Version 43.12 by Xiaoling on 2023/05/16 14:06

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18
19
20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21
22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23
24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25
26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27
28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29
30
31 == 1.2 ​Features ==
32
33 * LoRaWAN 1.0.3 Class A
34 * Ultra-low power consumption
35 * Open-Source hardware/software
36 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
37 * Support Bluetooth v5.1 and LoRaWAN remote configure
38 * Support wireless OTA update firmware
39 * Uplink on periodically
40 * Downlink to change configure
41 * 8500mAh Battery for long term use
42
43 == 1.3 Specification ==
44
45
46 (% style="color:#037691" %)**Common DC Characteristics:**
47
48 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
49 * Operating Temperature: -40 ~~ 85°C
50
51 (% style="color:#037691" %)**I/O Interface:**
52
53 * Battery output (2.6v ~~ 3.6v depends on battery)
54 * +5v controllable output
55 * 3 x Interrupt or Digital IN/OUT pins
56 * 3 x one-wire interfaces
57 * 1 x UART Interface
58 * 1 x I2C Interface
59
60 (% style="color:#037691" %)**LoRa Spec:**
61
62 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
63 * Max +22 dBm constant RF output vs.
64 * RX sensitivity: down to -139 dBm.
65 * Excellent blocking immunity
66
67 (% style="color:#037691" %)**Battery:**
68
69 * Li/SOCI2 un-chargeable battery
70 * Capacity: 8500mAh
71 * Self-Discharge: <1% / Year @ 25°C
72 * Max continuously current: 130mA
73 * Max boost current: 2A, 1 second
74
75 (% style="color:#037691" %)**Power Consumption**
76
77 * Sleep Mode: 5uA @ 3.3v
78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79
80 == 1.4 Sleep mode and working mode ==
81
82
83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84
85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
86
87
88 == 1.5 Button & LEDs ==
89
90
91 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
92
93
94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
96 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
97 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
98 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
99 )))
100 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
101 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
102 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
103 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
104 )))
105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106
107 == 1.6 BLE connection ==
108
109
110 SN50v3-LB supports BLE remote configure.
111
112
113 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
114
115 * Press button to send an uplink
116 * Press button to active device.
117 * Device Power on or reset.
118
119 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
120
121
122 == 1.7 Pin Definitions ==
123
124
125 [[image:image-20230513102034-2.png]]
126
127
128 == 1.8 Mechanical ==
129
130
131 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132
133 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134
135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136
137
138 == Hole Option ==
139
140
141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142
143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
144
145 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
146
147
148 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
149
150 == 2.1 How it works ==
151
152
153 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154
155
156 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
157
158
159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160
161 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162
163
164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
165
166 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
167
168 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
169
170
171 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
172
173
174 (% style="color:blue" %)**Register the device**
175
176 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
177
178
179 (% style="color:blue" %)**Add APP EUI and DEV EUI**
180
181 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
182
183
184 (% style="color:blue" %)**Add APP EUI in the application**
185
186
187 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
188
189
190 (% style="color:blue" %)**Add APP KEY**
191
192 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
193
194
195 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
196
197
198 Press the button for 5 seconds to activate the SN50v3-LB.
199
200 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
201
202 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
203
204
205 == 2.3 ​Uplink Payload ==
206
207 === 2.3.1 Device Status, FPORT~=5 ===
208
209
210 Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
211
212 The Payload format is as below.
213
214
215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219
220 Example parse in TTNv3
221
222
223 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
224
225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226
227 (% style="color:#037691" %)**Frequency Band**:
228
229 *0x01: EU868
230
231 *0x02: US915
232
233 *0x03: IN865
234
235 *0x04: AU915
236
237 *0x05: KZ865
238
239 *0x06: RU864
240
241 *0x07: AS923
242
243 *0x08: AS923-1
244
245 *0x09: AS923-2
246
247 *0x0a: AS923-3
248
249 *0x0b: CN470
250
251 *0x0c: EU433
252
253 *0x0d: KR920
254
255 *0x0e: MA869
256
257
258 (% style="color:#037691" %)**Sub-Band**:
259
260 AU915 and US915:value 0x00 ~~ 0x08
261
262 CN470: value 0x0B ~~ 0x0C
263
264 Other Bands: Always 0x00
265
266
267 (% style="color:#037691" %)**Battery Info**:
268
269 Check the battery voltage.
270
271 Ex1: 0x0B45 = 2885mV
272
273 Ex2: 0x0B49 = 2889mV
274
275
276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277
278
279 SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280
281 For example:
282
283 **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284
285
286 (% style="color:red" %) **Important Notice:**
287
288 1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 1. All modes share the same Payload Explanation from HERE.
290 1. By default, the device will send an uplink message every 20 minutes.
291
292 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293
294
295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296
297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 |(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:35px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 |**Value**|Bat|(% style="width:191px" %)(((
300 Temperature(DS18B20)(PC13)
301 )))|(% style="width:78px" %)(((
302 ADC(PA4)
303 )))|(% style="width:216px" %)(((
304 Digital in(PB15) &Digital Interrupt(PA8)
305 )))|(% style="width:308px" %)(((
306 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
307 )))|(% style="width:154px" %)(((
308 Humidity(SHT20 or SHT31)
309 )))
310
311 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
312
313
314 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
315
316 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317
318 (% style="width:1011px" %)
319 |**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**
320 |**Value**|BAT|(% style="width:196px" %)(((
321 Temperature(DS18B20)
322 (PC13)
323 )))|(% style="width:87px" %)(((
324 ADC
325 (PA4)
326 )))|(% style="width:189px" %)(((
327 Digital in(PB15) &
328 Digital Interrupt(PA8)
329 )))|(% style="width:208px" %)(((
330 Distance measure by:
331 1) LIDAR-Lite V3HP
332 Or
333 2) Ultrasonic Sensor
334 )))|(% style="width:117px" %)Reserved
335
336 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
337
338 **Connection of LIDAR-Lite V3HP:**
339
340 [[image:image-20230512173758-5.png||height="563" width="712"]]
341
342 **Connection to Ultrasonic Sensor:**
343
344 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
345
346 [[image:image-20230512173903-6.png||height="596" width="715"]]
347
348 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
349
350 (% style="width:1113px" %)
351 |**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
352 |**Value**|BAT|(% style="width:183px" %)(((
353 Temperature(DS18B20)
354 (PC13)
355 )))|(% style="width:173px" %)(((
356 Digital in(PB15) &
357 Digital Interrupt(PA8)
358 )))|(% style="width:84px" %)(((
359 ADC
360 (PA4)
361 )))|(% style="width:323px" %)(((
362 Distance measure by:1)TF-Mini plus LiDAR
363 Or 
364 2) TF-Luna LiDAR
365 )))|(% style="width:188px" %)Distance signal  strength
366
367 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
368
369 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
370
371 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
372
373 [[image:image-20230512180609-7.png||height="555" width="802"]]
374
375 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
376
377 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
378
379 [[image:image-20230513105207-4.png||height="469" width="802"]]
380
381
382 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
383
384 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
385
386 (% style="width:1031px" %)
387 |=(((
388 **Size(bytes)**
389 )))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
390 |**Value**|(% style="width:68px" %)(((
391 ADC1
392 (PA4)
393 )))|(% style="width:75px" %)(((
394 ADC2
395 (PA5)
396 )))|(((
397 ADC3
398 (PA8)
399 )))|(((
400 Digital Interrupt(PB15)
401 )))|(% style="width:304px" %)(((
402 Temperature
403 (SHT20 or SHT31 or BH1750 Illumination Sensor)
404 )))|(% style="width:163px" %)(((
405 Humidity
406 (SHT20 or SHT31)
407 )))|(% style="width:53px" %)Bat
408
409 [[image:image-20230513110214-6.png]]
410
411
412 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
413
414
415 This mode has total 11 bytes. As shown below:
416
417 (% style="width:1017px" %)
418 |**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
419 |**Value**|BAT|(% style="width:186px" %)(((
420 Temperature1(DS18B20)
421 (PC13)
422 )))|(% style="width:82px" %)(((
423 ADC
424 (PA4)
425 )))|(% style="width:210px" %)(((
426 Digital in(PB15) &
427 Digital Interrupt(PA8) 
428 )))|(% style="width:191px" %)Temperature2(DS18B20)
429 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)
430 (PB8)
431
432 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
433
434 [[image:image-20230513134006-1.png||height="559" width="736"]]
435
436
437 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
438
439 [[image:image-20230512164658-2.png||height="532" width="729"]]
440
441 Each HX711 need to be calibrated before used. User need to do below two steps:
442
443 1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
444 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
445 1. (((
446 Weight has 4 bytes, the unit is g.
447 )))
448
449 For example:
450
451 **AT+GETSENSORVALUE =0**
452
453 Response:  Weight is 401 g
454
455 Check the response of this command and adjust the value to match the real value for thing.
456
457 (% style="width:767px" %)
458 |=(((
459 **Size(bytes)**
460 )))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
461 |**Value**|BAT|(% style="width:193px" %)(((
462 Temperature(DS18B20)
463 (PC13)
464 )))|(% style="width:85px" %)(((
465 ADC
466 (PA4)
467 )))|(% style="width:186px" %)(((
468 Digital in(PB15) &
469 Digital Interrupt(PA8)
470 )))|(% style="width:100px" %)Weight
471
472 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
473
474
475 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
476
477 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
478
479 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
480
481 [[image:image-20230512181814-9.png||height="543" width="697"]]
482
483 **Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
484
485 (% style="width:961px" %)
486 |=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
487 |**Value**|BAT|(% style="width:256px" %)(((
488 Temperature(DS18B20)
489
490 (PC13)
491 )))|(% style="width:108px" %)(((
492 ADC
493 (PA4)
494 )))|(% style="width:126px" %)(((
495 Digital in
496 (PB15)
497 )))|(% style="width:145px" %)(((
498 Count
499 (PA8)
500 )))
501
502 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
503
504
505 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
506
507 (% style="width:1108px" %)
508 |=(((
509 **Size(bytes)**
510 )))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
511 |**Value**|BAT|(% style="width:188px" %)(((
512 Temperature(DS18B20)
513 (PC13)
514 )))|(% style="width:83px" %)(((
515 ADC
516 (PA5)
517 )))|(% style="width:184px" %)(((
518 Digital Interrupt1(PA8)
519 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
520
521 [[image:image-20230513111203-7.png||height="324" width="975"]]
522
523 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
524
525 (% style="width:922px" %)
526 |=(((
527 **Size(bytes)**
528 )))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
529 |**Value**|BAT|(% style="width:207px" %)(((
530 Temperature(DS18B20)
531 (PC13)
532 )))|(% style="width:94px" %)(((
533 ADC1
534 (PA4)
535 )))|(% style="width:198px" %)(((
536 Digital Interrupt(PB15)
537 )))|(% style="width:84px" %)(((
538 ADC2
539 (PA5)
540 )))|(% style="width:82px" %)(((
541 ADC3
542 (PA8)
543 )))
544
545 [[image:image-20230513111231-8.png||height="335" width="900"]]
546
547
548 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
549
550 (% style="width:1010px" %)
551 |=(((
552 **Size(bytes)**
553 )))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
554 |**Value**|BAT|(((
555 Temperature1(DS18B20)
556 (PC13)
557 )))|(((
558 Temperature2(DS18B20)
559 (PB9)
560 )))|(((
561 Digital Interrupt
562 (PB15)
563 )))|(% style="width:193px" %)(((
564 Temperature3(DS18B20)
565 (PB8)
566 )))|(% style="width:78px" %)(((
567 Count1
568 (PA8)
569 )))|(% style="width:78px" %)(((
570 Count2
571 (PA4)
572 )))
573
574 [[image:image-20230513111255-9.png||height="341" width="899"]]
575
576 **The newly added AT command is issued correspondingly:**
577
578 **~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
579
580 **~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
581
582 **~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
583
584 **AT+SETCNT=aa,bb** 
585
586 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
587
588 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
589
590
591
592 === 2.3.3  ​Decode payload ===
593
594 While using TTN V3 network, you can add the payload format to decode the payload.
595
596 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
597
598 The payload decoder function for TTN V3 are here:
599
600 SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
601
602
603 ==== 2.3.3.1 Battery Info ====
604
605 Check the battery voltage for SN50v3.
606
607 Ex1: 0x0B45 = 2885mV
608
609 Ex2: 0x0B49 = 2889mV
610
611
612 ==== 2.3.3.2  Temperature (DS18B20) ====
613
614 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
615
616 More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
617
618 **Connection:**
619
620 [[image:image-20230512180718-8.png||height="538" width="647"]]
621
622 **Example**:
623
624 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
625
626 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
627
628 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
629
630
631 ==== 2.3.3.3 Digital Input ====
632
633 The digital input for pin PB15,
634
635 * When PB15 is high, the bit 1 of payload byte 6 is 1.
636 * When PB15 is low, the bit 1 of payload byte 6 is 0.
637
638 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
639 (((
640 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
641
642 (% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
643 )))
644
645 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
646
647 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
648
649 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
650
651 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
652
653 (% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
654
655
656 ==== 2.3.3.5 Digital Interrupt ====
657
658 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
659
660 (% style="color:blue" %)**~ Interrupt connection method:**
661
662 [[image:image-20230513105351-5.png||height="147" width="485"]]
663
664 (% style="color:blue" %)**Example to use with door sensor :**
665
666 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
667
668 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
669
670 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
671
672 (% style="color:blue" %)**~ Below is the installation example:**
673
674 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
675
676 * (((
677 One pin to SN50_v3's PA8 pin
678 )))
679 * (((
680 The other pin to SN50_v3's VDD pin
681 )))
682
683 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
684
685 Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
686
687 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
688
689 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
690
691 The above photos shows the two parts of the magnetic switch fitted to a door.
692
693 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
694
695 The command is:
696
697 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
698
699 Below shows some screen captures in TTN V3:
700
701 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
702
703 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
704
705 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
706
707
708 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
709
710 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
711
712 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
713
714 Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
715
716 Below is the connection to SHT20/ SHT31. The connection is as below:
717
718
719 [[image:image-20230513103633-3.png||height="448" width="716"]]
720
721 The device will be able to get the I2C sensor data now and upload to IoT Server.
722
723 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
724
725 Convert the read byte to decimal and divide it by ten.
726
727 **Example:**
728
729 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
730
731 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
732
733 If you want to use other I2C device, please refer the SHT20 part source code as reference.
734
735
736 ==== 2.3.3.7  ​Distance Reading ====
737
738 Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
739
740
741 ==== 2.3.3.8 Ultrasonic Sensor ====
742
743 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
744
745 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
746
747 The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
748
749 The picture below shows the connection:
750
751 [[image:image-20230512173903-6.png||height="596" width="715"]]
752
753 Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
754
755 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
756
757 **Example:**
758
759 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
760
761
762
763 ==== 2.3.3.9  Battery Output - BAT pin ====
764
765 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
766
767
768 ==== 2.3.3.10  +5V Output ====
769
770 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
771
772 The 5V output time can be controlled by AT Command.
773
774 (% style="color:blue" %)**AT+5VT=1000**
775
776 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
777
778 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
779
780
781
782 ==== 2.3.3.11  BH1750 Illumination Sensor ====
783
784 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
785
786 [[image:image-20230512172447-4.png||height="416" width="712"]]
787
788 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
789
790
791 ==== 2.3.3.12  Working MOD ====
792
793 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
794
795 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
796
797 Case 7^^th^^ Byte >> 2 & 0x1f:
798
799 * 0: MOD1
800 * 1: MOD2
801 * 2: MOD3
802 * 3: MOD4
803 * 4: MOD5
804 * 5: MOD6
805 * 6: MOD7
806 * 7: MOD8
807 * 8: MOD9
808
809
810
811 == 2.4 Payload Decoder file ==
812
813
814 In TTN, use can add a custom payload so it shows friendly reading
815
816 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
817
818 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
819
820
821
822 == 2.5 Frequency Plans ==
823
824
825 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
826
827 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
828
829
830 = 3. Configure SN50v3-LB =
831
832 == 3.1 Configure Methods ==
833
834
835 SN50v3-LB supports below configure method:
836
837 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
838 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
839 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
840
841 == 3.2 General Commands ==
842
843
844 These commands are to configure:
845
846 * General system settings like: uplink interval.
847 * LoRaWAN protocol & radio related command.
848
849 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
850
851 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
852
853
854 == 3.3 Commands special design for SN50v3-LB ==
855
856
857 These commands only valid for S31x-LB, as below:
858
859
860 === 3.3.1 Set Transmit Interval Time ===
861
862 Feature: Change LoRaWAN End Node Transmit Interval.
863
864 (% style="color:blue" %)**AT Command: AT+TDC**
865
866 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
867 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
868 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
869 30000
870 OK
871 the interval is 30000ms = 30s
872 )))
873 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
874 OK
875 Set transmit interval to 60000ms = 60 seconds
876 )))
877
878 (% style="color:blue" %)**Downlink Command: 0x01**
879
880 Format: Command Code (0x01) followed by 3 bytes time value.
881
882 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
883
884 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
885 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
886
887
888
889 === 3.3.2 Get Device Status ===
890
891 Send a LoRaWAN downlink to ask the device to send its status.
892
893 (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
894
895 Sensor will upload Device Status via FPORT=5. See payload section for detail.
896
897
898 === 3.3.3 Set Interrupt Mode ===
899
900 Feature, Set Interrupt mode for GPIO_EXIT.
901
902 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
903
904 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
905 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
906 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
907 0
908 OK
909 the mode is 0 =Disable Interrupt
910 )))
911 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
912 Set Transmit Interval
913 0. (Disable Interrupt),
914 ~1. (Trigger by rising and falling edge)
915 2. (Trigger by falling edge)
916 3. (Trigger by rising edge)
917 )))|(% style="width:157px" %)OK
918 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
919 Set Transmit Interval
920
921 trigger by rising edge.
922 )))|(% style="width:157px" %)OK
923 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
924
925 (% style="color:blue" %)**Downlink Command: 0x06**
926
927 Format: Command Code (0x06) followed by 3 bytes.
928
929 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
930
931 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
932 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
933 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
934 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
935
936
937
938 === 3.3.4 Set Power Output Duration ===
939
940 Control the output duration 5V . Before each sampling, device will
941
942 ~1. first enable the power output to external sensor,
943
944 2. keep it on as per duration, read sensor value and construct uplink payload
945
946 3. final, close the power output.
947
948 (% style="color:blue" %)**AT Command: AT+5VT**
949
950 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
951 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
952 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
953 500(default)
954 OK
955 )))
956 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
957 Close after a delay of 1000 milliseconds.
958 )))|(% style="width:157px" %)OK
959
960 (% style="color:blue" %)**Downlink Command: 0x07**
961
962 Format: Command Code (0x07) followed by 2 bytes.
963
964 The first and second bytes are the time to turn on.
965
966 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
967 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
968
969
970
971 === 3.3.5 Set Weighing parameters ===
972
973 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
974
975 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
976
977 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
978 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
979 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
980 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
981 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
982
983 (% style="color:blue" %)**Downlink Command: 0x08**
984
985 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
986
987 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
988
989 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
990
991 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
992 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
993 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
994
995
996
997 === 3.3.6 Set Digital pulse count value ===
998
999 Feature: Set the pulse count value.
1000
1001 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1002
1003 (% style="color:blue" %)**AT Command: AT+SETCNT**
1004
1005 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1006 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1007 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1008 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1009
1010 (% style="color:blue" %)**Downlink Command: 0x09**
1011
1012 Format: Command Code (0x09) followed by 5 bytes.
1013
1014 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1015
1016 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1017 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1018
1019
1020
1021 === 3.3.7 Set Workmode ===
1022
1023 Feature: Switch working mode.
1024
1025 (% style="color:blue" %)**AT Command: AT+MOD**
1026
1027 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1028 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1029 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1030 OK
1031 )))
1032 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1033 OK
1034 Attention:Take effect after ATZ
1035 )))
1036
1037 (% style="color:blue" %)**Downlink Command: 0x0A**
1038
1039 Format: Command Code (0x0A) followed by 1 bytes.
1040
1041 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1042 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1043
1044
1045
1046 = 4. Battery & Power Consumption =
1047
1048
1049 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1050
1051 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1052
1053
1054 = 5. OTA Firmware update =
1055
1056
1057 (% class="wikigeneratedid" %)
1058 User can change firmware SN50v3-LB to:
1059
1060 * Change Frequency band/ region.
1061 * Update with new features.
1062 * Fix bugs.
1063
1064 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1065
1066
1067 Methods to Update Firmware:
1068
1069 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1070 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1071
1072 = 6. FAQ =
1073
1074 == 6.1 Where can i find source code of SN50v3-LB? ==
1075
1076 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1077 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1078
1079 = 7. Order Info =
1080
1081
1082 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1083
1084 (% style="color:red" %)**XX**(%%): The default frequency band
1085
1086 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1087 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1088 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1089 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1090 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1091 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1092 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1093 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1094
1095 (% style="color:red" %)**YY: ** (%%)Hole Option
1096
1097 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1098 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1099 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1100 * (% style="color:red" %)**NH**(%%): No Hole
1101
1102 = 8. ​Packing Info =
1103
1104 (% style="color:#037691" %)**Package Includes**:
1105
1106 * SN50v3-LB LoRaWAN Generic Node
1107
1108 (% style="color:#037691" %)**Dimension and weight**:
1109
1110 * Device Size: cm
1111 * Device Weight: g
1112 * Package Size / pcs : cm
1113 * Weight / pcs : g
1114
1115 = 9. Support =
1116
1117
1118 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1119
1120 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]