Version 43.16 by Xiaoling on 2023/05/16 14:14

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18
19
20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21
22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23
24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25
26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27
28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29
30
31 == 1.2 ​Features ==
32
33 * LoRaWAN 1.0.3 Class A
34 * Ultra-low power consumption
35 * Open-Source hardware/software
36 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
37 * Support Bluetooth v5.1 and LoRaWAN remote configure
38 * Support wireless OTA update firmware
39 * Uplink on periodically
40 * Downlink to change configure
41 * 8500mAh Battery for long term use
42
43 == 1.3 Specification ==
44
45
46 (% style="color:#037691" %)**Common DC Characteristics:**
47
48 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
49 * Operating Temperature: -40 ~~ 85°C
50
51 (% style="color:#037691" %)**I/O Interface:**
52
53 * Battery output (2.6v ~~ 3.6v depends on battery)
54 * +5v controllable output
55 * 3 x Interrupt or Digital IN/OUT pins
56 * 3 x one-wire interfaces
57 * 1 x UART Interface
58 * 1 x I2C Interface
59
60 (% style="color:#037691" %)**LoRa Spec:**
61
62 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
63 * Max +22 dBm constant RF output vs.
64 * RX sensitivity: down to -139 dBm.
65 * Excellent blocking immunity
66
67 (% style="color:#037691" %)**Battery:**
68
69 * Li/SOCI2 un-chargeable battery
70 * Capacity: 8500mAh
71 * Self-Discharge: <1% / Year @ 25°C
72 * Max continuously current: 130mA
73 * Max boost current: 2A, 1 second
74
75 (% style="color:#037691" %)**Power Consumption**
76
77 * Sleep Mode: 5uA @ 3.3v
78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79
80 == 1.4 Sleep mode and working mode ==
81
82
83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84
85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
86
87
88 == 1.5 Button & LEDs ==
89
90
91 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
92
93
94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
96 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
97 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
98 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
99 )))
100 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
101 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
102 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
103 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
104 )))
105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106
107 == 1.6 BLE connection ==
108
109
110 SN50v3-LB supports BLE remote configure.
111
112
113 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
114
115 * Press button to send an uplink
116 * Press button to active device.
117 * Device Power on or reset.
118
119 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
120
121
122 == 1.7 Pin Definitions ==
123
124
125 [[image:image-20230513102034-2.png]]
126
127
128 == 1.8 Mechanical ==
129
130
131 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132
133 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134
135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136
137
138 == Hole Option ==
139
140
141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142
143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
144
145 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
146
147
148 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
149
150 == 2.1 How it works ==
151
152
153 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154
155
156 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
157
158
159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160
161 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162
163
164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
165
166 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
167
168 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
169
170
171 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
172
173
174 (% style="color:blue" %)**Register the device**
175
176 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
177
178
179 (% style="color:blue" %)**Add APP EUI and DEV EUI**
180
181 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
182
183
184 (% style="color:blue" %)**Add APP EUI in the application**
185
186
187 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
188
189
190 (% style="color:blue" %)**Add APP KEY**
191
192 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
193
194
195 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
196
197
198 Press the button for 5 seconds to activate the SN50v3-LB.
199
200 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
201
202 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
203
204
205 == 2.3 ​Uplink Payload ==
206
207 === 2.3.1 Device Status, FPORT~=5 ===
208
209
210 Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
211
212 The Payload format is as below.
213
214
215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219
220 Example parse in TTNv3
221
222
223 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
224
225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226
227 (% style="color:#037691" %)**Frequency Band**:
228
229 *0x01: EU868
230
231 *0x02: US915
232
233 *0x03: IN865
234
235 *0x04: AU915
236
237 *0x05: KZ865
238
239 *0x06: RU864
240
241 *0x07: AS923
242
243 *0x08: AS923-1
244
245 *0x09: AS923-2
246
247 *0x0a: AS923-3
248
249 *0x0b: CN470
250
251 *0x0c: EU433
252
253 *0x0d: KR920
254
255 *0x0e: MA869
256
257
258 (% style="color:#037691" %)**Sub-Band**:
259
260 AU915 and US915:value 0x00 ~~ 0x08
261
262 CN470: value 0x0B ~~ 0x0C
263
264 Other Bands: Always 0x00
265
266
267 (% style="color:#037691" %)**Battery Info**:
268
269 Check the battery voltage.
270
271 Ex1: 0x0B45 = 2885mV
272
273 Ex2: 0x0B49 = 2889mV
274
275
276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277
278
279 SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280
281 For example:
282
283 **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284
285
286 (% style="color:red" %) **Important Notice:**
287
288 1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 1. All modes share the same Payload Explanation from HERE.
290 1. By default, the device will send an uplink message every 20 minutes.
291
292 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293
294
295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296
297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 |(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:35px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 |**Value**|Bat|(% style="width:191px" %)(((
300 Temperature(DS18B20)(PC13)
301 )))|(% style="width:78px" %)(((
302 ADC(PA4)
303 )))|(% style="width:216px" %)(((
304 Digital in(PB15)&Digital Interrupt(PA8)
305 )))|(% style="width:308px" %)(((
306 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
307 )))|(% style="width:154px" %)(((
308 Humidity(SHT20 or SHT31)
309 )))
310
311 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
312
313
314 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
315
316 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317
318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
319 |(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
320 |**Value**|BAT|(% style="width:196px" %)(((
321 Temperature(DS18B20)(PC13)
322 )))|(% style="width:87px" %)(((
323 ADC(PA4)
324 )))|(% style="width:189px" %)(((
325 Digital in(PB15) & Digital Interrupt(PA8)
326 )))|(% style="width:208px" %)(((
327 Distance measure by:1) LIDAR-Lite V3HP
328 Or 2) Ultrasonic Sensor
329 )))|(% style="width:117px" %)Reserved
330
331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
332
333 **Connection of LIDAR-Lite V3HP:**
334
335 [[image:image-20230512173758-5.png||height="563" width="712"]]
336
337 **Connection to Ultrasonic Sensor:**
338
339 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
340
341 [[image:image-20230512173903-6.png||height="596" width="715"]]
342
343 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
344
345 (% style="width:1113px" %)
346 |**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
347 |**Value**|BAT|(% style="width:183px" %)(((
348 Temperature(DS18B20)
349 (PC13)
350 )))|(% style="width:173px" %)(((
351 Digital in(PB15) &
352 Digital Interrupt(PA8)
353 )))|(% style="width:84px" %)(((
354 ADC
355 (PA4)
356 )))|(% style="width:323px" %)(((
357 Distance measure by:1)TF-Mini plus LiDAR
358 Or 
359 2) TF-Luna LiDAR
360 )))|(% style="width:188px" %)Distance signal  strength
361
362 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
363
364 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
365
366 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
367
368 [[image:image-20230512180609-7.png||height="555" width="802"]]
369
370 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
371
372 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
373
374 [[image:image-20230513105207-4.png||height="469" width="802"]]
375
376
377 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
378
379 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
380
381 (% style="width:1031px" %)
382 |=(((
383 **Size(bytes)**
384 )))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
385 |**Value**|(% style="width:68px" %)(((
386 ADC1
387 (PA4)
388 )))|(% style="width:75px" %)(((
389 ADC2
390 (PA5)
391 )))|(((
392 ADC3
393 (PA8)
394 )))|(((
395 Digital Interrupt(PB15)
396 )))|(% style="width:304px" %)(((
397 Temperature
398 (SHT20 or SHT31 or BH1750 Illumination Sensor)
399 )))|(% style="width:163px" %)(((
400 Humidity
401 (SHT20 or SHT31)
402 )))|(% style="width:53px" %)Bat
403
404 [[image:image-20230513110214-6.png]]
405
406
407 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
408
409
410 This mode has total 11 bytes. As shown below:
411
412 (% style="width:1017px" %)
413 |**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
414 |**Value**|BAT|(% style="width:186px" %)(((
415 Temperature1(DS18B20)
416 (PC13)
417 )))|(% style="width:82px" %)(((
418 ADC
419 (PA4)
420 )))|(% style="width:210px" %)(((
421 Digital in(PB15) &
422 Digital Interrupt(PA8) 
423 )))|(% style="width:191px" %)Temperature2(DS18B20)
424 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)
425 (PB8)
426
427 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
428
429 [[image:image-20230513134006-1.png||height="559" width="736"]]
430
431
432 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
433
434 [[image:image-20230512164658-2.png||height="532" width="729"]]
435
436 Each HX711 need to be calibrated before used. User need to do below two steps:
437
438 1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
439 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
440 1. (((
441 Weight has 4 bytes, the unit is g.
442 )))
443
444 For example:
445
446 **AT+GETSENSORVALUE =0**
447
448 Response:  Weight is 401 g
449
450 Check the response of this command and adjust the value to match the real value for thing.
451
452 (% style="width:767px" %)
453 |=(((
454 **Size(bytes)**
455 )))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
456 |**Value**|BAT|(% style="width:193px" %)(((
457 Temperature(DS18B20)
458 (PC13)
459 )))|(% style="width:85px" %)(((
460 ADC
461 (PA4)
462 )))|(% style="width:186px" %)(((
463 Digital in(PB15) &
464 Digital Interrupt(PA8)
465 )))|(% style="width:100px" %)Weight
466
467 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
468
469
470 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
471
472 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
473
474 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
475
476 [[image:image-20230512181814-9.png||height="543" width="697"]]
477
478 **Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
479
480 (% style="width:961px" %)
481 |=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
482 |**Value**|BAT|(% style="width:256px" %)(((
483 Temperature(DS18B20)
484
485 (PC13)
486 )))|(% style="width:108px" %)(((
487 ADC
488 (PA4)
489 )))|(% style="width:126px" %)(((
490 Digital in
491 (PB15)
492 )))|(% style="width:145px" %)(((
493 Count
494 (PA8)
495 )))
496
497 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
498
499
500 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
501
502 (% style="width:1108px" %)
503 |=(((
504 **Size(bytes)**
505 )))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
506 |**Value**|BAT|(% style="width:188px" %)(((
507 Temperature(DS18B20)
508 (PC13)
509 )))|(% style="width:83px" %)(((
510 ADC
511 (PA5)
512 )))|(% style="width:184px" %)(((
513 Digital Interrupt1(PA8)
514 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
515
516 [[image:image-20230513111203-7.png||height="324" width="975"]]
517
518 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
519
520 (% style="width:922px" %)
521 |=(((
522 **Size(bytes)**
523 )))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
524 |**Value**|BAT|(% style="width:207px" %)(((
525 Temperature(DS18B20)
526 (PC13)
527 )))|(% style="width:94px" %)(((
528 ADC1
529 (PA4)
530 )))|(% style="width:198px" %)(((
531 Digital Interrupt(PB15)
532 )))|(% style="width:84px" %)(((
533 ADC2
534 (PA5)
535 )))|(% style="width:82px" %)(((
536 ADC3
537 (PA8)
538 )))
539
540 [[image:image-20230513111231-8.png||height="335" width="900"]]
541
542
543 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
544
545 (% style="width:1010px" %)
546 |=(((
547 **Size(bytes)**
548 )))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
549 |**Value**|BAT|(((
550 Temperature1(DS18B20)
551 (PC13)
552 )))|(((
553 Temperature2(DS18B20)
554 (PB9)
555 )))|(((
556 Digital Interrupt
557 (PB15)
558 )))|(% style="width:193px" %)(((
559 Temperature3(DS18B20)
560 (PB8)
561 )))|(% style="width:78px" %)(((
562 Count1
563 (PA8)
564 )))|(% style="width:78px" %)(((
565 Count2
566 (PA4)
567 )))
568
569 [[image:image-20230513111255-9.png||height="341" width="899"]]
570
571 **The newly added AT command is issued correspondingly:**
572
573 **~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
574
575 **~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
576
577 **~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
578
579 **AT+SETCNT=aa,bb** 
580
581 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
582
583 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
584
585
586
587 === 2.3.3  ​Decode payload ===
588
589 While using TTN V3 network, you can add the payload format to decode the payload.
590
591 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
592
593 The payload decoder function for TTN V3 are here:
594
595 SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
596
597
598 ==== 2.3.3.1 Battery Info ====
599
600 Check the battery voltage for SN50v3.
601
602 Ex1: 0x0B45 = 2885mV
603
604 Ex2: 0x0B49 = 2889mV
605
606
607 ==== 2.3.3.2  Temperature (DS18B20) ====
608
609 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
610
611 More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
612
613 **Connection:**
614
615 [[image:image-20230512180718-8.png||height="538" width="647"]]
616
617 **Example**:
618
619 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
620
621 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
622
623 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
624
625
626 ==== 2.3.3.3 Digital Input ====
627
628 The digital input for pin PB15,
629
630 * When PB15 is high, the bit 1 of payload byte 6 is 1.
631 * When PB15 is low, the bit 1 of payload byte 6 is 0.
632
633 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
634 (((
635 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
636
637 (% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
638 )))
639
640 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
641
642 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
643
644 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
645
646 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
647
648 (% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
649
650
651 ==== 2.3.3.5 Digital Interrupt ====
652
653 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
654
655 (% style="color:blue" %)**~ Interrupt connection method:**
656
657 [[image:image-20230513105351-5.png||height="147" width="485"]]
658
659 (% style="color:blue" %)**Example to use with door sensor :**
660
661 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
662
663 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
664
665 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
666
667 (% style="color:blue" %)**~ Below is the installation example:**
668
669 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
670
671 * (((
672 One pin to SN50_v3's PA8 pin
673 )))
674 * (((
675 The other pin to SN50_v3's VDD pin
676 )))
677
678 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
679
680 Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
681
682 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
683
684 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
685
686 The above photos shows the two parts of the magnetic switch fitted to a door.
687
688 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
689
690 The command is:
691
692 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
693
694 Below shows some screen captures in TTN V3:
695
696 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
697
698 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
699
700 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
701
702
703 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
704
705 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
706
707 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
708
709 Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
710
711 Below is the connection to SHT20/ SHT31. The connection is as below:
712
713
714 [[image:image-20230513103633-3.png||height="448" width="716"]]
715
716 The device will be able to get the I2C sensor data now and upload to IoT Server.
717
718 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
719
720 Convert the read byte to decimal and divide it by ten.
721
722 **Example:**
723
724 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
725
726 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
727
728 If you want to use other I2C device, please refer the SHT20 part source code as reference.
729
730
731 ==== 2.3.3.7  ​Distance Reading ====
732
733 Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
734
735
736 ==== 2.3.3.8 Ultrasonic Sensor ====
737
738 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
739
740 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
741
742 The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
743
744 The picture below shows the connection:
745
746 [[image:image-20230512173903-6.png||height="596" width="715"]]
747
748 Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
749
750 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
751
752 **Example:**
753
754 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
755
756
757
758 ==== 2.3.3.9  Battery Output - BAT pin ====
759
760 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
761
762
763 ==== 2.3.3.10  +5V Output ====
764
765 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
766
767 The 5V output time can be controlled by AT Command.
768
769 (% style="color:blue" %)**AT+5VT=1000**
770
771 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
772
773 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
774
775
776
777 ==== 2.3.3.11  BH1750 Illumination Sensor ====
778
779 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
780
781 [[image:image-20230512172447-4.png||height="416" width="712"]]
782
783 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
784
785
786 ==== 2.3.3.12  Working MOD ====
787
788 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
789
790 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
791
792 Case 7^^th^^ Byte >> 2 & 0x1f:
793
794 * 0: MOD1
795 * 1: MOD2
796 * 2: MOD3
797 * 3: MOD4
798 * 4: MOD5
799 * 5: MOD6
800 * 6: MOD7
801 * 7: MOD8
802 * 8: MOD9
803
804
805
806 == 2.4 Payload Decoder file ==
807
808
809 In TTN, use can add a custom payload so it shows friendly reading
810
811 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
812
813 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
814
815
816
817 == 2.5 Frequency Plans ==
818
819
820 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
821
822 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
823
824
825 = 3. Configure SN50v3-LB =
826
827 == 3.1 Configure Methods ==
828
829
830 SN50v3-LB supports below configure method:
831
832 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
833 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
834 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
835
836 == 3.2 General Commands ==
837
838
839 These commands are to configure:
840
841 * General system settings like: uplink interval.
842 * LoRaWAN protocol & radio related command.
843
844 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
845
846 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
847
848
849 == 3.3 Commands special design for SN50v3-LB ==
850
851
852 These commands only valid for S31x-LB, as below:
853
854
855 === 3.3.1 Set Transmit Interval Time ===
856
857 Feature: Change LoRaWAN End Node Transmit Interval.
858
859 (% style="color:blue" %)**AT Command: AT+TDC**
860
861 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
862 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
863 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
864 30000
865 OK
866 the interval is 30000ms = 30s
867 )))
868 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
869 OK
870 Set transmit interval to 60000ms = 60 seconds
871 )))
872
873 (% style="color:blue" %)**Downlink Command: 0x01**
874
875 Format: Command Code (0x01) followed by 3 bytes time value.
876
877 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
878
879 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
880 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
881
882
883
884 === 3.3.2 Get Device Status ===
885
886 Send a LoRaWAN downlink to ask the device to send its status.
887
888 (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
889
890 Sensor will upload Device Status via FPORT=5. See payload section for detail.
891
892
893 === 3.3.3 Set Interrupt Mode ===
894
895 Feature, Set Interrupt mode for GPIO_EXIT.
896
897 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
898
899 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
900 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
901 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
902 0
903 OK
904 the mode is 0 =Disable Interrupt
905 )))
906 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
907 Set Transmit Interval
908 0. (Disable Interrupt),
909 ~1. (Trigger by rising and falling edge)
910 2. (Trigger by falling edge)
911 3. (Trigger by rising edge)
912 )))|(% style="width:157px" %)OK
913 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
914 Set Transmit Interval
915
916 trigger by rising edge.
917 )))|(% style="width:157px" %)OK
918 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
919
920 (% style="color:blue" %)**Downlink Command: 0x06**
921
922 Format: Command Code (0x06) followed by 3 bytes.
923
924 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
925
926 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
927 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
928 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
929 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
930
931
932
933 === 3.3.4 Set Power Output Duration ===
934
935 Control the output duration 5V . Before each sampling, device will
936
937 ~1. first enable the power output to external sensor,
938
939 2. keep it on as per duration, read sensor value and construct uplink payload
940
941 3. final, close the power output.
942
943 (% style="color:blue" %)**AT Command: AT+5VT**
944
945 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
946 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
947 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
948 500(default)
949 OK
950 )))
951 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
952 Close after a delay of 1000 milliseconds.
953 )))|(% style="width:157px" %)OK
954
955 (% style="color:blue" %)**Downlink Command: 0x07**
956
957 Format: Command Code (0x07) followed by 2 bytes.
958
959 The first and second bytes are the time to turn on.
960
961 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
962 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
963
964
965
966 === 3.3.5 Set Weighing parameters ===
967
968 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
969
970 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
971
972 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
973 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
974 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
975 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
976 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
977
978 (% style="color:blue" %)**Downlink Command: 0x08**
979
980 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
981
982 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
983
984 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
985
986 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
987 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
988 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
989
990
991
992 === 3.3.6 Set Digital pulse count value ===
993
994 Feature: Set the pulse count value.
995
996 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
997
998 (% style="color:blue" %)**AT Command: AT+SETCNT**
999
1000 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1001 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1002 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1003 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1004
1005 (% style="color:blue" %)**Downlink Command: 0x09**
1006
1007 Format: Command Code (0x09) followed by 5 bytes.
1008
1009 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1010
1011 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1012 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1013
1014
1015
1016 === 3.3.7 Set Workmode ===
1017
1018 Feature: Switch working mode.
1019
1020 (% style="color:blue" %)**AT Command: AT+MOD**
1021
1022 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1023 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1024 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1025 OK
1026 )))
1027 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1028 OK
1029 Attention:Take effect after ATZ
1030 )))
1031
1032 (% style="color:blue" %)**Downlink Command: 0x0A**
1033
1034 Format: Command Code (0x0A) followed by 1 bytes.
1035
1036 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1037 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1038
1039
1040
1041 = 4. Battery & Power Consumption =
1042
1043
1044 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1045
1046 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1047
1048
1049 = 5. OTA Firmware update =
1050
1051
1052 (% class="wikigeneratedid" %)
1053 User can change firmware SN50v3-LB to:
1054
1055 * Change Frequency band/ region.
1056 * Update with new features.
1057 * Fix bugs.
1058
1059 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1060
1061
1062 Methods to Update Firmware:
1063
1064 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1065 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1066
1067 = 6. FAQ =
1068
1069 == 6.1 Where can i find source code of SN50v3-LB? ==
1070
1071 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1072 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1073
1074 = 7. Order Info =
1075
1076
1077 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1078
1079 (% style="color:red" %)**XX**(%%): The default frequency band
1080
1081 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1082 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1083 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1084 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1085 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1086 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1087 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1088 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1089
1090 (% style="color:red" %)**YY: ** (%%)Hole Option
1091
1092 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1093 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1094 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1095 * (% style="color:red" %)**NH**(%%): No Hole
1096
1097 = 8. ​Packing Info =
1098
1099 (% style="color:#037691" %)**Package Includes**:
1100
1101 * SN50v3-LB LoRaWAN Generic Node
1102
1103 (% style="color:#037691" %)**Dimension and weight**:
1104
1105 * Device Size: cm
1106 * Device Weight: g
1107 * Package Size / pcs : cm
1108 * Weight / pcs : g
1109
1110 = 9. Support =
1111
1112
1113 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1114
1115 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]