Version 43.22 by Xiaoling on 2023/05/16 14:23

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18
19
20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21
22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23
24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25
26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27
28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29
30
31 == 1.2 ​Features ==
32
33 * LoRaWAN 1.0.3 Class A
34 * Ultra-low power consumption
35 * Open-Source hardware/software
36 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
37 * Support Bluetooth v5.1 and LoRaWAN remote configure
38 * Support wireless OTA update firmware
39 * Uplink on periodically
40 * Downlink to change configure
41 * 8500mAh Battery for long term use
42
43 == 1.3 Specification ==
44
45
46 (% style="color:#037691" %)**Common DC Characteristics:**
47
48 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
49 * Operating Temperature: -40 ~~ 85°C
50
51 (% style="color:#037691" %)**I/O Interface:**
52
53 * Battery output (2.6v ~~ 3.6v depends on battery)
54 * +5v controllable output
55 * 3 x Interrupt or Digital IN/OUT pins
56 * 3 x one-wire interfaces
57 * 1 x UART Interface
58 * 1 x I2C Interface
59
60 (% style="color:#037691" %)**LoRa Spec:**
61
62 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
63 * Max +22 dBm constant RF output vs.
64 * RX sensitivity: down to -139 dBm.
65 * Excellent blocking immunity
66
67 (% style="color:#037691" %)**Battery:**
68
69 * Li/SOCI2 un-chargeable battery
70 * Capacity: 8500mAh
71 * Self-Discharge: <1% / Year @ 25°C
72 * Max continuously current: 130mA
73 * Max boost current: 2A, 1 second
74
75 (% style="color:#037691" %)**Power Consumption**
76
77 * Sleep Mode: 5uA @ 3.3v
78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79
80 == 1.4 Sleep mode and working mode ==
81
82
83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84
85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
86
87
88 == 1.5 Button & LEDs ==
89
90
91 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
92
93
94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
96 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
97 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
98 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
99 )))
100 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
101 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
102 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
103 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
104 )))
105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106
107 == 1.6 BLE connection ==
108
109
110 SN50v3-LB supports BLE remote configure.
111
112
113 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
114
115 * Press button to send an uplink
116 * Press button to active device.
117 * Device Power on or reset.
118
119 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
120
121
122 == 1.7 Pin Definitions ==
123
124
125 [[image:image-20230513102034-2.png]]
126
127
128 == 1.8 Mechanical ==
129
130
131 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132
133 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134
135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136
137
138 == Hole Option ==
139
140
141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142
143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
144
145 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
146
147
148 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
149
150 == 2.1 How it works ==
151
152
153 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154
155
156 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
157
158
159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160
161 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162
163
164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
165
166 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
167
168 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
169
170
171 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
172
173
174 (% style="color:blue" %)**Register the device**
175
176 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
177
178
179 (% style="color:blue" %)**Add APP EUI and DEV EUI**
180
181 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
182
183
184 (% style="color:blue" %)**Add APP EUI in the application**
185
186
187 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
188
189
190 (% style="color:blue" %)**Add APP KEY**
191
192 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
193
194
195 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
196
197
198 Press the button for 5 seconds to activate the SN50v3-LB.
199
200 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
201
202 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
203
204
205 == 2.3 ​Uplink Payload ==
206
207 === 2.3.1 Device Status, FPORT~=5 ===
208
209
210 Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
211
212 The Payload format is as below.
213
214
215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219
220 Example parse in TTNv3
221
222
223 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
224
225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226
227 (% style="color:#037691" %)**Frequency Band**:
228
229 *0x01: EU868
230
231 *0x02: US915
232
233 *0x03: IN865
234
235 *0x04: AU915
236
237 *0x05: KZ865
238
239 *0x06: RU864
240
241 *0x07: AS923
242
243 *0x08: AS923-1
244
245 *0x09: AS923-2
246
247 *0x0a: AS923-3
248
249 *0x0b: CN470
250
251 *0x0c: EU433
252
253 *0x0d: KR920
254
255 *0x0e: MA869
256
257
258 (% style="color:#037691" %)**Sub-Band**:
259
260 AU915 and US915:value 0x00 ~~ 0x08
261
262 CN470: value 0x0B ~~ 0x0C
263
264 Other Bands: Always 0x00
265
266
267 (% style="color:#037691" %)**Battery Info**:
268
269 Check the battery voltage.
270
271 Ex1: 0x0B45 = 2885mV
272
273 Ex2: 0x0B49 = 2889mV
274
275
276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277
278
279 SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280
281 For example:
282
283 **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284
285
286 (% style="color:red" %) **Important Notice:**
287
288 1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 1. All modes share the same Payload Explanation from HERE.
290 1. By default, the device will send an uplink message every 20 minutes.
291
292 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293
294
295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296
297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 |(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 |**Value**|Bat|(% style="width:191px" %)(((
300 Temperature(DS18B20)(PC13)
301 )))|(% style="width:78px" %)(((
302 ADC(PA4)
303 )))|(% style="width:216px" %)(((
304 Digital in(PB15)&Digital Interrupt(PA8)
305 )))|(% style="width:308px" %)(((
306 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
307 )))|(% style="width:154px" %)(((
308 Humidity(SHT20 or SHT31)
309 )))
310
311 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
312
313
314 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
315
316 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317
318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
319 |(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
320 |**Value**|BAT|(% style="width:196px" %)(((
321 Temperature(DS18B20)(PC13)
322 )))|(% style="width:87px" %)(((
323 ADC(PA4)
324 )))|(% style="width:189px" %)(((
325 Digital in(PB15) & Digital Interrupt(PA8)
326 )))|(% style="width:208px" %)(((
327 Distance measure by:1) LIDAR-Lite V3HP
328 Or 2) Ultrasonic Sensor
329 )))|(% style="width:117px" %)Reserved
330
331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
332
333 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
334
335 [[image:image-20230512173758-5.png||height="563" width="712"]]
336
337 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
338
339 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
340
341 [[image:image-20230512173903-6.png||height="596" width="715"]]
342
343 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
344
345 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
346 |(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**
347 |**Value**|BAT|(% style="width:183px" %)(((
348 Temperature(DS18B20)(PC13)
349 )))|(% style="width:173px" %)(((
350 Digital in(PB15) & Digital Interrupt(PA8)
351 )))|(% style="width:84px" %)(((
352 ADC(PA4)
353 )))|(% style="width:323px" %)(((
354 Distance measure by:1)TF-Mini plus LiDAR
355 Or 
356 2) TF-Luna LiDAR
357 )))|(% style="width:188px" %)Distance signal  strength
358
359 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
360
361 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
362
363 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
364
365 [[image:image-20230512180609-7.png||height="555" width="802"]]
366
367 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
368
369 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
370
371 [[image:image-20230513105207-4.png||height="469" width="802"]]
372
373
374 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
375
376 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
377
378 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
379 |=(((
380 (% style="width: 50px;" %)**Size(bytes)**
381 )))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
382 |**Value**|(% style="width:68px" %)(((
383 ADC1
384 (PA4)
385 )))|(% style="width:75px" %)(((
386 ADC2
387 (PA5)
388 )))|(((
389 ADC3
390 (PA8)
391 )))|(((
392 Digital Interrupt(PB15)
393 )))|(% style="width:304px" %)(((
394 Temperature
395 (SHT20 or SHT31 or BH1750 Illumination Sensor)
396 )))|(% style="width:163px" %)(((
397 Humidity
398 (SHT20 or SHT31)
399 )))|(% style="width:53px" %)Bat
400
401 [[image:image-20230513110214-6.png]]
402
403
404 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
405
406
407 This mode has total 11 bytes. As shown below:
408
409 (% style="width:1017px" %)
410 |**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
411 |**Value**|BAT|(% style="width:186px" %)(((
412 Temperature1(DS18B20)
413 (PC13)
414 )))|(% style="width:82px" %)(((
415 ADC
416 (PA4)
417 )))|(% style="width:210px" %)(((
418 Digital in(PB15) &
419 Digital Interrupt(PA8) 
420 )))|(% style="width:191px" %)Temperature2(DS18B20)
421 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)
422 (PB8)
423
424 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
425
426 [[image:image-20230513134006-1.png||height="559" width="736"]]
427
428
429 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
430
431 [[image:image-20230512164658-2.png||height="532" width="729"]]
432
433 Each HX711 need to be calibrated before used. User need to do below two steps:
434
435 1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
436 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
437 1. (((
438 Weight has 4 bytes, the unit is g.
439 )))
440
441 For example:
442
443 **AT+GETSENSORVALUE =0**
444
445 Response:  Weight is 401 g
446
447 Check the response of this command and adjust the value to match the real value for thing.
448
449 (% style="width:767px" %)
450 |=(((
451 **Size(bytes)**
452 )))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
453 |**Value**|BAT|(% style="width:193px" %)(((
454 Temperature(DS18B20)
455 (PC13)
456 )))|(% style="width:85px" %)(((
457 ADC
458 (PA4)
459 )))|(% style="width:186px" %)(((
460 Digital in(PB15) &
461 Digital Interrupt(PA8)
462 )))|(% style="width:100px" %)Weight
463
464 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
465
466
467 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
468
469 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
470
471 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
472
473 [[image:image-20230512181814-9.png||height="543" width="697"]]
474
475 **Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
476
477 (% style="width:961px" %)
478 |=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
479 |**Value**|BAT|(% style="width:256px" %)(((
480 Temperature(DS18B20)
481
482 (PC13)
483 )))|(% style="width:108px" %)(((
484 ADC
485 (PA4)
486 )))|(% style="width:126px" %)(((
487 Digital in
488 (PB15)
489 )))|(% style="width:145px" %)(((
490 Count
491 (PA8)
492 )))
493
494 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
495
496
497 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
498
499 (% style="width:1108px" %)
500 |=(((
501 **Size(bytes)**
502 )))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
503 |**Value**|BAT|(% style="width:188px" %)(((
504 Temperature(DS18B20)
505 (PC13)
506 )))|(% style="width:83px" %)(((
507 ADC
508 (PA5)
509 )))|(% style="width:184px" %)(((
510 Digital Interrupt1(PA8)
511 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
512
513 [[image:image-20230513111203-7.png||height="324" width="975"]]
514
515 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
516
517 (% style="width:922px" %)
518 |=(((
519 **Size(bytes)**
520 )))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
521 |**Value**|BAT|(% style="width:207px" %)(((
522 Temperature(DS18B20)
523 (PC13)
524 )))|(% style="width:94px" %)(((
525 ADC1
526 (PA4)
527 )))|(% style="width:198px" %)(((
528 Digital Interrupt(PB15)
529 )))|(% style="width:84px" %)(((
530 ADC2
531 (PA5)
532 )))|(% style="width:82px" %)(((
533 ADC3
534 (PA8)
535 )))
536
537 [[image:image-20230513111231-8.png||height="335" width="900"]]
538
539
540 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
541
542 (% style="width:1010px" %)
543 |=(((
544 **Size(bytes)**
545 )))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
546 |**Value**|BAT|(((
547 Temperature1(DS18B20)
548 (PC13)
549 )))|(((
550 Temperature2(DS18B20)
551 (PB9)
552 )))|(((
553 Digital Interrupt
554 (PB15)
555 )))|(% style="width:193px" %)(((
556 Temperature3(DS18B20)
557 (PB8)
558 )))|(% style="width:78px" %)(((
559 Count1
560 (PA8)
561 )))|(% style="width:78px" %)(((
562 Count2
563 (PA4)
564 )))
565
566 [[image:image-20230513111255-9.png||height="341" width="899"]]
567
568 **The newly added AT command is issued correspondingly:**
569
570 **~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
571
572 **~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
573
574 **~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
575
576 **AT+SETCNT=aa,bb** 
577
578 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
579
580 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
581
582
583
584 === 2.3.3  ​Decode payload ===
585
586 While using TTN V3 network, you can add the payload format to decode the payload.
587
588 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
589
590 The payload decoder function for TTN V3 are here:
591
592 SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
593
594
595 ==== 2.3.3.1 Battery Info ====
596
597 Check the battery voltage for SN50v3.
598
599 Ex1: 0x0B45 = 2885mV
600
601 Ex2: 0x0B49 = 2889mV
602
603
604 ==== 2.3.3.2  Temperature (DS18B20) ====
605
606 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
607
608 More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
609
610 **Connection:**
611
612 [[image:image-20230512180718-8.png||height="538" width="647"]]
613
614 **Example**:
615
616 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
617
618 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
619
620 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
621
622
623 ==== 2.3.3.3 Digital Input ====
624
625 The digital input for pin PB15,
626
627 * When PB15 is high, the bit 1 of payload byte 6 is 1.
628 * When PB15 is low, the bit 1 of payload byte 6 is 0.
629
630 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
631 (((
632 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
633
634 (% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
635 )))
636
637 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
638
639 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
640
641 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
642
643 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
644
645 (% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
646
647
648 ==== 2.3.3.5 Digital Interrupt ====
649
650 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
651
652 (% style="color:blue" %)**~ Interrupt connection method:**
653
654 [[image:image-20230513105351-5.png||height="147" width="485"]]
655
656 (% style="color:blue" %)**Example to use with door sensor :**
657
658 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
659
660 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
661
662 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
663
664 (% style="color:blue" %)**~ Below is the installation example:**
665
666 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
667
668 * (((
669 One pin to SN50_v3's PA8 pin
670 )))
671 * (((
672 The other pin to SN50_v3's VDD pin
673 )))
674
675 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
676
677 Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
678
679 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
680
681 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
682
683 The above photos shows the two parts of the magnetic switch fitted to a door.
684
685 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
686
687 The command is:
688
689 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
690
691 Below shows some screen captures in TTN V3:
692
693 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
694
695 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
696
697 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
698
699
700 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
701
702 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
703
704 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
705
706 Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
707
708 Below is the connection to SHT20/ SHT31. The connection is as below:
709
710
711 [[image:image-20230513103633-3.png||height="448" width="716"]]
712
713 The device will be able to get the I2C sensor data now and upload to IoT Server.
714
715 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
716
717 Convert the read byte to decimal and divide it by ten.
718
719 **Example:**
720
721 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
722
723 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
724
725 If you want to use other I2C device, please refer the SHT20 part source code as reference.
726
727
728 ==== 2.3.3.7  ​Distance Reading ====
729
730 Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
731
732
733 ==== 2.3.3.8 Ultrasonic Sensor ====
734
735 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
736
737 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
738
739 The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
740
741 The picture below shows the connection:
742
743 [[image:image-20230512173903-6.png||height="596" width="715"]]
744
745 Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
746
747 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
748
749 **Example:**
750
751 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
752
753
754
755 ==== 2.3.3.9  Battery Output - BAT pin ====
756
757 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
758
759
760 ==== 2.3.3.10  +5V Output ====
761
762 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
763
764 The 5V output time can be controlled by AT Command.
765
766 (% style="color:blue" %)**AT+5VT=1000**
767
768 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
769
770 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
771
772
773
774 ==== 2.3.3.11  BH1750 Illumination Sensor ====
775
776 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
777
778 [[image:image-20230512172447-4.png||height="416" width="712"]]
779
780 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
781
782
783 ==== 2.3.3.12  Working MOD ====
784
785 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
786
787 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
788
789 Case 7^^th^^ Byte >> 2 & 0x1f:
790
791 * 0: MOD1
792 * 1: MOD2
793 * 2: MOD3
794 * 3: MOD4
795 * 4: MOD5
796 * 5: MOD6
797 * 6: MOD7
798 * 7: MOD8
799 * 8: MOD9
800
801
802
803 == 2.4 Payload Decoder file ==
804
805
806 In TTN, use can add a custom payload so it shows friendly reading
807
808 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
809
810 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
811
812
813
814 == 2.5 Frequency Plans ==
815
816
817 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
818
819 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
820
821
822 = 3. Configure SN50v3-LB =
823
824 == 3.1 Configure Methods ==
825
826
827 SN50v3-LB supports below configure method:
828
829 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
830 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
831 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
832
833 == 3.2 General Commands ==
834
835
836 These commands are to configure:
837
838 * General system settings like: uplink interval.
839 * LoRaWAN protocol & radio related command.
840
841 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
842
843 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
844
845
846 == 3.3 Commands special design for SN50v3-LB ==
847
848
849 These commands only valid for S31x-LB, as below:
850
851
852 === 3.3.1 Set Transmit Interval Time ===
853
854 Feature: Change LoRaWAN End Node Transmit Interval.
855
856 (% style="color:blue" %)**AT Command: AT+TDC**
857
858 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
859 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
860 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
861 30000
862 OK
863 the interval is 30000ms = 30s
864 )))
865 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
866 OK
867 Set transmit interval to 60000ms = 60 seconds
868 )))
869
870 (% style="color:blue" %)**Downlink Command: 0x01**
871
872 Format: Command Code (0x01) followed by 3 bytes time value.
873
874 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
875
876 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
877 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
878
879
880
881 === 3.3.2 Get Device Status ===
882
883 Send a LoRaWAN downlink to ask the device to send its status.
884
885 (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
886
887 Sensor will upload Device Status via FPORT=5. See payload section for detail.
888
889
890 === 3.3.3 Set Interrupt Mode ===
891
892 Feature, Set Interrupt mode for GPIO_EXIT.
893
894 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
895
896 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
897 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
898 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
899 0
900 OK
901 the mode is 0 =Disable Interrupt
902 )))
903 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
904 Set Transmit Interval
905 0. (Disable Interrupt),
906 ~1. (Trigger by rising and falling edge)
907 2. (Trigger by falling edge)
908 3. (Trigger by rising edge)
909 )))|(% style="width:157px" %)OK
910 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
911 Set Transmit Interval
912
913 trigger by rising edge.
914 )))|(% style="width:157px" %)OK
915 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
916
917 (% style="color:blue" %)**Downlink Command: 0x06**
918
919 Format: Command Code (0x06) followed by 3 bytes.
920
921 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
922
923 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
924 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
925 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
926 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
927
928
929
930 === 3.3.4 Set Power Output Duration ===
931
932 Control the output duration 5V . Before each sampling, device will
933
934 ~1. first enable the power output to external sensor,
935
936 2. keep it on as per duration, read sensor value and construct uplink payload
937
938 3. final, close the power output.
939
940 (% style="color:blue" %)**AT Command: AT+5VT**
941
942 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
943 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
944 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
945 500(default)
946 OK
947 )))
948 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
949 Close after a delay of 1000 milliseconds.
950 )))|(% style="width:157px" %)OK
951
952 (% style="color:blue" %)**Downlink Command: 0x07**
953
954 Format: Command Code (0x07) followed by 2 bytes.
955
956 The first and second bytes are the time to turn on.
957
958 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
959 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
960
961
962
963 === 3.3.5 Set Weighing parameters ===
964
965 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
966
967 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
968
969 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
970 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
971 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
972 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
973 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
974
975 (% style="color:blue" %)**Downlink Command: 0x08**
976
977 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
978
979 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
980
981 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
982
983 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
984 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
985 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
986
987
988
989 === 3.3.6 Set Digital pulse count value ===
990
991 Feature: Set the pulse count value.
992
993 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
994
995 (% style="color:blue" %)**AT Command: AT+SETCNT**
996
997 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
998 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
999 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1000 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1001
1002 (% style="color:blue" %)**Downlink Command: 0x09**
1003
1004 Format: Command Code (0x09) followed by 5 bytes.
1005
1006 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1007
1008 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1009 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1010
1011
1012
1013 === 3.3.7 Set Workmode ===
1014
1015 Feature: Switch working mode.
1016
1017 (% style="color:blue" %)**AT Command: AT+MOD**
1018
1019 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1020 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1021 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1022 OK
1023 )))
1024 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1025 OK
1026 Attention:Take effect after ATZ
1027 )))
1028
1029 (% style="color:blue" %)**Downlink Command: 0x0A**
1030
1031 Format: Command Code (0x0A) followed by 1 bytes.
1032
1033 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1034 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1035
1036
1037
1038 = 4. Battery & Power Consumption =
1039
1040
1041 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1042
1043 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1044
1045
1046 = 5. OTA Firmware update =
1047
1048
1049 (% class="wikigeneratedid" %)
1050 User can change firmware SN50v3-LB to:
1051
1052 * Change Frequency band/ region.
1053 * Update with new features.
1054 * Fix bugs.
1055
1056 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1057
1058
1059 Methods to Update Firmware:
1060
1061 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1062 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1063
1064 = 6. FAQ =
1065
1066 == 6.1 Where can i find source code of SN50v3-LB? ==
1067
1068 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1069 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1070
1071 = 7. Order Info =
1072
1073
1074 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1075
1076 (% style="color:red" %)**XX**(%%): The default frequency band
1077
1078 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1079 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1080 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1081 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1082 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1083 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1084 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1085 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1086
1087 (% style="color:red" %)**YY: ** (%%)Hole Option
1088
1089 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1090 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1091 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1092 * (% style="color:red" %)**NH**(%%): No Hole
1093
1094 = 8. ​Packing Info =
1095
1096 (% style="color:#037691" %)**Package Includes**:
1097
1098 * SN50v3-LB LoRaWAN Generic Node
1099
1100 (% style="color:#037691" %)**Dimension and weight**:
1101
1102 * Device Size: cm
1103 * Device Weight: g
1104 * Package Size / pcs : cm
1105 * Weight / pcs : g
1106
1107 = 9. Support =
1108
1109
1110 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1111
1112 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]