Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18
19 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
20
21
22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23
24
25 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
26
27
28 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
29
30
31 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
32
33
34 == 1.2 ​Features ==
35
36 * LoRaWAN 1.0.3 Class A
37 * Ultra-low power consumption
38 * Open-Source hardware/software
39 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
40 * Support Bluetooth v5.1 and LoRaWAN remote configure
41 * Support wireless OTA update firmware
42 * Uplink on periodically
43 * Downlink to change configure
44 * 8500mAh Battery for long term use
45
46 == 1.3 Specification ==
47
48 (% style="color:#037691" %)**Common DC Characteristics:**
49
50 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
51 * Operating Temperature: -40 ~~ 85°C
52
53 (% style="color:#037691" %)**I/O Interface:**
54
55 * Battery output (2.6v ~~ 3.6v depends on battery)
56 * +5v controllable output
57 * 3 x Interrupt or Digital IN/OUT pins
58 * 3 x one-wire interfaces
59 * 1 x UART Interface
60 * 1 x I2C Interface
61
62 (% style="color:#037691" %)**LoRa Spec:**
63
64 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
65 * Max +22 dBm constant RF output vs.
66 * RX sensitivity: down to -139 dBm.
67 * Excellent blocking immunity
68
69 (% style="color:#037691" %)**Battery:**
70
71 * Li/SOCI2 un-chargeable battery
72 * Capacity: 8500mAh
73 * Self-Discharge: <1% / Year @ 25°C
74 * Max continuously current: 130mA
75 * Max boost current: 2A, 1 second
76
77 (% style="color:#037691" %)**Power Consumption**
78
79 * Sleep Mode: 5uA @ 3.3v
80 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
81
82 == 1.4 Sleep mode and working mode ==
83
84 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
85
86 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
87
88
89 == 1.5 Button & LEDs ==
90
91
92 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
93
94
95 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
96 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
97 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
98 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
99 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
100 )))
101 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
102 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
103 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
104 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
105 )))
106 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
107
108 == 1.6 BLE connection ==
109
110
111 SN50v3-LB supports BLE remote configure.
112
113
114 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
115
116 * Press button to send an uplink
117 * Press button to active device.
118 * Device Power on or reset.
119
120 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
121
122
123 == 1.7 Pin Definitions ==
124
125
126 [[image:image-20230513102034-2.png]]
127
128
129 == 1.8 Mechanical ==
130
131
132 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
133
134 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
135
136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137
138
139 == Hole Option ==
140
141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142
143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
144
145 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
146
147
148 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
149
150 == 2.1 How it works ==
151
152
153 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154
155
156 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
157
158
159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160
161 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162
163
164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
165
166 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
167
168 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
169
170
171 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
172
173
174 (% style="color:blue" %)**Register the device**
175
176 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
177
178
179 (% style="color:blue" %)**Add APP EUI and DEV EUI**
180
181 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
182
183
184 (% style="color:blue" %)**Add APP EUI in the application**
185
186
187 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
188
189
190 (% style="color:blue" %)**Add APP KEY**
191
192 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
193
194
195 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
196
197
198 Press the button for 5 seconds to activate the SN50v3-LB.
199
200 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
201
202 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
203
204
205 == 2.3 ​Uplink Payload ==
206
207 === 2.3.1 Device Status, FPORT~=5 ===
208
209
210 Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
211
212 The Payload format is as below.
213
214
215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219
220 Example parse in TTNv3
221
222
223 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
224
225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226
227 (% style="color:#037691" %)**Frequency Band**:
228
229 *0x01: EU868
230
231 *0x02: US915
232
233 *0x03: IN865
234
235 *0x04: AU915
236
237 *0x05: KZ865
238
239 *0x06: RU864
240
241 *0x07: AS923
242
243 *0x08: AS923-1
244
245 *0x09: AS923-2
246
247 *0x0a: AS923-3
248
249 *0x0b: CN470
250
251 *0x0c: EU433
252
253 *0x0d: KR920
254
255 *0x0e: MA869
256
257
258 (% style="color:#037691" %)**Sub-Band**:
259
260 AU915 and US915:value 0x00 ~~ 0x08
261
262 CN470: value 0x0B ~~ 0x0C
263
264 Other Bands: Always 0x00
265
266
267 (% style="color:#037691" %)**Battery Info**:
268
269 Check the battery voltage.
270
271 Ex1: 0x0B45 = 2885mV
272
273 Ex2: 0x0B49 = 2889mV
274
275
276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277
278
279 SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280
281 For example:
282
283 **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284
285
286 (% style="color:red" %) **Important Notice:**
287
288 1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 1. All modes share the same Payload Explanation from HERE.
290 1. By default, the device will send an uplink message every 20 minutes.
291
292 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293
294 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
295
296 (% style="width:1110px" %)
297 |**Size(bytes)**|**2**|(% style="width:191px" %)**2**|(% style="width:78px" %)**2**|(% style="width:216px" %)**1**|(% style="width:308px" %)**2**|(% style="width:154px" %)**2**
298 |**Value**|Bat|(% style="width:191px" %)(((
299 Temperature(DS18B20)
300
301 (PC13)
302 )))|(% style="width:78px" %)(((
303 ADC
304
305 (PA4)
306 )))|(% style="width:216px" %)(((
307 Digital in(PB15) &
308
309 Digital Interrupt(PA8)
310
311
312 )))|(% style="width:308px" %)(((
313 Temperature
314
315 (SHT20 or SHT31 or BH1750 Illumination Sensor)
316 )))|(% style="width:154px" %)(((
317 Humidity
318
319 (SHT20 or SHT31)
320 )))
321
322 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
323
324
325 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
326
327 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328
329 (% style="width:1011px" %)
330 |**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**
331 |**Value**|BAT|(% style="width:196px" %)(((
332 Temperature(DS18B20)
333
334 (PC13)
335 )))|(% style="width:87px" %)(((
336 ADC
337
338 (PA4)
339 )))|(% style="width:189px" %)(((
340 Digital in(PB15) &
341
342 Digital Interrupt(PA8)
343 )))|(% style="width:208px" %)(((
344 Distance measure by:
345 1) LIDAR-Lite V3HP
346 Or
347 2) Ultrasonic Sensor
348 )))|(% style="width:117px" %)Reserved
349
350 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
351
352 **Connection of LIDAR-Lite V3HP:**
353
354 [[image:image-20230512173758-5.png||height="563" width="712"]]
355
356 **Connection to Ultrasonic Sensor:**
357
358 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
359
360 [[image:image-20230512173903-6.png||height="596" width="715"]]
361
362 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
363
364 (% style="width:1113px" %)
365 |**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
366 |**Value**|BAT|(% style="width:183px" %)(((
367 Temperature(DS18B20)
368
369 (PC13)
370 )))|(% style="width:173px" %)(((
371 Digital in(PB15) &
372
373 Digital Interrupt(PA8)
374 )))|(% style="width:84px" %)(((
375 ADC
376
377 (PA4)
378 )))|(% style="width:323px" %)(((
379 Distance measure by:1)TF-Mini plus LiDAR
380 Or 
381 2) TF-Luna LiDAR
382 )))|(% style="width:188px" %)Distance signal  strength
383
384 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
385
386 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
387
388 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
389
390 [[image:image-20230512180609-7.png||height="555" width="802"]]
391
392 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
393
394 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
395
396 [[image:image-20230513105207-4.png||height="469" width="802"]]
397
398
399 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
400
401 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
402
403 (% style="width:1031px" %)
404 |=(((
405 **Size(bytes)**
406 )))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
407 |**Value**|(% style="width:68px" %)(((
408 ADC1
409
410 (PA4)
411 )))|(% style="width:75px" %)(((
412 ADC2
413
414 (PA5)
415 )))|(((
416 ADC3
417
418 (PA8)
419 )))|(((
420 Digital Interrupt(PB15)
421 )))|(% style="width:304px" %)(((
422 Temperature
423
424 (SHT20 or SHT31 or BH1750 Illumination Sensor)
425 )))|(% style="width:163px" %)(((
426 Humidity
427
428 (SHT20 or SHT31)
429 )))|(% style="width:53px" %)Bat
430
431 [[image:image-20230513110214-6.png]]
432
433
434 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
435
436
437 This mode has total 11 bytes. As shown below:
438
439 (% style="width:1017px" %)
440 |**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
441 |**Value**|BAT|(% style="width:186px" %)(((
442 Temperature1(DS18B20)
443 (PC13)
444 )))|(% style="width:82px" %)(((
445 ADC
446
447 (PA4)
448 )))|(% style="width:210px" %)(((
449 Digital in(PB15) &
450
451 Digital Interrupt(PA8) 
452 )))|(% style="width:191px" %)Temperature2(DS18B20)
453 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)
454 (PB8)
455
456 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
457
458 [[image:image-20230513134006-1.png||height="559" width="736"]]
459
460
461 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
462
463 [[image:image-20230512164658-2.png||height="532" width="729"]]
464
465 Each HX711 need to be calibrated before used. User need to do below two steps:
466
467 1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
468 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
469 1. (((
470 Weight has 4 bytes, the unit is g.
471 )))
472
473 For example:
474
475 **AT+GETSENSORVALUE =0**
476
477 Response:  Weight is 401 g
478
479 Check the response of this command and adjust the value to match the real value for thing.
480
481 (% style="width:767px" %)
482 |=(((
483 **Size(bytes)**
484 )))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
485 |**Value**|BAT|(% style="width:193px" %)(((
486 Temperature(DS18B20)
487
488 (PC13)
489
490
491 )))|(% style="width:85px" %)(((
492 ADC
493
494 (PA4)
495 )))|(% style="width:186px" %)(((
496 Digital in(PB15) &
497
498 Digital Interrupt(PA8)
499 )))|(% style="width:100px" %)Weight
500
501 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
502
503
504 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
505
506 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
507
508 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
509
510 [[image:image-20230512181814-9.png||height="543" width="697"]]
511
512 **Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
513
514 (% style="width:961px" %)
515 |=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
516 |**Value**|BAT|(% style="width:256px" %)(((
517 Temperature(DS18B20)
518
519 (PC13)
520 )))|(% style="width:108px" %)(((
521 ADC
522
523 (PA4)
524 )))|(% style="width:126px" %)(((
525 Digital in
526
527 (PB15)
528 )))|(% style="width:145px" %)(((
529 Count
530
531 (PA8)
532 )))
533
534 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
535
536
537 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
538
539 (% style="width:1108px" %)
540 |=(((
541 **Size(bytes)**
542 )))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
543 |**Value**|BAT|(% style="width:188px" %)(((
544 Temperature(DS18B20)
545
546 (PC13)
547 )))|(% style="width:83px" %)(((
548 ADC
549
550 (PA5)
551 )))|(% style="width:184px" %)(((
552 Digital Interrupt1(PA8)
553 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
554
555 [[image:image-20230513111203-7.png||height="324" width="975"]]
556
557 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
558
559 (% style="width:922px" %)
560 |=(((
561 **Size(bytes)**
562 )))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
563 |**Value**|BAT|(% style="width:207px" %)(((
564 Temperature(DS18B20)
565
566 (PC13)
567 )))|(% style="width:94px" %)(((
568 ADC1
569
570 (PA4)
571 )))|(% style="width:198px" %)(((
572 Digital Interrupt(PB15)
573 )))|(% style="width:84px" %)(((
574 ADC2
575
576 (PA5)
577 )))|(% style="width:82px" %)(((
578 ADC3
579
580 (PA8)
581 )))
582
583 [[image:image-20230513111231-8.png||height="335" width="900"]]
584
585
586 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
587
588 (% style="width:1010px" %)
589 |=(((
590 **Size(bytes)**
591 )))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
592 |**Value**|BAT|(((
593 Temperature1(DS18B20)
594
595 (PC13)
596 )))|(((
597 Temperature2(DS18B20)
598
599 (PB9)
600 )))|(((
601 Digital Interrupt
602
603 (PB15)
604 )))|(% style="width:193px" %)(((
605 Temperature3(DS18B20)
606
607 (PB8)
608 )))|(% style="width:78px" %)(((
609 Count1
610
611 (PA8)
612 )))|(% style="width:78px" %)(((
613 Count2
614
615 (PA4)
616 )))
617
618 [[image:image-20230513111255-9.png||height="341" width="899"]]
619
620 **The newly added AT command is issued correspondingly:**
621
622 **~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
623
624 **~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
625
626 **~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
627
628 **AT+SETCNT=aa,bb** 
629
630 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
631
632 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
633
634
635
636 === 2.3.3  ​Decode payload ===
637
638 While using TTN V3 network, you can add the payload format to decode the payload.
639
640 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
641
642 The payload decoder function for TTN V3 are here:
643
644 SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
645
646
647 ==== 2.3.3.1 Battery Info ====
648
649 Check the battery voltage for SN50v3.
650
651 Ex1: 0x0B45 = 2885mV
652
653 Ex2: 0x0B49 = 2889mV
654
655
656 ==== 2.3.3.2  Temperature (DS18B20) ====
657
658 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
659
660 More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
661
662 **Connection:**
663
664 [[image:image-20230512180718-8.png||height="538" width="647"]]
665
666 **Example**:
667
668 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
669
670 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
671
672 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
673
674
675 ==== 2.3.3.3 Digital Input ====
676
677 The digital input for pin PB15,
678
679 * When PB15 is high, the bit 1 of payload byte 6 is 1.
680 * When PB15 is low, the bit 1 of payload byte 6 is 0.
681
682 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
683 (((
684 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
685
686 **Note:**The maximum voltage input supports 3.6V.
687 )))
688
689 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
690
691 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
692
693 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
694
695 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
696
697 **Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
698
699 ==== 2.3.3.5 Digital Interrupt ====
700
701 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
702
703 **~ Interrupt connection method:**
704
705 [[image:image-20230513105351-5.png||height="147" width="485"]]
706
707 **Example to use with door sensor :**
708
709 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
710
711 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
712
713 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
714
715 **~ Below is the installation example:**
716
717 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
718
719 * (((
720 One pin to SN50_v3's PA8 pin
721 )))
722 * (((
723 The other pin to SN50_v3's VDD pin
724 )))
725
726 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
727
728 Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
729
730 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
731
732 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
733
734 The above photos shows the two parts of the magnetic switch fitted to a door.
735
736 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
737
738 The command is:
739
740 **AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
741
742 Below shows some screen captures in TTN V3:
743
744 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
745
746 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
747
748 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
749
750
751 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
752
753 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
754
755 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
756
757 Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
758
759 Below is the connection to SHT20/ SHT31. The connection is as below:
760
761
762 [[image:image-20230513103633-3.png||height="448" width="716"]]
763
764 The device will be able to get the I2C sensor data now and upload to IoT Server.
765
766 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
767
768 Convert the read byte to decimal and divide it by ten.
769
770 **Example:**
771
772 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
773
774 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
775
776 If you want to use other I2C device, please refer the SHT20 part source code as reference.
777
778
779 ==== 2.3.3.7  ​Distance Reading ====
780
781 Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
782
783
784 ==== 2.3.3.8 Ultrasonic Sensor ====
785
786 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
787
788 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
789
790 The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
791
792 The picture below shows the connection:
793
794 [[image:image-20230512173903-6.png||height="596" width="715"]]
795
796 Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
797
798 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
799
800 **Example:**
801
802 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
803
804
805
806 ==== 2.3.3.9  Battery Output - BAT pin ====
807
808 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
809
810
811 ==== 2.3.3.10  +5V Output ====
812
813 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
814
815 The 5V output time can be controlled by AT Command.
816
817 **AT+5VT=1000**
818
819 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
820
821 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
822
823
824
825 ==== 2.3.3.11  BH1750 Illumination Sensor ====
826
827 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
828
829 [[image:image-20230512172447-4.png||height="416" width="712"]]
830
831 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
832
833
834 ==== 2.3.3.12  Working MOD ====
835
836 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
837
838 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
839
840 Case 7^^th^^ Byte >> 2 & 0x1f:
841
842 * 0: MOD1
843 * 1: MOD2
844 * 2: MOD3
845 * 3: MOD4
846 * 4: MOD5
847 * 5: MOD6
848 * 6: MOD7
849 * 7: MOD8
850 * 8: MOD9
851
852 == 2.4 Payload Decoder file ==
853
854
855 In TTN, use can add a custom payload so it shows friendly reading
856
857 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
858
859 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
860
861
862
863 == 2.5 Frequency Plans ==
864
865
866 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
867
868 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
869
870
871 = 3. Configure SN50v3-LB =
872
873 == 3.1 Configure Methods ==
874
875
876 SN50v3-LB supports below configure method:
877
878 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
879 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
880 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
881
882 == 3.2 General Commands ==
883
884
885 These commands are to configure:
886
887 * General system settings like: uplink interval.
888 * LoRaWAN protocol & radio related command.
889
890 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
891
892 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
893
894
895 == 3.3 Commands special design for SN50v3-LB ==
896
897
898 These commands only valid for S31x-LB, as below:
899
900
901 === 3.3.1 Set Transmit Interval Time ===
902
903 Feature: Change LoRaWAN End Node Transmit Interval.
904
905 (% style="color:blue" %)**AT Command: AT+TDC**
906
907 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
908 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
909 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
910 30000
911 OK
912 the interval is 30000ms = 30s
913 )))
914 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
915 OK
916 Set transmit interval to 60000ms = 60 seconds
917 )))
918
919 (% style="color:blue" %)**Downlink Command: 0x01**
920
921 Format: Command Code (0x01) followed by 3 bytes time value.
922
923 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
924
925 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
926 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
927
928
929 === 3.3.2 Get Device Status ===
930
931 Send a LoRaWAN downlink to ask the device to send its status.
932
933 (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
934
935 Sensor will upload Device Status via FPORT=5. See payload section for detail.
936
937
938 === 3.3.3 Set Interrupt Mode ===
939
940 Feature, Set Interrupt mode for GPIO_EXIT.
941
942 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
943
944 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
945 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
946 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
947 0
948 OK
949 the mode is 0 =Disable Interrupt
950 )))
951 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
952 Set Transmit Interval
953 0. (Disable Interrupt),
954 ~1. (Trigger by rising and falling edge)
955 2. (Trigger by falling edge)
956 3. (Trigger by rising edge)
957 )))|(% style="width:157px" %)OK
958 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
959 Set Transmit Interval
960
961 trigger by rising edge.
962 )))|(% style="width:157px" %)OK
963 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
964
965 (% style="color:blue" %)**Downlink Command: 0x06**
966
967 Format: Command Code (0x06) followed by 3 bytes.
968
969 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
970
971 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
972 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
973 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
974 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
975
976
977 === 3.3.4 Set Power Output Duration ===
978
979 Control the output duration 5V . Before each sampling, device will
980
981 ~1. first enable the power output to external sensor,
982
983 2. keep it on as per duration, read sensor value and construct uplink payload
984
985 3. final, close the power output.
986
987 (% style="color:blue" %)**AT Command: AT+5VT**
988
989 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
990 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
991 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
992 500(default)
993
994 OK
995 )))
996 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
997 Close after a delay of 1000 milliseconds.
998 )))|(% style="width:157px" %)OK
999
1000 (% style="color:blue" %)**Downlink Command: 0x07**
1001
1002 Format: Command Code (0x07) followed by 2 bytes.
1003
1004 The first and second bytes are the time to turn on.
1005
1006 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1007 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1008
1009
1010 === 3.3.5 Set Weighing parameters ===
1011
1012 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1013
1014 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1015
1016 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1017 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1018 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1019 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1020 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1021
1022 (% style="color:blue" %)**Downlink Command: 0x08**
1023
1024 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1025
1026 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1027
1028 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1029
1030 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1031 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1032 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1033
1034
1035 === 3.3.6 Set Digital pulse count value ===
1036
1037 Feature: Set the pulse count value.
1038
1039 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1040
1041 (% style="color:blue" %)**AT Command: AT+SETCNT**
1042
1043 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1044 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1045 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1046 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1047
1048 (% style="color:blue" %)**Downlink Command: 0x09**
1049
1050 Format: Command Code (0x09) followed by 5 bytes.
1051
1052 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1053
1054 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1055 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1056
1057
1058 === 3.3.7 Set Workmode ===
1059
1060 Feature: Switch working mode.
1061
1062 (% style="color:blue" %)**AT Command: AT+MOD**
1063
1064 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1065 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1066 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1067 OK
1068 )))
1069 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1070 OK
1071
1072 Attention:Take effect after ATZ
1073 )))
1074
1075 (% style="color:blue" %)**Downlink Command: 0x0A**
1076
1077 Format: Command Code (0x0A) followed by 1 bytes.
1078
1079 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1080 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1081
1082
1083 = 4. Battery & Power Consumption =
1084
1085
1086 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1087
1088 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1089
1090
1091 = 5. OTA Firmware update =
1092
1093
1094 (% class="wikigeneratedid" %)
1095 User can change firmware SN50v3-LB to:
1096
1097 * Change Frequency band/ region.
1098 * Update with new features.
1099 * Fix bugs.
1100
1101 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1102
1103
1104 Methods to Update Firmware:
1105
1106 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1107 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1108
1109 = 6. FAQ =
1110
1111 == 6.1 Where can i find source code of SN50v3-LB? ==
1112
1113 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1114 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1115
1116 = 7. Order Info =
1117
1118
1119 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1120
1121 (% style="color:red" %)**XX**(%%): The default frequency band
1122
1123 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1124 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1125 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1126 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1127 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1128 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1129 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1130 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1131
1132 (% style="color:red" %)**YY: ** (%%)Hole Option
1133
1134 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1135 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1136 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1137 * (% style="color:red" %)**NH**(%%): No Hole
1138
1139 = 8. ​Packing Info =
1140
1141 (% style="color:#037691" %)**Package Includes**:
1142
1143 * SN50v3-LB LoRaWAN Generic Node
1144
1145 (% style="color:#037691" %)**Dimension and weight**:
1146
1147 * Device Size: cm
1148 * Device Weight: g
1149 * Package Size / pcs : cm
1150 * Weight / pcs : g
1151
1152 = 9. Support =
1153
1154
1155 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1156 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0