Version 43.19 by Xiaoling on 2023/05/16 14:17

Hide last authors
Xiaoling 41.2 1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
Edwin Chen 2.1 3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
Edwin Chen 5.1 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
Edwin Chen 2.1 18
Xiaoling 43.2 19
Edwin Chen 4.1 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 21
Edwin Chen 4.1 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
Edwin Chen 2.1 23
Edwin Chen 4.1 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
Edwin Chen 2.1 25
Edwin Chen 4.1 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 27
Edwin Chen 4.1 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 29
Edwin Chen 4.1 30
Edwin Chen 2.1 31 == 1.2 ​Features ==
32
33 * LoRaWAN 1.0.3 Class A
34 * Ultra-low power consumption
Edwin Chen 5.1 35 * Open-Source hardware/software
Edwin Chen 2.1 36 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
37 * Support Bluetooth v5.1 and LoRaWAN remote configure
38 * Support wireless OTA update firmware
39 * Uplink on periodically
40 * Downlink to change configure
41 * 8500mAh Battery for long term use
42
43 == 1.3 Specification ==
44
Xiaoling 43.4 45
Edwin Chen 2.1 46 (% style="color:#037691" %)**Common DC Characteristics:**
47
48 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
49 * Operating Temperature: -40 ~~ 85°C
50
Edwin Chen 5.1 51 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 52
Edwin Chen 5.1 53 * Battery output (2.6v ~~ 3.6v depends on battery)
54 * +5v controllable output
55 * 3 x Interrupt or Digital IN/OUT pins
56 * 3 x one-wire interfaces
57 * 1 x UART Interface
58 * 1 x I2C Interface
Edwin Chen 2.1 59
60 (% style="color:#037691" %)**LoRa Spec:**
61
62 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
63 * Max +22 dBm constant RF output vs.
64 * RX sensitivity: down to -139 dBm.
65 * Excellent blocking immunity
66
67 (% style="color:#037691" %)**Battery:**
68
69 * Li/SOCI2 un-chargeable battery
70 * Capacity: 8500mAh
71 * Self-Discharge: <1% / Year @ 25°C
72 * Max continuously current: 130mA
73 * Max boost current: 2A, 1 second
74
75 (% style="color:#037691" %)**Power Consumption**
76
77 * Sleep Mode: 5uA @ 3.3v
78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79
80 == 1.4 Sleep mode and working mode ==
81
Xiaoling 43.4 82
Edwin Chen 2.1 83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84
85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
86
87
88 == 1.5 Button & LEDs ==
89
90
91 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
92
93
94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
96 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
97 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
98 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
99 )))
100 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
101 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
102 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
103 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
104 )))
105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106
107 == 1.6 BLE connection ==
108
109
Edwin Chen 5.1 110 SN50v3-LB supports BLE remote configure.
Edwin Chen 2.1 111
112
113 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
114
115 * Press button to send an uplink
116 * Press button to active device.
117 * Device Power on or reset.
118
119 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
120
121
Edwin Chen 6.1 122 == 1.7 Pin Definitions ==
Edwin Chen 2.1 123
124
Saxer Lin 36.1 125 [[image:image-20230513102034-2.png]]
Edwin Chen 2.1 126
127
128 == 1.8 Mechanical ==
129
130
131 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132
133 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134
135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136
137
Edwin Chen 5.1 138 == Hole Option ==
139
Xiaoling 43.4 140
Edwin Chen 5.1 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142
143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
144
145 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
146
147
Edwin Chen 10.1 148 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
Edwin Chen 2.1 149
150 == 2.1 How it works ==
151
152
Edwin Chen 11.2 153 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 154
155
156 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
157
158
159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160
161 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162
163
Edwin Chen 11.2 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
Edwin Chen 2.1 165
Edwin Chen 11.2 166 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 167
Edwin Chen 11.2 168 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 2.1 169
170
171 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
172
173
174 (% style="color:blue" %)**Register the device**
175
176 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
177
178
179 (% style="color:blue" %)**Add APP EUI and DEV EUI**
180
181 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
182
183
184 (% style="color:blue" %)**Add APP EUI in the application**
185
186
187 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
188
189
190 (% style="color:blue" %)**Add APP KEY**
191
192 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
193
194
Edwin Chen 11.2 195 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
Edwin Chen 2.1 196
197
Edwin Chen 11.2 198 Press the button for 5 seconds to activate the SN50v3-LB.
Edwin Chen 2.1 199
200 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
201
202 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
203
204
205 == 2.3 ​Uplink Payload ==
206
207 === 2.3.1 Device Status, FPORT~=5 ===
208
209
Edwin Chen 11.2 210 Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 211
212 The Payload format is as below.
213
214
215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219
220 Example parse in TTNv3
221
222
Edwin Chen 11.2 223 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
Edwin Chen 2.1 224
225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226
227 (% style="color:#037691" %)**Frequency Band**:
228
229 *0x01: EU868
230
231 *0x02: US915
232
233 *0x03: IN865
234
235 *0x04: AU915
236
237 *0x05: KZ865
238
239 *0x06: RU864
240
241 *0x07: AS923
242
243 *0x08: AS923-1
244
245 *0x09: AS923-2
246
247 *0x0a: AS923-3
248
249 *0x0b: CN470
250
251 *0x0c: EU433
252
253 *0x0d: KR920
254
255 *0x0e: MA869
256
257
258 (% style="color:#037691" %)**Sub-Band**:
259
260 AU915 and US915:value 0x00 ~~ 0x08
261
262 CN470: value 0x0B ~~ 0x0C
263
264 Other Bands: Always 0x00
265
266
267 (% style="color:#037691" %)**Battery Info**:
268
269 Check the battery voltage.
270
271 Ex1: 0x0B45 = 2885mV
272
273 Ex2: 0x0B49 = 2889mV
274
275
Edwin Chen 12.1 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 277
278
Edwin Chen 12.1 279 SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280
281 For example:
282
283 **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284
285
Edwin Chen 13.1 286 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 287
288 1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
Edwin Chen 13.1 289 1. All modes share the same Payload Explanation from HERE.
290 1. By default, the device will send an uplink message every 20 minutes.
Edwin Chen 12.1 291
Edwin Chen 13.1 292 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 293
Xiaoling 43.5 294
Edwin Chen 12.1 295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296
Xiaoling 43.5 297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.18 298 |(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
Saxer Lin 40.1 299 |**Value**|Bat|(% style="width:191px" %)(((
Xiaoling 43.12 300 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 301 )))|(% style="width:78px" %)(((
Xiaoling 43.12 302 ADC(PA4)
Saxer Lin 26.2 303 )))|(% style="width:216px" %)(((
Xiaoling 43.13 304 Digital in(PB15)&Digital Interrupt(PA8)
Saxer Lin 40.1 305 )))|(% style="width:308px" %)(((
Xiaoling 43.12 306 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 307 )))|(% style="width:154px" %)(((
Xiaoling 43.12 308 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 309 )))
310
Edwin Chen 12.1 311 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
312
313
Edwin Chen 13.1 314 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
315
Edwin Chen 12.1 316 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317
Xiaoling 43.14 318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.15 319 |(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
Saxer Lin 40.1 320 |**Value**|BAT|(% style="width:196px" %)(((
Xiaoling 43.16 321 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 322 )))|(% style="width:87px" %)(((
Xiaoling 43.16 323 ADC(PA4)
Saxer Lin 40.1 324 )))|(% style="width:189px" %)(((
Xiaoling 43.16 325 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 326 )))|(% style="width:208px" %)(((
Xiaoling 43.16 327 Distance measure by:1) LIDAR-Lite V3HP
328 Or 2) Ultrasonic Sensor
Saxer Lin 40.1 329 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 330
331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
332
Xiaoling 43.17 333 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
Edwin Chen 12.1 334
Saxer Lin 26.2 335 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 336
Xiaoling 43.17 337 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
Edwin Chen 12.1 338
Saxer Lin 36.1 339 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
340
Saxer Lin 26.2 341 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 342
343 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
344
Xiaoling 43.19 345 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Saxer Lin 40.1 346 |**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
347 |**Value**|BAT|(% style="width:183px" %)(((
Xiaoling 43.19 348 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 349 )))|(% style="width:173px" %)(((
Xiaoling 43.19 350 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 351 )))|(% style="width:84px" %)(((
Xiaoling 43.19 352 ADC(PA4)
Saxer Lin 40.1 353 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 354 Distance measure by:1)TF-Mini plus LiDAR
Xiaoling 43.19 355 Or 2) TF-Luna LiDAR
Saxer Lin 40.1 356 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 357
358 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
359
360 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
361
Saxer Lin 36.1 362 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
Edwin Chen 12.1 363
Saxer Lin 26.2 364 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 365
366 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
367
Saxer Lin 36.1 368 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
Edwin Chen 12.1 369
Saxer Lin 36.1 370 [[image:image-20230513105207-4.png||height="469" width="802"]]
Edwin Chen 12.1 371
372
Edwin Chen 13.1 373 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
374
Edwin Chen 12.1 375 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
376
Saxer Lin 36.1 377 (% style="width:1031px" %)
Edwin Chen 12.1 378 |=(((
379 **Size(bytes)**
Saxer Lin 36.1 380 )))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
Saxer Lin 26.2 381 |**Value**|(% style="width:68px" %)(((
Saxer Lin 36.1 382 ADC1
383 (PA4)
Saxer Lin 26.2 384 )))|(% style="width:75px" %)(((
385 ADC2
Saxer Lin 36.1 386 (PA5)
387 )))|(((
388 ADC3
389 (PA8)
390 )))|(((
391 Digital Interrupt(PB15)
392 )))|(% style="width:304px" %)(((
393 Temperature
394 (SHT20 or SHT31 or BH1750 Illumination Sensor)
395 )))|(% style="width:163px" %)(((
396 Humidity
397 (SHT20 or SHT31)
398 )))|(% style="width:53px" %)Bat
399
400 [[image:image-20230513110214-6.png]]
401
402
Edwin Chen 13.1 403 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
404
Edwin Chen 12.1 405
Saxer Lin 26.2 406 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 407
Saxer Lin 26.2 408 (% style="width:1017px" %)
409 |**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
410 |**Value**|BAT|(% style="width:186px" %)(((
411 Temperature1(DS18B20)
412 (PC13)
413 )))|(% style="width:82px" %)(((
414 ADC
415 (PA4)
416 )))|(% style="width:210px" %)(((
Saxer Lin 36.1 417 Digital in(PB15) &
418 Digital Interrupt(PA8) 
Saxer Lin 26.2 419 )))|(% style="width:191px" %)Temperature2(DS18B20)
420 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)
421 (PB8)
Edwin Chen 12.1 422
423 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
424
Saxer Lin 39.2 425 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 426
Saxer Lin 39.1 427
Edwin Chen 13.1 428 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
429
Saxer Lin 26.2 430 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 431
432 Each HX711 need to be calibrated before used. User need to do below two steps:
433
434 1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
435 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
436 1. (((
Saxer Lin 26.2 437 Weight has 4 bytes, the unit is g.
Edwin Chen 12.1 438 )))
439
440 For example:
441
Saxer Lin 26.2 442 **AT+GETSENSORVALUE =0**
Edwin Chen 12.1 443
444 Response:  Weight is 401 g
445
446 Check the response of this command and adjust the value to match the real value for thing.
447
Saxer Lin 40.1 448 (% style="width:767px" %)
Edwin Chen 12.1 449 |=(((
450 **Size(bytes)**
Saxer Lin 40.1 451 )))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
452 |**Value**|BAT|(% style="width:193px" %)(((
Saxer Lin 36.1 453 Temperature(DS18B20)
Saxer Lin 26.2 454 (PC13)
Saxer Lin 40.1 455 )))|(% style="width:85px" %)(((
Saxer Lin 36.1 456 ADC
Saxer Lin 26.2 457 (PA4)
Saxer Lin 40.1 458 )))|(% style="width:186px" %)(((
Saxer Lin 36.1 459 Digital in(PB15) &
460 Digital Interrupt(PA8)
Saxer Lin 40.1 461 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 462
Edwin Chen 12.1 463 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
464
465
Edwin Chen 13.1 466 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
467
Edwin Chen 12.1 468 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
469
470 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
471
Saxer Lin 26.2 472 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 473
Saxer Lin 36.1 474 **Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
Edwin Chen 12.1 475
Saxer Lin 36.1 476 (% style="width:961px" %)
477 |=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
478 |**Value**|BAT|(% style="width:256px" %)(((
479 Temperature(DS18B20)
Edwin Chen 12.1 480
Saxer Lin 36.1 481 (PC13)
482 )))|(% style="width:108px" %)(((
483 ADC
484 (PA4)
485 )))|(% style="width:126px" %)(((
486 Digital in
487 (PB15)
488 )))|(% style="width:145px" %)(((
489 Count
490 (PA8)
491 )))
492
Edwin Chen 12.1 493 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
494
495
Edwin Chen 13.1 496 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
497
Saxer Lin 40.1 498 (% style="width:1108px" %)
Edwin Chen 12.1 499 |=(((
500 **Size(bytes)**
Saxer Lin 40.1 501 )))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
502 |**Value**|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 503 Temperature(DS18B20)
504 (PC13)
Saxer Lin 40.1 505 )))|(% style="width:83px" %)(((
Saxer Lin 36.1 506 ADC
507 (PA5)
Saxer Lin 40.1 508 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 509 Digital Interrupt1(PA8)
Saxer Lin 40.1 510 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 511
512 [[image:image-20230513111203-7.png||height="324" width="975"]]
513
Edwin Chen 13.1 514 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
515
Saxer Lin 40.1 516 (% style="width:922px" %)
Edwin Chen 12.1 517 |=(((
518 **Size(bytes)**
Saxer Lin 40.1 519 )))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
Saxer Lin 36.1 520 |**Value**|BAT|(% style="width:207px" %)(((
521 Temperature(DS18B20)
522 (PC13)
523 )))|(% style="width:94px" %)(((
524 ADC1
525 (PA4)
526 )))|(% style="width:198px" %)(((
527 Digital Interrupt(PB15)
528 )))|(% style="width:84px" %)(((
529 ADC2
530 (PA5)
Saxer Lin 40.1 531 )))|(% style="width:82px" %)(((
Saxer Lin 36.1 532 ADC3
533 (PA8)
Edwin Chen 12.1 534 )))
535
Saxer Lin 36.1 536 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 537
538
Edwin Chen 13.1 539 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
540
Saxer Lin 36.1 541 (% style="width:1010px" %)
Edwin Chen 12.1 542 |=(((
543 **Size(bytes)**
Saxer Lin 36.1 544 )))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
Edwin Chen 12.1 545 |**Value**|BAT|(((
Saxer Lin 36.1 546 Temperature1(DS18B20)
547 (PC13)
Edwin Chen 12.1 548 )))|(((
Saxer Lin 36.1 549 Temperature2(DS18B20)
550 (PB9)
Edwin Chen 12.1 551 )))|(((
Saxer Lin 36.1 552 Digital Interrupt
553 (PB15)
554 )))|(% style="width:193px" %)(((
555 Temperature3(DS18B20)
556 (PB8)
557 )))|(% style="width:78px" %)(((
558 Count1
559 (PA8)
560 )))|(% style="width:78px" %)(((
561 Count2
562 (PA4)
Edwin Chen 12.1 563 )))
564
Saxer Lin 36.1 565 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 566
567 **The newly added AT command is issued correspondingly:**
568
Saxer Lin 36.1 569 **~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
Edwin Chen 12.1 570
Saxer Lin 36.1 571 **~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
Edwin Chen 12.1 572
Saxer Lin 36.1 573 **~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
Edwin Chen 12.1 574
575 **AT+SETCNT=aa,bb** 
576
Saxer Lin 36.1 577 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 578
Saxer Lin 36.1 579 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 580
581
Edwin Chen 14.1 582
583 === 2.3.3  ​Decode payload ===
584
Edwin Chen 12.1 585 While using TTN V3 network, you can add the payload format to decode the payload.
586
587 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
588
589 The payload decoder function for TTN V3 are here:
590
Edwin Chen 14.1 591 SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 592
593
Edwin Chen 14.1 594 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 595
Edwin Chen 14.1 596 Check the battery voltage for SN50v3.
Edwin Chen 2.1 597
598 Ex1: 0x0B45 = 2885mV
599
600 Ex2: 0x0B49 = 2889mV
601
602
Edwin Chen 14.1 603 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 604
Saxer Lin 42.1 605 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 606
Edwin Chen 14.1 607 More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
608
609 **Connection:**
610
Saxer Lin 26.2 611 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 612
Edwin Chen 2.1 613 **Example**:
614
615 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
616
617 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
618
619 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
620
621
Edwin Chen 14.1 622 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 623
Saxer Lin 26.2 624 The digital input for pin PB15,
Edwin Chen 2.1 625
Saxer Lin 26.2 626 * When PB15 is high, the bit 1 of payload byte 6 is 1.
627 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 628
Saxer Lin 26.2 629 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
630 (((
Saxer Lin 36.1 631 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
632
Xiaoling 43.8 633 (% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
Saxer Lin 26.2 634 )))
635
Edwin Chen 14.1 636 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 637
Saxer Lin 36.1 638 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 639
Saxer Lin 36.1 640 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 641
Saxer Lin 26.2 642 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 643
Xiaoling 43.8 644 (% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
Edwin Chen 14.1 645
Saxer Lin 43.1 646
Edwin Chen 14.1 647 ==== 2.3.3.5 Digital Interrupt ====
648
Saxer Lin 36.1 649 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
Edwin Chen 14.1 650
Xiaoling 43.8 651 (% style="color:blue" %)**~ Interrupt connection method:**
Edwin Chen 14.1 652
Saxer Lin 36.1 653 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 654
Xiaoling 43.8 655 (% style="color:blue" %)**Example to use with door sensor :**
Edwin Chen 14.1 656
657 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
658
659 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
660
Saxer Lin 36.1 661 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 662
Xiaoling 43.8 663 (% style="color:blue" %)**~ Below is the installation example:**
Edwin Chen 14.1 664
Saxer Lin 36.1 665 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
Edwin Chen 14.1 666
667 * (((
Saxer Lin 36.1 668 One pin to SN50_v3's PA8 pin
Edwin Chen 14.1 669 )))
670 * (((
Saxer Lin 36.1 671 The other pin to SN50_v3's VDD pin
Edwin Chen 14.1 672 )))
673
Saxer Lin 36.1 674 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 675
676 Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
677
Saxer Lin 36.1 678 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 679
680 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
681
682 The above photos shows the two parts of the magnetic switch fitted to a door.
683
684 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
685
686 The command is:
687
Xiaoling 43.8 688 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 689
690 Below shows some screen captures in TTN V3:
691
692 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
693
694 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
695
696 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
697
698
Saxer Lin 26.2 699 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 700
Saxer Lin 26.2 701 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 702
Saxer Lin 40.1 703 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 704
Saxer Lin 40.1 705 Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
Edwin Chen 14.1 706
707 Below is the connection to SHT20/ SHT31. The connection is as below:
708
709
Saxer Lin 40.1 710 [[image:image-20230513103633-3.png||height="448" width="716"]]
Saxer Lin 36.1 711
Edwin Chen 14.1 712 The device will be able to get the I2C sensor data now and upload to IoT Server.
713
714 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
715
716 Convert the read byte to decimal and divide it by ten.
717
Edwin Chen 2.1 718 **Example:**
719
Edwin Chen 14.1 720 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 721
Edwin Chen 14.1 722 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 723
Edwin Chen 14.1 724 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 725
726
Edwin Chen 14.1 727 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 728
Edwin Chen 14.1 729 Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
730
731
732 ==== 2.3.3.8 Ultrasonic Sensor ====
733
Saxer Lin 26.2 734 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 735
Saxer Lin 36.1 736 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 737
Saxer Lin 36.1 738 The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
739
Edwin Chen 14.1 740 The picture below shows the connection:
741
Saxer Lin 36.1 742 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 743
Saxer Lin 36.1 744 Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 745
746 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
747
748 **Example:**
749
750 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
751
752
753
754 ==== 2.3.3.9  Battery Output - BAT pin ====
755
756 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
757
758
759 ==== 2.3.3.10  +5V Output ====
760
761 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
762
763 The 5V output time can be controlled by AT Command.
764
Xiaoling 43.9 765 (% style="color:blue" %)**AT+5VT=1000**
Edwin Chen 14.1 766
767 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
768
769 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
770
771
772
773 ==== 2.3.3.11  BH1750 Illumination Sensor ====
774
775 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
776
Saxer Lin 40.1 777 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 778
Saxer Lin 40.1 779 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 780
781
782 ==== 2.3.3.12  Working MOD ====
783
784 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
785
786 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
787
788 Case 7^^th^^ Byte >> 2 & 0x1f:
789
790 * 0: MOD1
791 * 1: MOD2
792 * 2: MOD3
793 * 3: MOD4
794 * 4: MOD5
795 * 5: MOD6
Saxer Lin 36.1 796 * 6: MOD7
797 * 7: MOD8
798 * 8: MOD9
Edwin Chen 14.1 799
Saxer Lin 43.1 800
Xiaoling 43.9 801
Edwin Chen 2.1 802 == 2.4 Payload Decoder file ==
803
804
805 In TTN, use can add a custom payload so it shows friendly reading
806
807 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
808
Saxer Lin 40.1 809 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 810
811
812
Edwin Chen 15.1 813 == 2.5 Frequency Plans ==
Edwin Chen 2.1 814
815
Edwin Chen 15.1 816 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 2.1 817
818 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
819
820
Edwin Chen 16.1 821 = 3. Configure SN50v3-LB =
Edwin Chen 2.1 822
823 == 3.1 Configure Methods ==
824
825
Edwin Chen 16.1 826 SN50v3-LB supports below configure method:
Edwin Chen 2.1 827
828 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
829 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
830 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
831
832 == 3.2 General Commands ==
833
834
835 These commands are to configure:
836
837 * General system settings like: uplink interval.
838 * LoRaWAN protocol & radio related command.
839
840 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
841
842 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
843
844
Edwin Chen 16.1 845 == 3.3 Commands special design for SN50v3-LB ==
Edwin Chen 2.1 846
847
848 These commands only valid for S31x-LB, as below:
849
850
851 === 3.3.1 Set Transmit Interval Time ===
852
853 Feature: Change LoRaWAN End Node Transmit Interval.
854
855 (% style="color:blue" %)**AT Command: AT+TDC**
856
857 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
858 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
859 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
860 30000
861 OK
862 the interval is 30000ms = 30s
863 )))
864 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
865 OK
866 Set transmit interval to 60000ms = 60 seconds
867 )))
868
869 (% style="color:blue" %)**Downlink Command: 0x01**
870
871 Format: Command Code (0x01) followed by 3 bytes time value.
872
873 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
874
875 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
876 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
877
Saxer Lin 40.1 878
Xiaoling 43.9 879
Edwin Chen 2.1 880 === 3.3.2 Get Device Status ===
881
Saxer Lin 40.1 882 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 883
884 (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
885
886 Sensor will upload Device Status via FPORT=5. See payload section for detail.
887
888
Saxer Lin 36.1 889 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 890
891 Feature, Set Interrupt mode for GPIO_EXIT.
892
Saxer Lin 36.1 893 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
Edwin Chen 2.1 894
895 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
896 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
Saxer Lin 36.1 897 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
Edwin Chen 2.1 898 0
899 OK
900 the mode is 0 =Disable Interrupt
901 )))
Saxer Lin 36.1 902 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
Edwin Chen 2.1 903 Set Transmit Interval
904 0. (Disable Interrupt),
905 ~1. (Trigger by rising and falling edge)
906 2. (Trigger by falling edge)
907 3. (Trigger by rising edge)
908 )))|(% style="width:157px" %)OK
Saxer Lin 36.1 909 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
910 Set Transmit Interval
Edwin Chen 2.1 911
Saxer Lin 36.1 912 trigger by rising edge.
913 )))|(% style="width:157px" %)OK
914 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
915
Edwin Chen 2.1 916 (% style="color:blue" %)**Downlink Command: 0x06**
917
918 Format: Command Code (0x06) followed by 3 bytes.
919
920 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
921
Saxer Lin 36.1 922 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
923 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
924 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
925 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
Edwin Chen 2.1 926
Saxer Lin 40.1 927
Xiaoling 43.9 928
Saxer Lin 36.1 929 === 3.3.4 Set Power Output Duration ===
930
931 Control the output duration 5V . Before each sampling, device will
932
933 ~1. first enable the power output to external sensor,
934
935 2. keep it on as per duration, read sensor value and construct uplink payload
936
937 3. final, close the power output.
938
939 (% style="color:blue" %)**AT Command: AT+5VT**
940
941 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
942 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
943 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
944 500(default)
945 OK
946 )))
947 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
948 Close after a delay of 1000 milliseconds.
949 )))|(% style="width:157px" %)OK
950
951 (% style="color:blue" %)**Downlink Command: 0x07**
952
953 Format: Command Code (0x07) followed by 2 bytes.
954
955 The first and second bytes are the time to turn on.
956
Saxer Lin 40.1 957 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
958 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 959
Saxer Lin 40.1 960
Xiaoling 43.9 961
Saxer Lin 36.1 962 === 3.3.5 Set Weighing parameters ===
963
Saxer Lin 37.1 964 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 965
966 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
967
968 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
969 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
Saxer Lin 37.1 970 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
971 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
972 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 973
974 (% style="color:blue" %)**Downlink Command: 0x08**
975
Saxer Lin 37.1 976 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 977
Saxer Lin 37.1 978 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 979
Saxer Lin 37.1 980 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 981
Saxer Lin 37.1 982 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
983 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
984 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
985
Saxer Lin 40.1 986
Xiaoling 43.9 987
Saxer Lin 36.1 988 === 3.3.6 Set Digital pulse count value ===
989
990 Feature: Set the pulse count value.
991
Saxer Lin 37.1 992 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
993
Saxer Lin 36.1 994 (% style="color:blue" %)**AT Command: AT+SETCNT**
995
996 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
997 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
998 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
999 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1000
1001 (% style="color:blue" %)**Downlink Command: 0x09**
1002
1003 Format: Command Code (0x09) followed by 5 bytes.
1004
1005 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1006
1007 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 1008 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 1009
Saxer Lin 40.1 1010
Xiaoling 43.9 1011
Saxer Lin 36.1 1012 === 3.3.7 Set Workmode ===
1013
Saxer Lin 37.1 1014 Feature: Switch working mode.
Saxer Lin 36.1 1015
1016 (% style="color:blue" %)**AT Command: AT+MOD**
1017
1018 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1019 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1020 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1021 OK
1022 )))
1023 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1024 OK
1025 Attention:Take effect after ATZ
1026 )))
1027
1028 (% style="color:blue" %)**Downlink Command: 0x0A**
1029
1030 Format: Command Code (0x0A) followed by 1 bytes.
1031
1032 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1033 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1034
Saxer Lin 40.1 1035
Xiaoling 43.9 1036
Edwin Chen 2.1 1037 = 4. Battery & Power Consumption =
1038
1039
Edwin Chen 11.1 1040 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1041
1042 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1043
1044
1045 = 5. OTA Firmware update =
1046
1047
1048 (% class="wikigeneratedid" %)
Edwin Chen 11.1 1049 User can change firmware SN50v3-LB to:
Edwin Chen 2.1 1050
1051 * Change Frequency band/ region.
1052 * Update with new features.
1053 * Fix bugs.
1054
1055 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1056
1057
1058 Methods to Update Firmware:
1059
1060 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1061 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1062
1063 = 6. FAQ =
1064
Edwin Chen 17.1 1065 == 6.1 Where can i find source code of SN50v3-LB? ==
Edwin Chen 2.1 1066
Edwin Chen 17.1 1067 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1068 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
Edwin Chen 2.1 1069
1070 = 7. Order Info =
1071
1072
Edwin Chen 10.1 1073 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
Edwin Chen 2.1 1074
1075 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1076
Edwin Chen 2.1 1077 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1078 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1079 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1080 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1081 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1082 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1083 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1084 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1085
Edwin Chen 10.1 1086 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1087
Edwin Chen 10.1 1088 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1089 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1090 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1091 * (% style="color:red" %)**NH**(%%): No Hole
1092
Edwin Chen 2.1 1093 = 8. ​Packing Info =
1094
1095 (% style="color:#037691" %)**Package Includes**:
1096
Edwin Chen 10.1 1097 * SN50v3-LB LoRaWAN Generic Node
Edwin Chen 2.1 1098
1099 (% style="color:#037691" %)**Dimension and weight**:
1100
1101 * Device Size: cm
1102 * Device Weight: g
1103 * Package Size / pcs : cm
1104 * Weight / pcs : g
1105
1106 = 9. Support =
1107
1108
1109 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 43.10 1110
Xiaoling 41.4 1111 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]