen 10.1 1142 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1143 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1144 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1145 * (% style="color:red" %)**NH**(%%): No Hole
1146
Edwin Chen 2.1 1147 = 8. ​Packing Info =
1148
1149 (% style="color:#037691" %)**Package Includes**:
1150
Edwin Chen 10.1 1151 * SN50v3-LB LoRaWAN Generic Node
Edwin Chen 2.1 1152
1153 (% style="color:#037691" %)**Dimension and weight**:
1154
1155 * Device Size: cm
1156 * Device Weight: g
1157 * Package Size / pcs : cm
1158 * Weight / pcs : g
1159
1160 = 9. Support =
1161
1162
1163 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 41.4 1164 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]